
Stability of algorithms

Problem: Is our algorithm (using floating point) going to compute
a good approximation of the answer?

Related to sensitivity / conditioning but different. Depends on how
we perform the computation.

Sensitivity/conditioning: tells you if you have a bad problem.
Stability: tells you if you are using a bad algorithm to solve it.



Floating point numbers in a nutshell

TL;DR Floating point numbers are numbers in base-2 scientific
(exponential) notation.

double (64-bit numbers):

±1. 01001011101 . . . 101︸ ︷︷ ︸
52 binary digits

·2± 101...01︸ ︷︷ ︸
10 binary digits

.

Plus special numbers like like 0, -0, Inf and NaN.

Smaller numbers are packed more densely:

Image: V. Schatz, CC-BY-SA 4.0

https://www.volkerschatz.com/science/float.html


Representation error

There are 252 floating point numbers between 1 and 2, spaced by
2−52 ≈ 2 · 10−16.
There are 252 floating point numbers between 2 and 4, spaced by
2−51 each. . .

There are non-representable numbers, even simple ones such as
1
10 = 0.1dec = 0.00011bin.

Storing numbers required approximations and rounding. This can
lead to unexpected inexactness, exactly as in (decimal)
1
3 + 1

3 + 1
3 = 0.33333 + 0.33333 + 0.33333 = 0.99999 ̸= 1.

Rounding error bound

For each x ∈ ±[10−308, 10308], there is an exactly representable

number x̃ such that |x̃−x |
|x | ≤ u, with u = 2−52 ≈ 2 · 10−16.



Intrinsic error

Problem given code for function y = f(x) (for instance,

f (x) = x2+1
2x+5.5) am I going to get out of the computer the exact

value of f (0.1)?

Answer: You can’t even ask the computer to compute it, if you
have available double f(double x)!
The closest you can ask is f (x̃), where x̃ is the closest machine
number to x = 0.1.

How far apart are ỹ = f (x̃) and y = f (x)? That’s a job for the
condition number:

|ỹ − y |
|y |

≤ κrel(f , x)
|x̃ − x |
|x |

+ o(
|x̃ − x |
|x |

)

≤ κrel(f , x)u + o(u).

The intrinsic error in a computation (due to inaccuracy in input) is
κrel(f , x)u.



Stability analysis

Apart from lucky cases (e.g., when all inputs and intermediate
results are exactly representable, or when errors cancel out), you
can’t expect to compute y = f (x) with better (relative) error than
κrel(f , x)u.

High κrel =⇒ bad problem: no algorithm can compute the result
accurately.

Still, some algorithms can be better than others. Case in point:
earlier example with linear least squares.

Definition

An algorithm is called stable if it computes its output up to an error
of the same order of magnitude of the intrinsic error κrel(f , x)u.

An algorithm can be stable on some inputs, and unstable on others.



Stability: a priori and a posteriori

Proving stability directly requires a lot of tedious computations to
keep track of the errors.

Rounding appears in two places: (1) the inputs, (2) the result of
each operation. We have already assessed the impact of (1), in
first-order.

Rounded operations on a computer produce the exact result + an
error of (relative) magnitude ≤ u: e.g.,

a⊕ b = (a+ b)(1 + δ), |δ| ≤ u.



Proving stability

For instance: inner product y =
[
a1 a2 a3

] b1b2
b3

:
ỹ = a1 ⊗ b1 ⊕ a2 ⊗ b2 ⊕ a3 ⊗ b3

= a1b1(1 + δ1)⊕ a2b2(1 + δ2)⊕ a3b3(1 + δ3)

= ((a1b1(1 + δ1) + a2b2(1 + δ2))(1 + δ4) + a3b3(1 + δ3))(1 + δ5)

= a1b1 + a2b2 + a3b3 + (δ1 + δ4 + δ5)a1b1 + (δ2 + δ4 + δ5)a2b2

+ (δ3 + δ5)a3b3 + (terms with products of two or more δi ’s)

Taking absolute values and using |δi | ≤ u:

|ỹ − y | ≤ 3u(|a1||b1|+ |a2||b2|+ |a3||b3|) + o(u).



Error in inner products

Theorem

If y = aTb, then
|ỹ − y | ≤ 3u|a|T |b|

(componentwise absolute value).

It may be a lot larger than aTb, for instance in

[
1 −1 1

] 106 + 1
106

1

 .

. . . but that’s a lot of algebra, already for a simple problem.

Also, this conflates the two issues: is this error high because of a
bad problem, or because of a bad algorithm?



Backward stability

Trick (Wilkinson, ≈ 1960s): sometimes we can see ỹ as the exact
output of running our algorithm on a perturbed input. For
instance, above:

ỹ = . . .

= ((a1b1(1 + δ1) + a2b2(1 + δ2))(1 + δ4) + a3b3(1 + δ3))(1 + δ5)

= a1b̂1 + a2b̂2 + a3b̂3

with

b̂1 = b1(1 + δ1)(1 + δ4)(1 + δ5),

b̂2 = b2(1 + δ2)(1 + δ4)(1 + δ5),

b̂3 = b3(1 + δ2)(1 + δ5).

For each i = 1, 2, 3 we have
|b̂i − bi |

|bi |
≤ 3u + o(u)



Backward stability

Exact and inexact

ỹ(a,b) = y(a, b̂).

Hence
∥ỹ − y∥
∥y∥

≤ κrel(inner product, a,b)
∥b̂− b∥
∥b∥

.

with ∥b̂−b∥
∥b∥ ≤ 3u + o(u).

Apart from a factor equal to the dimension n = 3, our algorithm is
as accurate as it could get (given the unavoidable intrinsic error).



Backward stability: definition

Definition

An algorithm to compute y = f (x) is called backward stable if the
computed output ỹ can be written as ỹ = f (x̂), where
∥x̂− x∥
∥x∥

= O(u).

In real-life usage, this O(u) notation often hides polynomial factors
in the dimension n: e.g., nu, (2n2 + 18n)u, . . . .

Backward stable algorithms are as accurate as theoretically possible
(given the condition number of a problem), up to that big-O.

Proof:
∥ỹ − y∥
∥y∥

≤ κrel(f , x)
∥x̂− x∥
∥x∥

= κrel(f , x)O(u),

while the best attainable accuracy is κrel(f , x)u.



A non-backward-stable algorithm

Warning: this ‘see the error as modified input’ trick does not work
on all algorithms.

Example

Consider the problem of computing f (a,b) = abT (rank-1 matrix)
(with the obvious algorithm).
If the products aibj are performed approximately, the resulting
columns are not all multiples of the same vector =⇒ the result is
not a rank-1 matrix ãb̃T .

Example (with exaggerated errors):12
3

⊙
[
4 5 6

]
=

 4.01 4.99 6.01
7.99 10.01 12.02
11.98 15.02 17.97


is not a rank-1 matrix âb̂T .



Exercises

1. Show that the back-substitution algorithm x = f (T , y) to
solve a linear system Tx = y with upper triangular T is
backward stable, i.e., the computed x̃ satisfies x̃ = f (T̂ , y).
(Hint: expand errors as for the inner product example, and
define a modified matrix T̂ ).

Book references: Trefethen–Bau, Lectures 13–15.


