QR factorization

There is a different algorithm to solve least-squares problems based
on a different matrix factorization, the QR factorization.

Not as powerful / revealing as SVD, but easier to compute. We
shall see its computation in detail.

Idea Mix Gaussian elimination / LU factorization with orthogonal
transformations.

First, we start with an easy case.

The case of a vector

Problem

Given x € R”, find an orthogonal matrix Q such that Qx is of the
0
0

form |~ | = se;.

0
We call e; the jth column of /.
J

Remark Since orthogonal matrices preserve norm, s can only be
+[x]-

Householder reflectors

Lemma

For every v € R™, the matrix H =/ — %WT is orthogonal and
symmetric .

Written also | — WVVT, or | —2uu’” where u = ﬁv has norm 1.
Proof: verify directly HHT =/ and H=HT.

Geometric idea: these are reflections (mirroring) with respect to
the plane perpendicular to v. Check for instance the case

1

0
u=e; = |.|.

0

Cost-saving trick Rearrange parentheses! For each x € R™*™ we
can compute Hx = (I —2uu’)x = x — 2u(u”x) in O(m), and HA
for any A € R™™ in O(m?).

Where can we get by reflecting

Lemma

Let x,y be two vectors such that ||x|| = ||y||. If one chooses
v=x-—y, then H=/ — %VVT is such that Hx =y.

Proof: boring algebra: substitute x =y + v, clear denominators
and expand.

Geometric idea: reflecting through the plane perpendicular to x —y
sends x into y.

[
In particular, we can take y = ||x||e; =

Matlab implementation

function [u, s] = householder_vector(x)
s = norm(x);
vV = X;
v(1l) = v(1l) - s;
u =v / norm(v);
Testing it:
>> x = randn(4,1);
>> [u, s] = householder_vector(x);
>> x — 2*xu*x(u’*x)
ans =
2.2541e+00
0
-1.1102e-16
0
>> s
s =
2.2541e+00

An extreme example

>> format short e
>> x = [led; 1le-6; le-6; le-6]
x =

1.0000e+04

1.0000e-06

1.0000e-06

1.0000e-06
>> [u, s] = householder_vector(x);
>> x — 2xux(u’*x)
ans =

1.0000e+04

-1.0000e-06

-1.0000e-06

-1.0000e-06

The transformed vector is still at relative distance 10719 > u from
being a multiple of e;; we did not improve things.

Reason for instability
Problem: subtracting two almost-equal values — cancellation.

>> x(1), norm(x), x(1) - norm(x)

ans =

10000
ans =

10000
ans =

0

Small relative errors in the computation of norm(x) (e.g.,
computing ||x||(1 + €) instead) cause huge relative errors on u;.

To improve stability, we make a small modification: we choose
» s = —||x|| whenever x; > 0.
» 5 = ||x|| whenever x; < 0.

In this way, x; — s always sums two numbers with the same sign.

Solution

function [u, s] householder_vector (x)
s = norm(x);

if x(1) >= 0, s
vV = X;

v(1) = v(1) - s;

u = v / norm(v);

-s; end

Now that example works better:

>> x = [led; 1le-6; 1le-6; le-6];
>> [u, s] = householder_vector(x);
>> x - 2%ux(u’*x)
ans =
-10000

0

0

0

QR factorization

Theorem
For every A € R™*" there exist Q € R™*™ orthogonal, R upper
triangular (ie., i >j = R;j =0, or D) such that A= QR.

Most interesting case for us: m > n (square or tall-thin).

Note that we have already solved the case n =1: x = H(se;) is a
QR factorization.

Idea: work like in Gaussian elimination / LU factorization: use
orthogonal matrices to transform A into an upper triangular
matrix, one column at a time.

QR factorization via Householder matrices

We start from A € R™*".
Step 1: take [ug, s1] = householder_vector(A(:, 1)) to get

] A

How can we introduce more zeros without spoiling those already
computed in the first column?

H1A:[

cocoo“
* K K ¥ ¥
* K X ¥ ¥
* ¥ X ¥ ¥

Idea Left-multiply by a matrix of the form Q= [§ 3,]. It leaves
the first row unchanged and multiplies the others by

H, € R(m=1)x(m—1)

Step 2: take [ug, s2] = householder_vector(Al(:, 1)), and compute

W L 0][B Gl _[B G _§%II_B3C3
270 H, 002_0H202_8811_003'

Continue. ..
I2><2 0 B3 C3 o 83 C3
0 Hs 0 D3| |0 H3Ds

bxz3 0| |Bs G| _|Ba G | _
0 Hi| |0 Dy 0 HaDy
After the nth step (n = number of columns), we have a sequence

of orthogonal matrices such that @, - @3@Q2Q1A= R is
triangular.

Il
| —— |
Co0o0¥ cooco“w
[

co¥ ¥ cooY *
O * ¥ coY x *

—
o

o

o

OL % % % %% % % %
| |

A=(QIQ - Q)R
=Q

(Recall: products of orthogonal matrices is orthogonal.)

Matlab implementation

function [Q, R] = myqr(A)
[m, n] = size(A);

R = A;
Q = eye(m);
for k = 1:n

% invariant: Q*R = A

u = householder_vector(R(k:end, k));
H = eye(length(u)) - 2%uxu’;
A(k:end,k:end) = H * R(k:end,k:end);
QC:, k:end) = Q(:, k:end) * H;

end
This is still not the final version of the algorithm!

Problem: as written here, it would have quartic cost (O(m?) for a

square matrix).

Optimizations
Huge optimization: don't form H: use HA, = A, — 2u(u’ Ay).
This optimization brings down the cost from quartic to cubic.
Minor optimization: write s and zeros manually in A(k:end, k).

Detail: if A is square, we can stop after step n — 1; the matrix is
already upper triangular.

Rectangular QR

If m > n, like for SVD, computing/storing Q is expensive.
Thin QR (like thin SVD): restrict to Qy € R™*", Ry € R™".

A

(@ Q] m = QoRo.

There are two alternatives for handling Qy without forming the big
matrix Q:
» Just return the u;'s: the implicit form Q@ = Q1 Q> ... Qp,
Qx = blkdiag(/lx—1,1 — 2ukuz—)) is not an array full of
numbers, but still you can perform operations such as matrix
products at the same cost, or even cheaper.

» In particular, you can use the uy's to compute Q[’g] = (.

Cost
Computational cost of thin QR factorization via Householder
reflectors (assuming m > n): 2mn* — n* + O(mn) flops.

More important than this exact formula is its behavior in two
common regimes:

> 2n? for square matrices (m = n).

» Scales like 2mn? when m > n (tall-thin A).

Book references: Trefethen-Bau, Lecture 10. Demmel, Sec. 3.4.1.

Exercises

1. Check the "boring algebra” in the proof that Hx =y.
2. Is the QR factorization unique? (Hint: play with signs).
3. Can you identify (without computation) a QR of a matrix

. 00 * . . .
with zero structure 80 *] ? (Hint: swapping rows is an
* *
* k *

4. Show that if A € R™*™ is singular (non-invertible), then its
QR factor R has a zero diagonal entry. (Hint: determinants!)

Rme

5. % Suppose that a matrix A € is ‘upper triangular plus

one more diagonal’, e.g.,

] (these are called

Hessenberg matrices). Can you modify the algorithm so that
it has cost only O(m?) for matrices with this structure?

6. For a square A € R™*™ what does the last step k = m of QR
factorization do?

