Condition number of solving linear equations

Let A be a fixed square invertible matrix. What is the variation in
the output of

f(A,y) = (the solution of Ax =y) = Ay

with respect to its input y?
Consider two systems Ax =y and Ax = y with y # y; let x and X
be their solutions. Then,
> ||% = x| = A7 = Ay = AT - )l < JATHIIS - yll,
> [lyll = [[Ax]| < Al[lx[]-

Combining the two inequalities, one gets
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This bound holds for all §, hence also in the limit ||y —y| — 0.



Condition number of a matrix

Theorem

The relative condition number of solving linear equations (with A
fixed and y as input) is

K(A) = AIlIATH.

This quantity appears often; it is called ‘the condition number of
the matrix A’

(Slight abuse of terminology, since we should speak of ‘condition
number of a problem’, not ‘of a matrix’.)



Condition number with respect to A

What if one changes A and keeps y fixed?
The relative condition number of the problem Ax =y with respect
to its input A is, again, x(A) = ||Al|||A7}].
Slightly different notation: A perturbed to A+ AA, x to x + Ax.
Ax=y, (A+AA)(x+ Ax)=Yy
We can ignore the second-order term AA Ax, getting
y+ AAx+ AAx + O(||Ax||) =

Rearranging,

Ax = —A" T AAx, .
I || Al



Example — well-conditioned matrix

> A=1[21; 11];
>y = [1;1];
>> cond(A)
ans =
6.8541e+00
>> ytilde = y + [0;1e-6];
> x = A\ y;
>> xtilde = A \ ytilde;
>> norm(x - xtilde) / norm(x)
ans =
2.2361e-06
>> norm(y - ytilde) / norm(y)
ans =
7.0711e-07
>> norm(y - ytilde) / norm(y) * cond(A)
ans =
4.8466e-06



Example 2 — ill-conditioned matrix

> A =[11; 1 1+1e-5];
>> cond(A)
ans =
4.0000e+05
> x = A\ y; xtilde = A \ ytilde;
>> norm(x - xtilde) / norm(x)

ans =
1.4142e-01

>> norm(y - ytilde) / norm(y)

ans =
7.0711e-07

‘lll-conditioned’ = large condition number (where ‘large’ is

subjective; for instance, x(A) ~ 10° usually is considered large).



Condition number and SVD

Recall: ||A|| = o1 (largest singular value) (with norm-2).

For a matrix A € R"", with singular values o1 > --- > o, we

have
01

Indeed,
Al = [UZVT|| = [|Z]| = o1

Moreover A=t = VE—1UT and |7} = max; L = L

;i on’
Another property tells us that matrices with high condition number
are those that are almost singular.



Condition number and distance to singularity

1A
= n

—_— “relative distance to singularity”
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Recall: the best rank-k approximation is truncated SVD.
The closest singular matrix to A= ULV T is
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Conditioning of least squares problems

Conditioning of linear least squares is a more complicated problem
than the one for linear systems.
We will not give a full proof:

Theorem (Trefethen, Bau, Theorem 18.1)

Consider the linear least squares problem min||Ax — y||, with
A € R™*™ with full column rank. Its relative condition number
with respect to the input y is bounded by

r(A)

Krely—x < ——
rely—x = g0

and with respect to A it is bounded by

Krel A—sx < K(A) + K(A)Z tand,

[l Ax||
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where 6 is the angle such that cosf =



The geometric picture

‘ .vima'g.év(»A)

y ‘split’ into two orthogonal components: Ax and y — Ax.
QR and SVD reveal their norms: if A= QR, Q = [Qo QC] or
A=UZVT, U= [Uy U] (as in their thin versions) then
IAX|| = 14 yll = [1Ug yll = llyll cos 6,
ly = Ax|| = Q7 yll = U]yl = lly||siné.



Some intuition

» 0~ 90°: y almost orthogonal to Im A: a small (relative)
change in y causes a large (relative) change in the solution.

» k(A) tells us ‘how well we can extract Im A from A’: for
instance,

10 30000 30000
A;= |0 1| and Ao = |30000 30001
10 30000 30000

have the same image, but a small (relative) perturbation to
A, alters Im A, more.

> Actually, k2(A) is the relative distance to the nearest matrix A
without full column rank, generalizing the square case.

> 0 =~ 0° gives more well-behaved problems: the condition
number is &~ x(A) instead of ~ x(A)?).

Book references: Trefethen-Bau, Lecture 18 (with more detail).



