
Stability and residual

The easiest way to prove backward stability is using residuals.

Suppose we have solved a linear system with Matlab:

>> A = randn(4, 4); b = randn(4, 1);

>> x = A \ y;

>> A*x - y

ans =

0

-1.3878e-17

0

2.2204e-16

Does a small residual Ax̃− y = r̃ mean that we have an accurate
solution?



Residual and backward stability

Small residual implies backward stability (and vice versa).

For linear systems: if Ax̃− y = r̃, then x̃ is the exact solution of

Ax̃ = y + r̃︸ ︷︷ ︸
:=ŷ

.

Conversely, if x̃ solves (A+ δA)x̃ = y + δy, then

∥Ax̃− y∥ = ∥δy − δAx̃∥ ≤ ∥δy∥+ ∥δA∥∥x̃∥ ≤ O(u)(∥y∥+ ∥A∥∥x∥).

(The quantities ∥A∥∥x∥ and ∥y∥ = ∥Ax∥ are typically similar in
magnitude.)

This idea works also for other problems: e.g., Q̃R̃ − A = δA ⇐⇒
Q̃R̃ is an exact factorization of Q̃R̃ = A+ δA.



A posteriori stability test for linear systems

Theorem (residual bound)

Let A ∈ Rm×m, y ∈ Rm, and x be the solution of Ax = y.
For a given x̃, define r̃ = Ax̃− y. Then,

∥x̃− x∥
∥x∥

≤ κ(A)
∥̃r∥
∥y∥

.

Proof: x̃ is the exact solution of the perturbed system

Ax̃ = y + r̃.

Then we can use the condition number bound: a relative
perturbation of size ∥̃r∥

∥y∥ is amplified by κ(A).

(Note that on a computer the computed value of r̃ = Ax̃− y might
be inaccurate, too, but we can still trust its order of magnitude,
because the error in the product is typically not larger than r̃.)



Residual of least squares problems

Now for least squares problems: min∥Ax− y∥, with computed
solution x̃.

Can one expect r̃ = Ax̃− y to be small? No: for the exact solution
x, r = Ax− y is not zero; it is the distance between y and im(A),
which can be as large as ∥y∥.

What’s small then? Optimization says: the gradient.

f (x) =
1

2
∥Ax− y∥2; ∇f (x̃) = ATAx̃− ATy = AT r̃.

Can we turn this into a bound? If we apply the residual bound to
the normal equations ATAx = ATy, we get

∥x̃− x∥
∥x∥

≤ κ(ATA)
∥AT r̃∥
∥ATy∥

.

however, κ(ATA) = κ(A)2 may be much larger than the condition
number of the problem. Can we do better?



Augmented system

Trick: convert the LS problem into a bigger square linear system:

Augmented system

x solves the LS problem min∥Ax− y∥ if and only if[
I A
AT 0

] [
−r
x

]
=

[
y
0

]
.

Indeed, expanding we get −r = y − Ax, 0 = −AT r = AT (Ax− y).

Interesting connection: this is (essentially) the KKT system of the
constrained problem minr=Ax−y

1
2∥r∥

2.

(You will see other KKT systems with this block structure with
prof. Frangioni.)



Augmented system bound

Augmented system bound

For any x̃, set r̃ = Ax̃− y. Then,

∥x̃− x∥∥∥∥∥[−r
x

]∥∥∥∥ ≤ κ

([
I AT

A 0

])
∥AT r̃∥
∥y∥

.

Proof: apply the residual bound to the extended linear system, and
note that

∥x̃− x∥ ≤
∥∥∥∥[−r̃

x̃

]
−
[
−r
x

]
.

∥∥∥∥
since the LHS is a block of the RHS.

Problem: ∥r∥ can be much larger than ∥x∥, and when this happens
our bound becomes useless.



Scaling the augmented system

Even if we prove that

∥∥∥∥[−r̃
x̃

]
−
[
−r
x

]∥∥∥∥ = O(u)

∥∥∥∥[−r
x

]∥∥∥∥, this does
not imply that ∥x̃− x∥ = O(u)∥x∥, because the two blocks can
have very different magnitudes, e.g., ∥r∥ ≈ 1, ∥x∥ ≈ 10−16.

Solution: switch to a scaled version of the augmented system.

Augmented system

x solves the LS problem min∥Ax− y∥ if and only if[
αI A
AT 0

] [
− 1

αr
x

]
=

[
y
0

]
.

Choosing a suitable value of α can improve the bound.



A residual test for least squares problem

Augmented system bound

For any x̃, set r̃ = Ax̃− y. Then, for each α > 0,

∥x̃− x∥∥∥∥∥[− 1
αr
x

]∥∥∥∥ ≤ κ

([
αI AT

A 0

]) ∥ 1
αA

T r̃∥
∥y∥

.



Residuals as an a posteriori stability test

▶ If I obtain (no matter how!) a solution x̃ for which the

residual ∥r∥
∥y∥ is of the order of machine precision, then I have

solved my problem as accurately as possible.

▶ Even if residuals (relative!) reach O(u) (which will happen
with a good algorithm) errors on x̃ are κproblemO(u).

We have shown this result for both linear systems and least
squares problems.

This is called an a posteriori bound: we show stability after
computing the solution.

For some algorithms, we can prove backward stability a priori: even
without checking the residual, we can be sure that they provide an
error that can be seen as perturbations ∥∆A∥/∥A∥ = O(u).

Solving least squares problems with QR is one of these algorithms;
we will see it in the next set of slides.



Book references Trefethen–Bau, Chapter 20. This includes a more
complicated expression for the exact backward error
(Theorem 20.5).


