Stability and residual

The easiest way to prove backward stability is using residuals.

Suppose we have solved a linear system with Matlab:

```
\Rightarrow A = randn(4, 4); b = randn(4, 1);
\Rightarrow x = A \ y;
>> A*x - vans =\Omega-1.3878e-17
             0
   2.2204e-16
```
Does a small residual $A\tilde{x} - y = \tilde{r}$ mean that we have an accurate solution?

Residual and backward stability

Small residual implies backward stability (and vice versa).

For linear systems: if $A\tilde{x} - y = \tilde{r}$, then \tilde{x} is the exact solution of

$$
A\tilde{x} = \underbrace{\mathbf{y} + \tilde{\mathbf{r}}}_{:=\hat{\mathbf{y}}}.
$$

Conversely, if $\tilde{\mathbf{x}}$ solves $(A + \delta_A)\tilde{\mathbf{x}} = \mathbf{y} + \delta_{\mathbf{v}}$, then

 $||A\tilde{\mathbf{x}} - \mathbf{y}|| = ||\delta_{\mathbf{y}} - \delta_{A}\tilde{\mathbf{x}}|| \le ||\delta_{\mathbf{y}}|| + ||\delta_{A}|| ||\tilde{\mathbf{x}}|| \le O(u)(||\mathbf{y}|| + ||A||||\mathbf{x}||).$

(The quantities $||A|| ||\mathbf{x}||$ and $||\mathbf{y}|| = ||A\mathbf{x}||$ are typically similar in magnitude.)

This idea works also for other problems: e.g., $\tilde{Q}\tilde{R} - A = \delta_A \iff$ $\tilde{Q}\tilde{R}$ is an exact factorization of $\tilde{Q}\tilde{R} = A + \delta_{A}$.

A posteriori stability test for linear systems

Theorem (residual bound)

Let $A \in \mathbb{R}^{m \times m}$, $\mathbf{y} \in \mathbb{R}^m$, and \mathbf{x} be the solution of $A\mathbf{x} = \mathbf{y}$. For a given $\widetilde{\mathbf{x}}$, define $\widetilde{\mathbf{r}} = A\widetilde{\mathbf{x}} - \mathbf{v}$. Then,

$$
\frac{\|\widetilde{\mathbf{x}}-\mathbf{x}\|}{\|\mathbf{x}\|}\leq \kappa(A)\frac{\|\widetilde{\mathbf{r}}\|}{\|\mathbf{y}\|}.
$$

Proof: $\widetilde{\mathbf{x}}$ is the exact solution of the perturbed system

$$
A\widetilde{\mathbf{x}}=\mathbf{y}+\widetilde{\mathbf{r}}.
$$

Then we can use the condition number bound: a relative perturbation of size $\frac{\Vert \widetilde{\mathsf{r}}\Vert}{\Vert \mathsf{y}\Vert}$ is amplified by $\kappa(A).$

(Note that on a computer the computed value of $\tilde{\mathbf{r}} = A\tilde{\mathbf{x}} - \mathbf{y}$ might be inaccurate, too, but we can still trust its order of magnitude, because the error in the product is typically not larger than \tilde{r} .)

Residual of least squares problems

Now for least squares problems: min $\|\mathbf{Ax} - \mathbf{y}\|$, with computed solution $\widetilde{\mathbf{x}}$.

Can one expect $\widetilde{\mathbf{r}} = A\widetilde{\mathbf{x}} - \mathbf{y}$ to be small? No: for the exact solution $x, r = Ax - y$ is not zero; it is the distance between y and im(A), which can be as large as ∥y∥.

What's small then? Optimization says: the gradient.

$$
f(\mathbf{x}) = \frac{1}{2} ||A\mathbf{x} - \mathbf{y}||^2
$$
; $\nabla f(\widetilde{\mathbf{x}}) = A^T A \widetilde{\mathbf{x}} - A^T \mathbf{y} = A^T \widetilde{\mathbf{r}}$.

Can we turn this into a bound? If we apply the residual bound to the normal equations $A^\mathcal{T} A\mathsf{x} = A^\mathcal{T}\mathsf{y}$, we get

$$
\frac{\|\widetilde{\mathbf{x}} - \mathbf{x}\|}{\|\mathbf{x}\|} \le \kappa (A^T A) \frac{\|A^T \widetilde{\mathbf{r}}\|}{\|A^T \mathbf{y}\|}.
$$

however, $\kappa(A^TA)=\kappa(A)^2$ may be much larger than the condition number of the problem. Can we do better?

Augmented system

Trick: convert the LS problem into a bigger square linear system:

Augmented system

x solves the LS problem min $||Ax - y||$ if and only if

$$
\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} -\mathbf{r} \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} \mathbf{y} \\ \mathbf{0} \end{bmatrix}.
$$

Indeed, expanding we get $-{\bf r}={\bf y}-A{\bf x}$, ${\bf 0}=-A^T{\bf r}=A^T(A{\bf x}-{\bf y})$.

Interesting connection: this is (essentially) the KKT system of the constrained problem min $_{\mathsf{r}=A\mathsf{x}-\mathsf{y}}\frac{1}{2}$ $\frac{1}{2} ||\mathbf{r}||^2$.

(You will see other KKT systems with this block structure with prof. Frangioni.)

Augmented system bound

Augmented system bound

For any $\tilde{\mathbf{x}}$, set $\tilde{\mathbf{r}} = A\tilde{\mathbf{x}} - \mathbf{y}$. Then,

$$
\frac{\|\tilde{\mathbf{x}} - \mathbf{x}\|}{\left\|\begin{bmatrix} -\mathbf{r} \\ \mathbf{x} \end{bmatrix}\right\|} \leq \kappa \left(\begin{bmatrix} I & A^{\mathsf{T}} \\ A & 0 \end{bmatrix} \right) \frac{\|A^{\mathsf{T}}\tilde{\mathbf{r}}\|}{\|\mathbf{y}\|}.
$$

Proof: apply the residual bound to the extended linear system, and note that

$$
\|\tilde{\mathbf{x}} - \mathbf{x}\| \le \left\| \begin{bmatrix} -\tilde{\mathbf{r}} \\ \tilde{\mathbf{x}} \end{bmatrix} - \begin{bmatrix} -\mathbf{r} \\ \mathbf{x} \end{bmatrix} \cdot \right\|
$$

since the LHS is a block of the RHS.

Problem: ∥r∥ can be much larger than ∥x∥, and when this happens our bound becomes useless.

Scaling the augmented system

Even if we prove that \parallel −˜r ˜x $\Big] - \Big[\frac{-r}{\cdot \cdot}$ x $\left|\|\right| = O(u)\right|$ −r x $\rfloor\rfloor\rfloor$, this does not imply that $||\tilde{\mathbf{x}} - \mathbf{x}|| = O(u)||\mathbf{x}||$, because the two blocks can have very different magnitudes, e.g., $\| \mathbf{r} \| \approx 1$, $\| \mathbf{x} \| \approx 10^{-16}$.

Solution: switch to a scaled version of the augmented system.

Augmented system

x solves the LS problem min $||Ax - y||$ if and only if

$$
\begin{bmatrix} \alpha I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{\alpha}r \\ x \end{bmatrix} = \begin{bmatrix} y \\ 0 \end{bmatrix}.
$$

Choosing a suitable value of α can improve the bound.

A residual test for least squares problem

Augmented system bound

For any $\tilde{\mathbf{x}}$, set $\tilde{\mathbf{r}} = A\tilde{\mathbf{x}} - \mathbf{y}$. Then, for each $\alpha > 0$,

$$
\frac{\|\tilde{\mathbf{x}} - \mathbf{x}\|}{\left\|\begin{bmatrix} -\frac{1}{\alpha} \mathbf{r} \\ \mathbf{x} \end{bmatrix}\right\|} \leq \kappa \left(\begin{bmatrix} \alpha I & A^{\mathsf{T}} \\ A & 0 \end{bmatrix} \right) \frac{\|\frac{1}{\alpha} A^{\mathsf{T}} \tilde{\mathbf{r}}\|}{\|\mathbf{y}\|}.
$$

Residuals as an a posteriori stability test

- \blacktriangleright If I obtain (no matter how!) a solution \tilde{x} for which the residual $\frac{\|\mathbf{r}\|}{\|\mathbf{y}\|}$ is of the order of machine precision, then I have solved my problem as accurately as possible.
- \triangleright Even if residuals (relative!) reach $O(u)$ (which will happen with a good algorithm) errors on \tilde{x} are $\kappa_{\text{problem}}O(u)$.

We have shown this result for both linear systems and least squares problems.

This is called an a *posteriori* bound: we show stability after computing the solution.

For some algorithms, we can prove backward stability a priori: even without checking the residual, we can be sure that they provide an error that can be seen as perturbations $\|\Delta A\|/\|A\| = O(u)$.

Solving least squares problems with QR is one of these algorithms; we will see it in the next set of slides.

Book references Trefethen–Bau, Chapter 20. This includes a more complicated expression for the exact backward error (Theorem 20.5).