
Least squares with the SVD

One can solve least-squares problem also with the (thin) SVD.
Same derivation as with QR:
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Least squares with the SVD

Putting everything together, one gets
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Note that the small σi ’s contribute more to the solution (unless
also uTi y ≈ 0).

The expression in red gives a formula for A+ in terms of the SVD.
Note that we need only the thin SVD to compute it:
A+ = VΣ−1

0 UT
0 .



Full rank and the SVD

Question: when are all σi ̸= 0? Note that

ATA = (USV T )T (USV T ) = VSTSV T = V


σ2
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σ2
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n

V T ,

hence A has full column rank ⇐⇒ ATA is invertible ⇐⇒ σi ̸= 0
for all i .

(Also, you may recall that r = rank(A) is the number of nonzero
singular values).



Zero singular values

What happens if r < n, i.e., σr+1 = σr+2 = · · · = σn = 0?
From the first slide: in those rows we get −uTi y, independent of zi .
All choices of zi are valid solutions (minima).

(Recall: ATA is only positive semidefinite, so the quadratic
function is not strongly convex and the minimizer is not unique.)

“But I want one solution”: a possibility is taking zi = 0 when
σi = 0. This gives the solution with minimum norm ∥z∥ = ∥x∗∥:

x∗ = arg min
x ∈ argmin∥Ax− y∥

∥x∥.

Essentially, this means replacing 1
σi

with 0 in the previous formulas
whenever σi = 0.

The definition of pseudoinverse can be extended to the case of a
rank-deficient A, with x∗ = A+y returning the minimum-norm
solution (see exercises).



Rank-deficient least-squares problems

Zero singular values ⇐⇒ redundant models: for instance,

(salary) ≈ (rebounds)x1+(fouls)x2+(points)x3+(points+rebounds)x4

would be redundant. (Only linear dependencies cause singularity.)

Problem: exact dependencies are very rarely encountered.

More often, one will see approximate dependencies. This is caused
also by two effects:

▶ Noise in your data: e.g.,

0.1 0.2
0.2 0.4
0.3 0.599999

 is not an exact

dependency, σn ̸= 0.

▶ Inexact computation: even with an exact dependency,
computer arithmetic often produces σn ̸= 0. We will see more
in the following, but the effect of machine arithmetic (with
backward stable algorithms) is comparable to a (relative) error
of order u ≈ 10−16 in your data.



Theorem

Let σi be the singular values of A, and σ̃i those of A+ E . Then,
∥σi − σ̃i∥ ≤ ∥E∥.



Example

>> M = dlmread(’salaries.csv’, ’,’, 1, 1);

>> A = M(:, 1:3);

>> A(:,4) = A(:,1) + A(:,3);

ans =

>> svd(A)

2.8060e+04

3.2171e+03

8.7262e+02

1.5007e-12

>> rank(A’*A)

ans =

3

>> svd(A + 0.01*rand(size(A)))

2.8060e+04

3.2172e+03

8.7264e+02

6.7068e-02



Eigenvalues and singular values

>> eig(A’*A)

ans =

5.7662e-08

7.6146e+05

1.0350e+07

7.8736e+08

>> svd(A).^2

ans =

7.8736e+08

1.0350e+07

7.6146e+05

2.2520e-24

Note that with eig the smallest eigenvalue 0 is affected by a
perturbation of 10−8 ≈ u∥ATA∥ = uλ1, while with svd the
smallest singular value 0 is affected by a perturbation of
10−12 ≈ u∥A∥ = uσ1. So svd is more accurate than eig.



>> A \ y

Warning: Rank deficient, rank = 3, tol = 1.956415e-09.

ans =

3.7690e+03

-2.6578e+04

0

9.5162e+03

If you know for certain that σ4 = 0, you can stop the sum early
and compute the minimum-norm solution as

x∗ =
r∑

i=1

vi
uTi y

σi
.



Small singular values

A related issue is the one of small singular values. Many real-world
matrices have decaying singular values, e.g.,

ans =

5.1795e+02

2.6827e+01

1.3895e+00

7.1969e-02

3.7276e-03

1.9307e-04

...

This makes it even more difficult to tell when a model is exactly
singular.



Truncated SVD

The exact solution x varies wildly depending on the exact value of
the small σi .

This has a large impact on the computed solution, since σi appears
in the denominator:

x =
n∑

i=1

vi
uTi y

σi
.

However, in many applications the most meaningful features
correspond to the large singular values; recall: eigenfaces, image
compression.

One often gets a better solution (from the point of view of the
application) by ignoring the contribution of small singular values:

xreg =
k∑

i=1

vi
uTi y

σi
, (for a certain k < r .)

This xreg is not the solution of min∥Ax− y∥, but sometimes it
gives better application results.



Example (not the best one)

With the previous A, y from the basketball analytics problem:

>> AA = A + 0.01*rand(size(A));

>> AA \ y

ans =

9.1286e+07

-2.9669e+04

9.1282e+07

-9.1272e+07

>> [U, S, V] = svd(AA);

>> V(:,1:3) / S(1:3, 1:3) * U(:, 1:3)’*y

ans =

5.6843e+03

-2.6577e+04

1.9155e+03

7.6007e+03

This is a better approximation of the (inaccessible) true solution
A \ y.



Alternative: Tikhonov regularization / ridge regression

A different solution to the problem of what to do when there are
tiny singular values: change your problem, and look for

min
x∈Rn

∥Ax− y∥2 + α2∥x∥2

(for a given α > 0). The second term discourages solutions with
large norm. This is a classical strategy in optimization: penalty
terms.

We can rewrite the objective function as

∥Ax− y∥2 + α2∥x∥2 =
∥∥∥∥[AαI

]
x−

[
y
0

]∥∥∥∥2.



Tikhonov / ridge — formula

Thanks to this expression, we can give an explicit solution formula:

xα =

[
A
αI

]+ [
y
0

]
=
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A
αI

]T [
A
αI

])−1 [
A
αI

]T [
y
0

]
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([
AT αI

] [A
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])−1 [
AT αI

] [y
0

]
= (ATA+ α2I )−1ATy.

Note: zT (ATA+ α2I )z ≥ α2zTz > 0 for all z ̸= 0 =⇒
[
A
αI

]
has

full column rank for each α > 0.



Tikhonov / ridge and SVD

Exercise Show using the SVD of A that the Tikhonov / Ridge
solution can be written as

xα =
n∑

i=1

vi
σi

σ2
i + α2

uTi y.

This function f (σ) = σ
σ2+α2 approximates a truncated SVD:

When σ ≫ α, f (σ) ≈ 1
σ : similar to the true LS solution.

When σ ≪ α, f (σ) ≈ σ
α ≈ 0: approximately ignoring small singular

values.



Choice of α

How to choose α? Difficult to motivate the choice mathematically:
we are asking “how to modify the problem”, not “how to solve the
problem”.

Sometimes it makes sense to take α ≈ magnitude of the
noise/uncertainty in your data (if you know it!). Sometimes, there
are application-specific choices; you will see more in ML / AI
courses. ML people love grid searches: throw processing power at
it and learn from similar problems.

Similar arguments hold for the choice of k in truncated SVD.

Book references: Demmel, ch. 3.5. Trefethen-Bau, just some
quick remarks on p. 143. Eldén, ch. 6.7 and 7 (best).



Exercises

1. Let A ∈ Rm×n, m ≥ n, be a matrix with full column rank, and
let A = UΣV T be its SVD, with σi = (Σ)ii as usual. Show
that A+ = VΣ+UT , where Σ+ is the n ×m matrix such that

Σ+ =


1
σ1

1
σ2

. . .
1
σn

 .

(As usual, elements not shown are zeros). Hint: use
A+ = (ATA)−1AT .

2. Show that the matrix denoted with Σ+ above is, indeed, the
pseudoinverse of Σ.



Exercises

1. Let A be a matrix that does not have full column rank, and
A = UΣV T be its SVD, with rank r and singular values
σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = σr+2 = · · · = σn = 0. Show
that the solution of argminx ∈ argmin∥Ax− y∥∥x∥ is x∗ = A+y,
where

A+ = V



1
σ1

1
σ2

. . .
1
σr

0
0

. . .

0


UT .

This formula can be taken as a definition of the pseudoinverse
A+ for a matrix A that does not have full column rank.


