Least squares with the SVD

One can solve least-squares problem also with the (thin) SVD. Same derivation as with QR:

$$|A\mathbf{x} - \mathbf{y}|| = ||USV^T\mathbf{x} - \mathbf{y}|| = ||S\underbrace{V^T\mathbf{x}}_{=\mathbf{z}} - U^T\mathbf{y}||$$
$$= \left\| \begin{bmatrix} \sigma_1 z_1 \\ \sigma_2 z_2 \\ \vdots \\ \sigma_n z_n \\ 0 \\ \vdots \\ 0 \end{bmatrix} - \begin{bmatrix} \mathbf{u}_1^T\mathbf{y} \\ \mathbf{u}_2^T\mathbf{y} \\ \vdots \\ \mathbf{u}_n^T\mathbf{y} \\ \mathbf{u}_{n+1}^T\mathbf{y} \\ \vdots \\ \mathbf{u}_m^T\mathbf{y} \end{bmatrix} \right\|$$

If all the σ_n are different from 0, the minimum is when $z_i = \frac{\mathbf{u}_i^T \mathbf{y}}{\sigma_i}$. Then $\mathbf{x} = V \mathbf{z} = V \Sigma_0^{-1} U_0^T \mathbf{y}$. The minimum value is $U_c^T \mathbf{y}$.

Least squares with the SVD

Putting everything together, one gets

$$\mathbf{x} = \sum_{i=1}^{n} \mathbf{v}_{i} \frac{\mathbf{u}_{i}^{T} \mathbf{y}}{\sigma_{i}} = \mathbf{V} \begin{bmatrix} \frac{1}{\sigma_{1}} & & \\ & \frac{1}{\sigma_{2}} & & \\ & & \ddots & \\ & & & \frac{1}{\sigma_{n}} \end{bmatrix} \mathbf{U}^{T} \mathbf{y}.$$

Note that the small σ_i 's contribute more to the solution (unless also $\mathbf{u}_i^T \mathbf{y} \approx 0$).

The expression in red gives a formula for A^+ in terms of the SVD. Note that we need only the thin SVD to compute it: $A^+ = V \Sigma_0^{-1} U_0^T$.

Full rank and the SVD

Question: when are all $\sigma_i \neq 0$? Note that

$$A^{\mathsf{T}}A = (USV^{\mathsf{T}})^{\mathsf{T}}(USV^{\mathsf{T}}) = VS^{\mathsf{T}}SV^{\mathsf{T}} = V \begin{bmatrix} \sigma_1^2 & & \\ & \sigma_2^2 & \\ & & \ddots & \\ & & & & \sigma_n^2 \end{bmatrix} V^{\mathsf{T}},$$

hence A has full column rank $\iff A^T A$ is invertible $\iff \sigma_i \neq 0$ for all *i*.

(Also, you may recall that $r = \operatorname{rank}(A)$ is the number of nonzero singular values).

Zero singular values

What happens if r < n, i.e., $\sigma_{r+1} = \sigma_{r+2} = \cdots = \sigma_n = 0$? From the first slide: in those rows we get $-\mathbf{u}_i^T \mathbf{y}$, independent of z_i . All choices of z_i are valid solutions (minima).

(Recall: $A^T A$ is only positive semidefinite, so the quadratic function is not strongly convex and the minimizer is not unique.)

"But I want **one** solution": a possibility is taking $z_i = 0$ when $\sigma_i = 0$. This gives the solution with minimum norm $\|\mathbf{z}\| = \|\mathbf{x}_*\|$:

$$\mathbf{x}_* = rg \min_{\mathbf{x} \in rg \min \| A\mathbf{x} - \mathbf{y} \|} \| \mathbf{x} \|.$$

Essentially, this means replacing $\frac{1}{\sigma_i}$ with 0 in the previous formulas whenever $\sigma_i = 0$.

The definition of pseudoinverse can be extended to the case of a rank-deficient A, with $\mathbf{x}_* = A^+ \mathbf{y}$ returning the minimum-norm solution (see exercises).

Rank-deficient least-squares problems

Zero singular values \iff redundant models: for instance,

 $(salary) \approx (rebounds)x_1 + (fouls)x_2 + (points)x_3 + (points + rebounds)x_4$

would be redundant. (Only linear dependencies cause singularity.)

Problem: exact dependencies are very rarely encountered.

More often, one will see approximate dependencies. This is caused also by two effects:

Noise in your data: e.g.,
$$\begin{bmatrix} 0.1 & 0.2 \\ 0.2 & 0.4 \\ 0.3 & 0.599999 \end{bmatrix}$$
 is not an exact dependency, $\sigma_n \neq 0$.

Inexact computation: even with an exact dependency, computer arithmetic often produces σ_n ≠ 0. We will see more in the following, but the effect of machine arithmetic (with backward stable algorithms) is comparable to a (relative) error of order u ≈ 10⁻¹⁶ in your data.

Theorem

Let σ_i be the singular values of A, and $\tilde{\sigma}_i$ those of A + E. Then, $\|\sigma_i - \tilde{\sigma}_i\| \le \|E\|$.

Example

```
>> M = dlmread('salaries.csv', ',', 1, 1);
>> A = M(:, 1:3);
>> A(:,4) = A(:,1) + A(:,3);
ans =
>> svd(A)
  2.8060e+04
  3.2171e+03
  8.7262e+02
  1.5007e-12
>> rank(A'*A)
ans =
    З
>> svd(A + 0.01*rand(size(A)))
    2.8060e+04
    3.2172e+03
    8.7264e+02
    6.7068e-02
```

Eigenvalues and singular values

>> eig(A'*A)
ans =
5.7662e-08
7.6146e+05
1.0350e+07
7.8736e+08
>> svd(A).^2
ans =
7.8736e+08
1.0350e+07
7.6146e+05
2.2520e-24

Note that with eig the smallest eigenvalue 0 is affected by a perturbation of $10^{-8} \approx u ||A^T A|| = u\lambda_1$, while with svd the smallest singular value 0 is affected by a perturbation of $10^{-12} \approx u ||A|| = u\sigma_1$. So svd is more accurate than eig.

If you know for certain that $\sigma_4 = 0$, you can stop the sum early and compute the minimum-norm solution as

$$\mathbf{x}_* = \sum_{i=1}^r \mathbf{v}_i \frac{\mathbf{u}_i^T \mathbf{y}}{\sigma_i}.$$

Small singular values

A related issue is the one of small singular values. Many real-world matrices have decaying singular values, e.g.,

ans =

- 5.1795e+02
- 2.6827e+01
- 1.3895e+00
- 7.1969e-02
- 3.7276e-03
- 1.9307e-04

• • •

This makes it even more difficult to tell when a model is exactly singular.

Truncated SVD

The exact solution **x** varies wildly depending on the exact value of the small σ_i .

This has a large impact on the computed solution, since σ_i appears in the denominator:

$$\mathbf{x} = \sum_{i=1}^{n} \mathbf{v}_i \frac{\mathbf{u}_i^T \mathbf{y}}{\sigma_i}.$$

However, in many applications the most meaningful features correspond to the large singular values; recall: eigenfaces, image compression.

One often gets a better solution (from the point of view of the application) by ignoring the contribution of small singular values:

$$\mathbf{x}_{reg} = \sum_{i=1}^{k} \mathbf{v}_i \frac{\mathbf{u}_i^T \mathbf{y}}{\sigma_i}, \quad \text{(for a certain } k < r.)$$

This \mathbf{x}_{reg} is not the solution of min $||A\mathbf{x} - \mathbf{y}||$, but sometimes it gives better application results.

Example (not the best one)

With the previous A, \mathbf{y} from the basketball analytics problem:

```
>> AA = A + 0.01 * rand(size(A));
>> AA \ v
ans =
  9.1286e+07
 -2.9669e+04
  9.1282e+07
 -9.1272e+07
>> [U, S, V] = svd(AA);
>> V(:,1:3) / S(1:3, 1:3) * U(:, 1:3)'*y
ans =
  5.6843e+03
 -2.6577e+04
  1.9155e+03
  7.6007e+03
```

This is a better approximation of the (inaccessible) true solution $A \setminus y$.

Alternative: Tikhonov regularization / ridge regression

A different solution to the problem of what to do when there are tiny singular values: change your problem, and look for

$$\min_{\mathbf{x}\in\mathbb{R}^n} \|A\mathbf{x}-\mathbf{y}\|^2 + \alpha^2 \|\mathbf{x}\|^2$$

(for a given $\alpha > 0$). The second term discourages solutions with large norm. This is a classical strategy in optimization: penalty terms.

We can rewrite the objective function as

$$\|A\mathbf{x} - \mathbf{y}\|^2 + \alpha^2 \|\mathbf{x}\|^2 = \left\| \begin{bmatrix} A \\ \alpha I \end{bmatrix} \mathbf{x} - \begin{bmatrix} \mathbf{y} \\ \mathbf{0} \end{bmatrix} \right\|^2$$

Tikhonov / ridge — formula

Thanks to this expression, we can give an explicit solution formula:

$$\mathbf{x}_{\alpha} = \begin{bmatrix} A \\ \alpha I \end{bmatrix}^{+} \begin{bmatrix} \mathbf{y} \\ \mathbf{0} \end{bmatrix} = \left(\begin{bmatrix} A \\ \alpha I \end{bmatrix}^{T} \begin{bmatrix} A \\ \alpha I \end{bmatrix} \right)^{-1} \begin{bmatrix} A \\ \alpha I \end{bmatrix}^{T} \begin{bmatrix} \mathbf{y} \\ \mathbf{0} \end{bmatrix}$$
$$= \left(\begin{bmatrix} A^{T} & \alpha I \end{bmatrix} \begin{bmatrix} A \\ \alpha I \end{bmatrix} \right)^{-1} \begin{bmatrix} A^{T} & \alpha I \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \mathbf{0} \end{bmatrix}$$
$$= \left(A^{T} A + \alpha^{2} I \right)^{-1} A^{T} \mathbf{y}.$$

Note: $\mathbf{z}^T (A^T A + \alpha^2 I) \mathbf{z} \ge \alpha^2 \mathbf{z}^T \mathbf{z} > 0$ for all $\mathbf{z} \ne 0 \implies \begin{bmatrix} A \\ \alpha I \end{bmatrix}$ has full column rank for each $\alpha > 0$.

Tikhonov / ridge and SVD

Exercise Show using the SVD of A that the Tikhonov / Ridge solution can be written as

$$\mathbf{x}_{lpha} = \sum_{i=1}^{n} \mathbf{v}_{i} \frac{\sigma_{i}}{\sigma_{i}^{2} + \alpha^{2}} \mathbf{u}_{i}^{T} \mathbf{y}.$$

This function $f(\sigma) = \frac{\sigma}{\sigma^2 + \alpha^2}$ approximates a truncated SVD: When $\sigma \gg \alpha$, $f(\sigma) \approx \frac{1}{\sigma}$: similar to the true LS solution.

When $\sigma \ll \alpha$, $f(\sigma) \approx \frac{\sigma}{\alpha} \approx 0$: approximately ignoring small singular values.

$\textbf{Choice of } \alpha$

How to choose α ? Difficult to motivate the choice mathematically: we are asking "how to modify the problem", not "how to solve the problem".

Sometimes it makes sense to take $\alpha \approx$ magnitude of the noise/uncertainty in your data (if you know it!). Sometimes, there are application-specific choices; you will see more in ML / Al courses. ML people love grid searches: throw processing power at it and learn from similar problems.

Similar arguments hold for the choice of k in truncated SVD.

Book references: Demmel, ch. 3.5. Trefethen-Bau, just some quick remarks on p. 143. Eldén, ch. 6.7 and 7 (best).

Exercises

1. Let $A \in \mathbb{R}^{m \times n}$, $m \ge n$, be a matrix with full column rank, and let $A = U\Sigma V^T$ be its SVD, with $\sigma_i = (\Sigma)_{ii}$ as usual. Show that $A^+ = V\Sigma^+ U^T$, where Σ^+ is the $n \times m$ matrix such that

$$\Sigma^{+} = \begin{bmatrix} \frac{1}{\sigma_{1}} & & & \\ & \frac{1}{\sigma_{2}} & & \\ & & \ddots & \\ & & & \frac{1}{\sigma_{g}} & \end{bmatrix}$$

(As usual, elements not shown are zeros). Hint: use $A^+ = (A^T A)^{-1} A^T$.

2. Show that the matrix denoted with Σ^+ above is, indeed, the pseudoinverse of $\Sigma.$

Exercises

1. Let A be a matrix that does not have full column rank, and $A = U\Sigma V^T$ be its SVD, with rank r and singular values $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > \sigma_{r+1} = \sigma_{r+2} = \cdots = \sigma_n = 0$. Show that the solution of $\arg \min_{\mathbf{x} \in \arg \min ||A\mathbf{x} - \mathbf{y}||} ||\mathbf{x}||$ is $\mathbf{x}_* = A^+ \mathbf{y}$, where

This formula can be taken as a definition of the pseudoinverse A^+ for a matrix A that does not have full column rank.