Least squares with the SVD

One can solve least-squares problem also with the (thin) SVD.
Same derivation as with QR:
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If all the o, are different from 0, the minimum is when z; = u("yy.

Then x = Vz = VZalU(;’—y. The minimum value is U[y.




Least squares with the SVD

Putting everything together, one gets
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Note that the small o;'s contribute more to the solution (unless
also uly ~ 0).

The expression in red gives a formula for AT in terms of the SVD.
Note that we need only the thin SVD to compute it:
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Full rank and the SVD

Question: when are all g; # 07 Note that
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hence A has full column rank <= AT Ais invertible <= o; #0
for all i.

(Also, you may recall that r = rank(A) is the number of nonzero
singular values).



Zero singular values

What happens if r < n, i.e., 0,41 =02 =+ =0, =07
From the first slide: in those rows we get —u,-Ty, independent of z;.
All choices of z; are valid solutions (minima).

(Recall: AT A is only positive semidefinite, so the quadratic
function is not strongly convex and the minimizer is not unique.)

“But | want one solution”: a possibility is taking z; = 0 when
oi = 0. This gives the solution with minimum norm ||z|| = ||x.[:

]

X, = arg min
x € arg min||Ax — y||

Essentially, this means replacing Ul with 0 in the previous formulas
whenever o; = 0.

The definition of pseudoinverse can be extended to the case of a
rank-deficient A, with x, = ATy returning the minimum-norm
solution (see exercises).



Rank-deficient least-squares problems
Zero singular values <= redundant models: for instance,
(salary) =~ (rebounds)xj +(fouls)xo+(points)x3+(points-+rebounds)xs

would be redundant. (Only linear dependencies cause singularity.)
Problem: exact dependencies are very rarely encountered.

More often, one will see approximate dependencies. This is caused
also by two effects:

0.1 0.2
» Noise in your data: e.g., |0.2 0.4 is not an exact
0.3 0.599999

dependency, o, # 0.

» Inexact computation: even with an exact dependency,
computer arithmetic often produces o, # 0. We will see more
in the following, but the effect of machine arithmetic (with
backward stable algorithms) is comparable to a (relative) error
of order u =~ 1071 in your data.



Theorem

Let o; be the singular values of A, and G; those of A+ E. Then,
loi = &ill < [EJ|.



Example

>> M = dlmread(’salaries.csv’, ’,’, 1, 1);
>> A = M(:, 1:3);
>> A(:,4) = A(:,1) + A(:,3);
ans =
>> svd(A)
2.8060e+04
3.2171e+03
8.7262e+02
1.5007e-12
>> rank (A’ *A)
ans =
3
>> svd(A + 0.01*rand(size(A)))
2.8060e+04
3.2172e+03
8.7264e+02
6.7068e-02



Eigenvalues and singular values

>> eig(A’*A)
ans =
5.7662e-08
7.6146e+05
1.0350e+07
7.8736e+08
>> svd(A). 2
ans =
7.8736e+08
1.0350e+07
7.6146e+05
2.2520e-24

Note that with eig the smallest eigenvalue 0 is affected by a
perturbation of 1078 ~ u||AT A|| = u)1, while with svd the
smallest singular value 0 is affected by a perturbation of
10712 ~ u||A|| = uoy. So svd is more accurate than eig.



> A\y
Warning: Rank deficient, rank = 3, tol = 1.956415e-09.
ans =
3.7690e+03
-2.6578e+04
0
9.5162e+03

If you know for certain that o4 = 0, you can stop the sum early
and compute the minimum-norm solution as
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Small singular values

A related issue is the one of small singular values. Many real-world
matrices have decaying singular values, e.g.,

ans =

.1795e+02
.6827e+01
.3895e+00
.1969e-02
.7276e-03
.9307e-04

= W N~ N O,

This makes it even more difficult to tell when a model is exactly
singular.



Truncated SVD

The exact solution x varies wildly depending on the exact value of
the small o;.

This has a large impact on the computed solution, since o; appears
in the denominator:
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However, in many applications the most meaningful features

correspond to the large singular values; recall: eigenfaces, image
compression.

One often gets a better solution (from the point of view of the
application) by ignoring the contribution of small singular values:
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This X,eg is not the solution of min||Ax — y||, but sometimes it
gives better application results.



Example (not the best one)

With the previous A,y from the basketball analytics problem:

>> AA = A + 0.01*rand(size(A));
>> AA \ y
ans =

9.1286e+07

-2.9669e+04

9.1282e+07

-9.1272e+07
>> [U, S, V] = svd(Ah);
>> V(:,1:3) / S(1:3, 1:3) * U(:, 1:3)’*y
ans =

5.6843e+03

-2.6577e+04

1.9155e+03

7.6007e+03

This is a better approximation of the (inaccessible) true solution
AN\ y.



Alternative: Tikhonov regularization / ridge regression

A different solution to the problem of what to do when there are
tiny singular values: change your problem, and look for
. 2 2|14 112
min ||Ax — + a”||x
min [JAx — y|? + a2 x|
(for a given o > 0). The second term discourages solutions with

large norm. This is a classical strategy in optimization: penalty
terms.

We can rewrite the objective function as
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Tikhonov / ridge — formula

Thanks to this expression, we can give an explicit solution formula:
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= (ATA+ %) 1ATy.

Note: z"(ATA+a?)z>a?z"z>0forall z#0 — [C;ﬂ has

full column rank for each a > 0.



Tikhonov / ridge and SVD

Exercise Show using the SVD of A that the Tikhonov / Ridge
solution can be written as
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This function f(0) = »7.> approximates a truncated SVD:
When o > «, (o) &~ =: similar to the true LS solution.

When 0 < a, (o) =
values.

~ 0: approximately ignoring small singular



Choice of «

How to choose a? Difficult to motivate the choice mathematically:
we are asking “how to modify the problem”, not “how to solve the
problem”.

Sometimes it makes sense to take o &~ magnitude of the
noise/uncertainty in your data (if you know it!). Sometimes, there
are application-specific choices; you will see more in ML / Al
courses. ML people love grid searches: throw processing power at
it and learn from similar problems.

Similar arguments hold for the choice of k in truncated SVD.

Book references: Demmel, ch. 3.5. Trefethen-Bau, just some
quick remarks on p. 143. Eldén, ch. 6.7 and 7 (best).



Exercises

1. Let A€ R™*" m > n, be a matrix with full column rank, and
let A= UXVT be its SVD, with o; = (X);; as usual. Show
that At = VXtUT, where ¥ is the n x m matrix such that

(As usual, elements not shown are zeros). Hint: use
At = (ATA)LAT,

2. Show that the matrix denoted with ¥ above is, indeed, the
pseudoinverse of X.



Exercises

1. Let A be a matrix that does not have full column rank, and
A= UZVT beits SVD, with rank r and singular values

01>09> >0, > 0,41 =0p42="-++=0,=0. Show
that the solution of arg miny ¢ arg minjax — y| IIX| is x« = Aty,
where
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This formula can be taken as a definition of the pseudoinverse
AT for a matrix A that does not have full column rank.



