QR factorization

There is a different algorithm to solve least-squares problems based on a different matrix factorization, the QR factorization.

Not as powerful / revealing as SVD, but easier to compute. We shall see its computation in detail.

Idea Mix Gaussian elimination / LU factorization with orthogonal transformations.

First, we start with an easy case.

The case of a vector

Problem

Given $\mathbf{x} \in \mathbb{R}^n$, find an orthogonal matrix Q such that Qx is of the form $\sqrt{ }$ $\overline{1}$ s
0
... 0 1 $\Big| = s\mathbf{e}_1.$

(We call \mathbf{e}_i the *j*th column of *I*.)

Remark Since orthogonal matrices preserve norm, s can only be \pm ∥x∥.

Householder reflectors

Lemma

For every $\mathbf{v} \in \mathbb{R}^m$, the matrix $H = I - \frac{2}{\sqrt{I}}$ $\frac{2}{\mathsf{v}^\mathcal{T}\mathsf{v}}\mathsf{v}\mathsf{v}^\mathcal{T}$ is orthogonal *and* symmetric .

Written also $I - \frac{2}{\| \mathbf{v} \|}$ $\frac{2}{\|{\bf v}\|^2}$ vv ${}^{\mathcal{T}}$, or $I-2$ uu ${}^{\mathcal{T}}$ where ${\bf u}=\frac{1}{\|{\bf v}\|}$ $\frac{1}{\|\mathbf{v}\|}$ **v** has norm 1. Proof: verify directly $HH^T = I$ and $H = H^T$.

Geometric idea: these are reflections (mirroring) with respect to the plane perpendicular to v . Check for instance the case $\mathbf{u} = \mathbf{e}_1 =$ $\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$ 0 1 .

Cost-saving trick Rearrange parentheses! For each $\mathbf{x} \in \mathbb{R}^{m \times m}$ we can compute $H\mathsf{x} = (I - 2\mathsf{u}\mathsf{u}^{\mathsf{T}})\mathsf{x} = \mathsf{x} - 2\mathsf{u}(\mathsf{u}^{\mathsf{T}}\mathsf{x})$ in $\mathcal{O}(m)$, and HA for any $A \in \mathbb{R}^{m \times m}$ in $\mathcal{O}(m^2)$.

Where can we get by reflecting

Lemma

Let **x**, **y** be two vectors such that $||\mathbf{x}|| = ||\mathbf{y}||$. If one chooses $\mathsf{v}=\mathsf{x}-\mathsf{y},$ then $H=I-\frac{2}{\mathsf{v}^T}$ $\frac{2}{v^{T}v}$ vv^T is such that $Hx = y$.

Proof: boring algebra: substitute $x = y + v$, clear denominators and expand.

Geometric idea: reflecting through the plane perpendicular to $x - y$ sends x into y .

In particular, we can take
$$
\mathbf{y} = \|\mathbf{x}\| \mathbf{e}_1 = \begin{bmatrix} \|\mathbf{x}\| \\ 0 \\ \vdots \\ 0 \end{bmatrix}
$$
.

Matlab implementation

```
function [u, s] = householder_vector(x)
s = norm(x);
v = x;
v(1) = v(1) - s;
u = v / norm(v);
```
Testing it:

```
>> x = \text{randn}(4,1);\Rightarrow [u, s] = householder_vector(x);
\gg x - 2*u*(u'*x)
ans =
   2.2541e+00
             \Omega-1.1102e-16\Omega\gg s
s =2.2541e+00
```
An extreme example

```
>> format short e
\Rightarrow x = [1e4; 1e-6; 1e-6; 1e-6]
x =1.0000e+04
   1.0000e-06
   1.0000e-06
   1.0000e-06
\geq [u, s] = householder_vector(x);
\gg x - 2*u*(u'*x)
ans =
   1.0000e+04
   -1.0000e - 06-1.0000e - 06-1.0000e - 06
```
The transformed vector is still at relative distance $10^{-10} \gg u$ from being a multiple of e_1 ; we did not improve things.

Reason for instability

Problem: subtracting two almost-equal values \rightarrow cancellation.

```
\Rightarrow x(1), norm(x), x(1) - norm(x)
ans =
        10000
ans =10000
ans =0
```
Small relative errors in the computation of $norm(x)$ (e.g., computing $||x||(1 + \varepsilon)$ instead) cause huge relative errors on u_1 .

To improve stability, we make a small modification: we choose

$$
\bullet \ \ s=-\|\mathbf{x}\| \ \text{whenever} \ \mathbf{x}_1\geq 0.
$$

$$
\bullet \ \ s = \|\mathbf{x}\| \ \text{whenever} \ \mathbf{x}_1 < 0.
$$

In this way, $x_1 - s$ always sums two numbers with the same sign.

Solution

```
function [u, s] = householder_vector(x)
s = norm(x);if x(1) >= 0, s = -s; end
v = x:
v(1) = v(1) - s:
u = v / norm(v):
```
Now that example works better:

```
\Rightarrow x = [1e4; 1e-6; 1e-6; 1e-6];
\geq [u, s] = householder_vector(x);
\gg x - 2*u*(u'*x)
ans =
         -10000\Omega\Omega\Omega
```
QR factorization

Theorem

For every $A \in \mathbb{R}^{m \times n}$, there exist $Q \in \mathbb{R}^{m \times m}$ orthogonal, R upper triangular (i.e., $i > j \implies R_{ij} = 0$, or \sum) such that $A = QR$.

Most interesting case for us: $m \ge n$ (square or tall-thin).

Note that we have already solved the case $n = 1$: $\mathbf{x} = H(\mathbf{se}_1)$ is a QR factorization.

Idea: work like in Gaussian elimination / LU factorization: use orthogonal matrices to transform A into an upper triangular matrix, one column at a time.

QR factorization via Householder matrices

We start from $A \in \mathbb{R}^{m \times n}$. Step 1: take $[\mathbf{u}_1,\mathbf{s}_1] = \text{householder_vector}(\mathsf{A}(:, 1))$ to get

$$
H_1A = \left[\begin{smallmatrix} s_1 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{smallmatrix}\right] =: A_1.
$$

How can we introduce more zeros without spoiling those already computed in the first column?

Idea Left-multiply by a matrix of the form $Q_2 = \left[\begin{smallmatrix} 1 & 0 \ 0 & H_2 \end{smallmatrix} \right]$. It leaves the first row unchanged and multiplies the others by $H_2 \in \mathbb{R}^{(m-1)\times(m-1)}$. Step 2: take $[\mathbf{u}_2,\mathbf{s}_2] = \text{householder_vector}(\mathsf{A1}(:,1))$, and compute

$$
A_2 = \begin{bmatrix} 1 & 0 \\ 0 & H_2 \end{bmatrix} \begin{bmatrix} B_2 & C_2 \\ 0 & D_2 \end{bmatrix} = \begin{bmatrix} B_2 & C_2 \\ 0 & H_2 D_2 \end{bmatrix} = \begin{bmatrix} s_1 * * * * \\ 0 & s_2 * * \\ 0 & 0 & * * \\ 0 & 0 & * * \end{bmatrix} = \begin{bmatrix} B_3 & C_3 \\ 0 & D_3 \end{bmatrix}
$$

.

Continue. . .

$$
\begin{bmatrix} I_{2\times 2} & 0 \\ 0 & H_3 \end{bmatrix} \begin{bmatrix} B_3 & C_3 \\ 0 & D_3 \end{bmatrix} = \begin{bmatrix} B_3 & C_3 \\ 0 & H_3D_3 \end{bmatrix} = \begin{bmatrix} \frac{5_1}{2} * * * * \\ 0 & \frac{5_2}{2} * * \\ 0 & 0 & \frac{5_3}{2} * \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & * \end{bmatrix},
$$

$$
\begin{bmatrix} I_{3\times 3} & 0 \\ 0 & H_4 \end{bmatrix} \begin{bmatrix} B_4 & C_4 \\ 0 & D_4 \end{bmatrix} = \begin{bmatrix} B_4 & C_4 \\ 0 & H_4D_4 \end{bmatrix} = \begin{bmatrix} \frac{5_1}{2} * * * * \\ 0 & \frac{5_2}{2} * * * \\ 0 & 0 & 0 & \frac{5_4}{2} \\ 0 & 0 & 0 & 0 \end{bmatrix}.
$$

After the nth step ($n =$ number of columns), we have a sequence of orthogonal matrices such that $Q_n \cdots Q_3 Q_2 Q_1 A = R$ is triangular.

$$
A = \underbrace{(Q_1^T Q_2^T \cdots Q_n^T)}_{:=Q} R.
$$

(Recall: products of orthogonal matrices is orthogonal.)

Matlab implementation

```
function [Q, R] = myqr(A)[m, n] = size(A):
R = A:
Q = eye(m);for k = 1:n% invariant: Q * R = Au = householder_vector(R(k:end, k));
   H = eye(length(u)) - 2*u*u';A(k:end,k:end) = H * R(k:end,k:end);Q(:, k:end) = Q(:, k:end) * H;
end
```
This is still not the final version of the algorithm!

Problem: as written here, it would have quartic cost $(\mathcal{O}(m^4))$ for a square matrix).

Optimizations

Huge optimization: don't form H: use $HA_k = A_k - 2u(u^T A_k)$.

This optimization brings down the cost from quartic to cubic.

Minor optimization: write s and zeros manually in $A(k:end, k)$.

Detail: if A is square, we can stop after step $n-1$; the matrix is already upper triangular.

Rectangular QR

If $m \gg n$, like for SVD, computing/storing Q is expensive. Thin QR (like thin SVD): restrict to $Q_0 \in \mathbb{R}^{m \times n}$, $R_0 \in \mathbb{R}^{n \times n}$.

$$
A = \begin{bmatrix} Q_0 & Q_c \end{bmatrix} \begin{bmatrix} R_0 \\ 0 \end{bmatrix} = Q_0 R_0.
$$

There are two alternatives for handling Q_0 without forming the big matrix Q:

It Just return the \mathbf{u}_i 's: the implicit form $Q = Q_1 Q_2 \dots Q_n$, $Q_k = \text{blkdiag}(I_{k-1}, I - 2\mathbf{u}_k \mathbf{u}_k^T))$ is not an array full of numbers, but still you can perform operations such as matrix products at the same cost, or even cheaper.

In particular, you can use the
$$
\mathbf{u}_k
$$
's to compute $Q\begin{bmatrix} I_n \\ 0 \end{bmatrix} = Q_0$.

Cost

Computational cost of thin QR factorization via Householder reflectors (assuming $m \ge n$): 2mn² – $\frac{2}{3}$ $\frac{2}{3}n^3 + \mathcal{O}(mn)$ flops.

More important than this exact formula is its behavior in two common regimes:

- \blacktriangleright $\frac{4}{3}n^3$ for square matrices $(m = n)$.
- ▶ Scales like $2mn^2$ when $m \gg n$ (tall-thin A).

Book references: Trefethen-Bau, Lecture 10. Demmel, Sec. 3.4.1.

Exercises

- 1. Check the "boring algebra" in the proof that $Hx = y$.
- 2. Is the QR factorization unique? (Hint: play with signs).
- 3. Can you identify (without computation) a QR of a matrix with zero structure $\left[\begin{smallmatrix} 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & * & * & * \\ 0 & * & * & * & * \end{smallmatrix} \right]$? (Hint: swapping rows is an orthogonal transformation).
- 4. Show that if $A \in \mathbb{R}^{m \times m}$ is singular (non-invertible), then its QR factor R has a zero diagonal entry. (Hint: determinants!)
- 5. ★ Suppose that a matrix $A \in \mathbb{R}^{m \times m}$ is 'upper triangular plus one more diagonal', e.g., $\begin{bmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{bmatrix}$ (these are called Hessenberg matrices). Can you modify the algorithm so that

it has cost only $O(m^2)$ for matrices with this structure?

6. For a square $A \in \mathbb{R}^{m \times m}$, what does the last step $k = m$ of QR factorization do?