
Stability of matrix products
Analogously to what we did for the scalar product, one can bound
the error in the product of two matrices C = AB, with
|C̃ − C | ≤ n|A||B|u + O(u2).
Passing to norms,

∥C̃ − C∥ ≤ O(u)∥A∥∥B∥
Here, O(u) contains polynomial factors O(n), O(n2). . . . The
exact degree depends on the choice of the norm.

This is not a small relative error: ∥A∥∥B∥ can be much larger than
∥C∥.
The computed result is not backward stable: indeed,

C̃ = AB + F , ∥F∥ ≤ O(u)∥A∥∥B∥
becomes (if A is square and invertible)
C̃ = A(B + A−1F︸ ︷︷ ︸

:=B̂

), ∥B̂ − B∥ = ∥A−1F∥ ≤ O(u)∥A−1∥∥A∥∥B∥.



Backward stability and orthogonal transformations
However, the result is stable in an important case: if A = Q is
orthogonal; indeed in that case ∥A∥2 = ∥A−1∥2 = 1.

Backward stability of orthogonal transformations
If Q ∈ Rm×m is orthogonal and B ∈ Rm×n, then the computed
version C̃ of C = QB is backward stable:

C̃ = QB̂, ∥B̂ − B∥ ≤ O(u)∥B∥.

The same result holds if QB is computed using Householder
transformations: a bound for the forward error F can be obtained
via stability analysis of computing u and HB = B − 2uuT B (boring
algebra), but then the rest is the same.



Stability of QR factorization
Now we wish to prove a backward stability result for the QR
factorization, Q̃R̃ = qr(A + ∆A).
Recall: in QR factorization, an upper triangular R = Rn is obtained
after n steps of the form

R0 = A,

[
I

H(uk)

]
︸ ︷︷ ︸

Q(uk)

[ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗

]
︸ ︷︷ ︸

Rk−1

=
[ ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗

]
︸ ︷︷ ︸

Rk

, k = 1, 2, . . . , n.

Backward stability of QR
In machine arithmetic, the computed R̃ and the (exactly
orthogonal) Q̃ = Q̃1 · · · Q̃n = Q(ũ1) · · · Q(ũn) satisfy

Q̃R̃ = Â = A + ∆, ∥∆∥ = O(u)∥A∥.

Note: Q̃ is defined implicitly through the uk .



Proof
We replay each step and turn the errors into perturbations of A:

R̃0 = A

R̃1 = Q̃1 ⊙ R̃0 = Q̃1(A + ∆1), ∥∆1∥ = O(u)∥R̃0∥.

R̃2 = Q̃2 ⊙ R̃1 = Q̃2(R̃1 + ∆2) = Q̃2(Q̃1(A + ∆1) + ∆2)
= Q̃2Q̃1(A + ∆1 + Q̃T

1 ∆2), ∥∆2∥ = O(u)∥R̃1∥.

...

At each step we have a new perturbation with norm

∥QT
k−1 · · · QT

1 ∆k∥ = ∥∆k∥ = O(u)∥R̃k−1∥ = O(u)
(
∥A∥ + O(u)

)
.

Since all transformations are orthogonal, all n error terms are
bounded by O(u)∥A∥.



Backward stability of least squares algorithms
With more work, we can extend the reasoning to cover the whole
LS solution:

function x = solve_ls_QR(A, y)
[Q1, R1] = qr(A, 0); %backward stable
c = Q1’*y; %backward stable
x = R1 \ c; %backward stable

Backward stable + orthogonal transformations: all errors O(u)∥A∥.

Similarly,

function x = solve_ls_SVD(A, y)
[U, S, V] = svd(A, 0); %backward stable
c = U’*y; %backward stable
d = c ./ diag(S); %backward stable
x = V*d; %backward stable

Backward stable + orthogonal transformations: all errors O(u)∥A∥.



The problem with normal equations

function x = solve_ls_NE(A, y)
C = A’ * A;
d = A’ * y;
x = C \ d;

Not backward stable: the transformation Ax − y → AT (Ax − y) is
not orthogonal, and may convert our problem into a more
ill-conditioned one!
Indeed, even if we just consider the machine arithmetic error in
storing d̃, solving the system may amplify it by a factor
κ(AT A) = κ(A)2.
TL;DR (we did not give full proofs)

The QR and SVD methods are backward stable, but normal
equations produce errors of size κ(A)2 even when the conditioning
of the LS problem is smaller.



Comparison of least squares algorithms

Normal eqns QR SVD

m ≈ n 4
3n3 4

3n3 ≈ 13n3

m ≫ n mn2 2mn2 2mn2

Unstable for
small θ

Backward
stable

Backward stable;
reveals distance from
singularity, allows
regularization

Know when to use each one. QR is a good ‘generic’ choice.

A priori error bound on x
QR and SVD (but not NE!) always deliver a solution x̃ = x + e with

∥e∥ ≤ O(u)(κrel ,A→x + κrel ,y→x)∥x∥.



Exercises
1. Can you explain our earlier example in which normal equations

delivered a wrong result, in view of this theory? Are those
errors what you would expect in theory? Is that example in
the case θ ≈ 0, θ ≈ 90◦, or in the general case?

2. Show that ∥AT A∥ = ∥A∥2. Hint: recall how
∥A∥ = ∥UΣV T ∥ = ∥Σ∥ = σ1: can we do something similar
for AT A?

3. Show that κ(AT A) = κ(A)2.

Book references Trefethen-Bau, Lectures 16, 19. Higham,
Accuracy and Stability of Numerical Algorithms, Chapters 19 and
20, for exact bounds with all the coefficients worked out instead of
big-Os.


