
Comparison of (direct) least squares algorithms

Normal eqns QR SVD

m ≈ n 4
3n

3 4
3n

3 ≈ 13n3

m ≫ n mn2 2mn2 2mn2

TL;DR: Normal equations faster than QR faster than SVD.

Is that all there is to say?

>> A = [1 1 2; 1 2 3; 3 1 4; 1 2 3+1e-8];

>> y = A*[3;4;5];

>> [Q1, R1] = qr(A, 0); x1 = R1 \ (Q1’*y)

x1 =

2.999999625816564e+00

3.999999625816566e+00

5.000000374183434e+00

>> [U, S, V] = svd(A, 0); x2 = V*pinv(S)*U’*y

x2 =

2.999999523162842e+00

4.000000000000000e+00

5.000000000000000e+00

>> x3 = (A’*A) \ (A’*y)

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 2.619349e-18.

x3 =

-3.356626253322333e+01

-3.256626267687653e+01

4.156626257240148e+01

Also, residuals don’t tell us much about the accuracy of these
solutions:

>> norm(A*x2 - y)

ans =

1.651812369889142e-06

>> norm(A*x3 - y)

ans =

2.676376351036689e-07

And parentheses in x2 matter:

>> [U, S, V] = svd(A, 0); x4 = V*(pinv(S)*(U’*y))

x4 =

3.000000371542074e+00

4.000000371542088e+00

4.999999628457917e+00

>> norm(A*x4 - y)

ans =

2.190039795013723e-14

Sensitivity issues

>> A = [1 1 2; 1 2 3; 3 1 4; 1 2 3+1e-8];

A is at distance 10−8 from a non-full-rank matrix:

>> svd(A)

ans =

7.553509024056715

1.715954977117343

0.000000004225771

This will be a common trend: problems close to unsolvable are
numerically troublesome.

Big questions

Why are normal equations much less accurate than QR/SVD?
How can we assess the accuracy of a computed solution?

To understand more, we need to study sensitivity and stability.

Sensitivity of a problem

Computational problems map an input to an output.
Example: solving a linear system: input: A, y; output: x = A−1y.
Example: training a neural network: input: training data xi , yi ;
output: weights w .

Basic question: how does the output of a problem change when we
change its input.

Example: if I turn the shower tap by 10 degrees, how much does
the water temperature change?

Example: compute f (x) = x2. If I change x to x̃ = x + δ, the
output becomes f (x̃) = x2 + 2δx + δ2.

Change in input: |x̃ − x | = |δ|.
Change in output: |x̃2 − x2| = |2δx + δ2|.

Definition: (absolute) condition number

Definition The (absolute) condition number of a function
f : R → R is the best bound K of the form

|f (x + δ)− f (x)| ≤ K |δ|+ o(δ)︸︷︷︸
higher-order terms: δ2, δ3, . . .

Or, more formally,

κabs(f , x) = lim
δ→0

|f (x + δ)− f (x)|
|δ|

.

For a scalar-valued function, this is essentially the norm of the
derivative (when it exists):

κabs(f , x) =

∣∣∣∣dfdx
∣∣∣∣.

Example: absolute condition number

We can generalize the definition to problems with multiple inputs.

Example: computing f (x , y) = x2y , input x . If I change x to
x̃ = x + δ, the output becomes (x + δ)2y = x2y + 2xyδ + δ2y .

Change in output:

|f (x̃ , y)−f (x , y)| = |(x+δ)2y−x2y | = |2xyδ+yδ2| = 2|xy |︸ ︷︷ ︸
=κabs(f ,x)

|δ|+O(δ2).

Or:

lim
|δ|→0

|2xyδ + yδ2|
|δ|

= 2|xy |.

Analogously, one can define a condition number with respect to y ,
and it is ∂f

∂y (x , y).

Functions of vectors/matrices

For vector and matrix arguments, we make two changes:

▶ use norms rather than absolute values;

▶ take the largest change over all possible directions d ∈ Rn.

Indeed, functions of several variables can change faster in some
directions than in others (cfr. tomography).

∥f (x+ d)− f (x)∥ ≤ K∥d∥+ o(∥d∥)︸ ︷︷ ︸
higher-order terms: ∥d∥2, ∥d∥3, . . .

The formal definition is slightly more involved:

κabs(f , x) = lim
δ→0

sup
∥d∥≤δ

∥f (x+ d)− f (x)∥
∥d∥

.

For differentiable real-valued functions, κabs(f , x) = ∥∇fx∥ (for the
norm-2, at least).
For a general norm and f : Rm → Rn, κabs(f , x) is the norm of the
Jacobian matrix.

Relative condition number

Example Sensitivity of f (x) = x2 around x = 1000: perturbing the
input to x̃ = 1000.01 changes the output from f (x) = 1 000 000 to
f (x̃) = 1 000 020.000 1.

Change in input: 0.01. Change in output: 20.000 1.

This does not fit our intuition that f (x) and f (x̃) are close. It is
better to measure input/output changes as relative changes:

Relative change in input: ∥x̃−x∥
∥x∥ = 10−5.

Relative change in output: ∥f (x̃)−f (x)∥
∥f (x)∥ ≈ 2× 10−5.

Definition The relative condition number of a function f is

κrel(f , x) = lim
δ→0

sup
∥d∥≤δ

∥f (x+d)−f (x)∥
∥f (x)∥
∥d∥
∥x∥

= κabs(f , x)
∥x∥

∥f (x)∥
.

Why relative errors?

Absolute errors are useless without a reference point:
Example We have built a neural network to estimate an optimal
price x . In our experiments, it computes a price x̃ with
|x̃ − x | = 0.823$.
▶ If x is the salary of an NBA player, e.g., x = 107$, it’s a great

estimate;

▶ If x is the optimal price of a nail, e.g., x = 0.001$, it’s a
terrible one.

Relative errors:

▶ |x̃−x |
|x | ≈ 1: very bad accuracy; it’s just a number with the

same order of magnitude.

▶ |x̃−x |
|x | ≈ 10−3: about 3 correct significant digits.

▶ |x̃−x |
|x | ≈ 10−16: about 16 correct digits; we can’t do better

typically (with double precision arithmetic).

Use relative errors

I cannot stress it enough: use relative errors whenever you have to
measure if something is small or large: thresholds in algorithms,
error measures, stability checks, etc.

>> norm(A - Q*R)

ans =

7.2625e+00 % is this good or bad?

>> norm(A - Q*R) / norm(A)

ans =

2.1162e-16 % good!

This “whenever” includes, in particular, your project.

Remarks

TL;DR: some problems are bad (highly sensitive); errors in the
input will be amplified.

Condition number is a theoretical property, related to the
derivative.

It does not depend on floating point computations, or on the
choice of algorithms. . .

Good metaphor: a minimal turn of the knob in a shower can turn
the water from freezing to scalding.

It is a warning sign: if your model calls for computing an
ill-conditioned quantity, the solution is probably going to be useless.

Exercises

1. What is the absolute condition number of f (x , y) = x + 2y
with respect to its input y ∈ R?

2. Show that the absolute condition number of solving a linear
system Ax = y w.r.t the input y is ∥A−1∥.

3. What is the relative condition number of f (x , y) = x − y
(with x , y ∈ R)?

4. Let f be a function with Lipschitz constant L. What can we
say about its absolute condition number?

Book references: Trefethen-Bau, Lecture 12.

