
QR factorization

There is a different algorithm to solve least-squares problems based
on a different matrix factorization, the QR factorization.

Not as powerful / revealing as SVD, but easier to compute. We
shall see its computation in detail.

Idea Mix Gaussian elimination / LU factorization with orthogonal
transformations.

First, we start with an easy case.



The case of a vector

Problem

Given x ∈ Rn, find an orthogonal matrix Q such that Qx is of the

form

 s
0
0
...
0

 = se1.

(We call ej the jth column of I .)

Remark Since orthogonal matrices preserve norm, s can only be
±∥x∥.



Householder reflectors

Lemma

For every v ∈ Rm, the matrix H = I − 2
vT v

vvT is orthogonal and
symmetric .

Written also I − 2
∥v∥2 vv

T , or I − 2uuT where u = 1
∥v∥v has norm 1.

Proof: verify directly HHT = I and H = HT .

Geometric idea: these are reflections (mirroring) with respect to
the plane perpendicular to v. Check for instance the case

u = e1 =

[ 1
0
...
0

]
.

Cost-saving trick Rearrange parentheses! For each x ∈ Rm×m we
can compute Hx = (I − 2uuT )x = x− 2u(uTx) in O(m), and HA
for any A ∈ Rm×m in O(m2).



Where can we get by reflecting

Lemma

Let x, y be two vectors such that ∥x∥ = ∥y∥. If one chooses
v = x− y, then H = I − 2

vT v
vvT is such that Hx = y.

Proof: boring algebra: substitute x = y + v, clear denominators
and expand.

Geometric idea: reflecting through the plane perpendicular to x− y
sends x into y.

In particular, we can take y = ∥x∥e1 =

 ∥x∥
0
...
0

.



Matlab implementation

function [u, s] = householder_vector(x)

s = norm(x);

v = x;

v(1) = v(1) - s;

u = v / norm(v);

Testing it:

>> x = randn(4,1);

>> [u, s] = householder_vector(x);

>> x - 2*u*(u’*x)

ans =

2.2541e+00

0

-1.1102e-16

0

>> s

s =

2.2541e+00



An extreme example

>> format short e

>> x = [1e4; 1e-6; 1e-6; 1e-6]

x =

1.0000e+04

1.0000e-06

1.0000e-06

1.0000e-06

>> [u, s] = householder_vector(x);

>> x - 2*u*(u’*x)

ans =

1.0000e+04

-1.0000e-06

-1.0000e-06

-1.0000e-06

The transformed vector is still at relative distance 10−10 ≫ u from
being a multiple of e1; we did not improve things.



Reason for instability

Problem: subtracting two almost-equal values → cancellation.

>> x(1), norm(x), x(1) - norm(x)

ans =

10000

ans =

10000

ans =

0

Small relative errors in the computation of norm(x) (e.g.,
computing ∥x∥(1 + ε) instead) cause huge relative errors on u1.

To improve stability, we make a small modification: we choose

▶ s = −∥x∥ whenever x1 ≥ 0.

▶ s = ∥x∥ whenever x1 < 0.

In this way, x1 − s always sums two numbers with the same sign.



Solution

function [u, s] = householder_vector(x)

s = norm(x);

if x(1) >= 0, s = -s; end

v = x;

v(1) = v(1) - s;

u = v / norm(v);

Now that example works better:

>> x = [1e4; 1e-6; 1e-6; 1e-6];

>> [u, s] = householder_vector(x);

>> x - 2*u*(u’*x)

ans =

-10000

0

0

0



QR factorization

Theorem

For every A ∈ Rm×n, there exist Q ∈ Rm×m orthogonal, R upper

triangular (i.e., i > j =⇒ Rij = 0, or ) such that A = QR.

Most interesting case for us: m ≥ n (square or tall-thin).

Note that we have already solved the case n = 1: x = H(se1) is a
QR factorization.

Idea: work like in Gaussian elimination / LU factorization: use
orthogonal matrices to transform A into an upper triangular
matrix, one column at a time.



QR factorization via Householder matrices

We start from A ∈ Rm×n.
Step 1: take [u1, s1] = householder vector(A(:, 1)) to get

H1A =

[ s1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

]
=: A1.

How can we introduce more zeros without spoiling those already
computed in the first column?

Idea Left-multiply by a matrix of the form Q2 =
[
1 0
0 H2

]
. It leaves

the first row unchanged and multiplies the others by
H2 ∈ R(m−1)×(m−1).
Step 2: take [u2, s2] = householder vector(A1(:, 1)), and compute

A2 =

[
1 0
0 H2

] [
B2 C2

0 D2

]
=

[
B2 C2

0 H2D2

]
=

[ s1 ∗ ∗ ∗
0 s2 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

]
=

[
B3 C3

0 D3

]
.



Continue. . .

[
I2×2 0
0 H3

] [
B3 C3

0 D3

]
=

[
B3 C3

0 H3D3

]
=

[ s1 ∗ ∗ ∗
0 s2 ∗ ∗
0 0 s3 ∗
0 0 0 ∗
0 0 0 ∗

]
,

[
I3×3 0
0 H4

] [
B4 C4

0 D4

]
=

[
B4 C4

0 H4D4

]
=

[ s1 ∗ ∗ ∗
0 s2 ∗ ∗
0 0 s3 ∗
0 0 0 s4
0 0 0 0

]
.

After the nth step (n = number of columns), we have a sequence
of orthogonal matrices such that Qn · · ·Q3Q2Q1A = R is
triangular.

A = (QT
1 QT

2 · · ·QT
n )︸ ︷︷ ︸

:=Q

R.

(Recall: products of orthogonal matrices is orthogonal.)



Matlab implementation

function [Q, R] = myqr(A)

[m, n] = size(A);

R = A;

Q = eye(m);

for k = 1:n

% invariant: Q*R = A

u = householder_vector(R(k:end, k));

H = eye(length(u)) - 2*u*u’;

A(k:end,k:end) = H * R(k:end,k:end);

Q(:, k:end) = Q(:, k:end) * H;

end

This is still not the final version of the algorithm!

Problem: as written here, it would have quartic cost (O(m4) for a
square matrix).



Optimizations

Huge optimization: don’t form H: use HAk = Ak − 2u(uTAk).

This optimization brings down the cost from quartic to cubic.

Minor optimization: write s and zeros manually in A(k:end, k).

Detail: if A is square, we can stop after step n − 1; the matrix is
already upper triangular.



Rectangular QR

If m ≫ n, like for SVD, computing/storing Q is expensive.
Thin QR (like thin SVD): restrict to Q0 ∈ Rm×n,R0 ∈ Rn×n.

A =
[
Q0 Qc

] [R0

0

]
= Q0R0.

There are two alternatives for handling Q0 without forming the big
matrix Q:

▶ Just return the ui ’s: the implicit form Q = Q1Q2 . . .Qn,
Qk = blkdiag(Ik−1, I − 2uku

T
k )) is not an array full of

numbers, but still you can perform operations such as matrix
products at the same cost, or even cheaper.

▶ In particular, you can use the uk ’s to compute Q
[
In
0

]
= Q0.



Cost

Computational cost of thin QR factorization via Householder
reflectors (assuming m ≥ n): 2mn2 − 2

3n
3 +O(mn) flops.

More important than this exact formula is its behavior in two
common regimes:

▶ 4
3n

3 for square matrices (m = n).

▶ Scales like 2mn2 when m ≫ n (tall-thin A).

Book references: Trefethen-Bau, Lecture 10. Demmel, Sec. 3.4.1.



Exercises

1. Check the “boring algebra” in the proof that Hx = y.

2. Is the QR factorization unique? (Hint: play with signs).

3. Can you identify (without computation) a QR of a matrix

with zero structure

[
0 0 0 0 ∗
0 0 0 ∗ ∗
0 0 ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

]
? (Hint: swapping rows is an

orthogonal transformation).

4. Show that if A ∈ Rm×m is singular (non-invertible), then its
QR factor R has a zero diagonal entry. (Hint: determinants!)

5. ⋆ Suppose that a matrix A ∈ Rm×m is ‘upper triangular plus

one more diagonal’, e.g.,

[ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

]
(these are called

Hessenberg matrices). Can you modify the algorithm so that
it has cost only O(m2) for matrices with this structure?

6. For a square A ∈ Rm×m, what does the last step k = m of QR
factorization do?


