
Beyond positive definite matrices

Recall: conjugate gradient solves linear systems Qx = y with
Q ≻ 0.

Each step contains only a multiplication Qdk and scalar products /
linear combinations, so the algorithm is particularly efficient when
Q is sparse.

Iterates xj belong to successive Krylov spaces

Kj(Q, y) = span(y,Qy, . . . ,Q j−1y)

Convergence depends on polynomial approximation / clustering on
the eigenvalues of Q.

Can we use the same ideas to solve general linear systems Ax = y?
Now A ∈ Rm×m is square but no longer SPD.

Yes!



Using Krylov subspaces

Idea First generate the whole Kn(A, y), then decide what vector to
choose inside it. For instance: construct

V =
[
y Ay A2y . . . An−1y

]
,

then look for the ‘best’ solution to Ax = y in ImV , e.g.,

min
z∈Rn
∥A(V z)− b∥.

The issue Working with that V is problematic: its columns tend to
be aligned (see also: power method). We need a better basis for
Kn(A, y).

Taking Q from [Q, R] = qr(V, 0) won’t do it: condition
numbers tell us that the damage has already been done in forming
V .



Arnoldi algorithm: the plan

Incremental algorithm to construct a matrix with orthonormal
columns that spans Kn(A, y): that is, Q0 in qr(V, 0).

Idea: if you remember the Gram–Schmidt algorithm from linear
algebra, this is basically it.

Given vectors q1,q2, . . . ,qj such that

Kj(A, b) = span(q1,q2, . . . ,qj),

construct qj+1 (orthogonal to all of them) such that

Kj+1(A, b) = span(q1,q2, . . . ,qj ,qj+1).

Additional invariant: the last vector qj satisfies qj = p(A)y with a
p of degree exactly j − 1.



Arnoldi algorithm: the iteration

Step 1 Generate a vector in Kj+1 (that was not already in Kj):

w = Aqj

Since qj has degree j − 1, Aqj has degree j .

Step 2 Subtract q1 component:

w← w − q1h1, h1 = qT1 w.

This doesn’t change the degree, and ensures that qT1 w = 0.
Step 3 Repeat!

w← w − qihi , hi = qTi w.

This ensures that w stays orthogonal to q1,q2, . . . ,qi−1, and
becomes orthogonal to qi .
Step 4 After j steps, set hj+1 = ∥w∥, qj+1 = w 1

hj+1
to have a

vector with ∥qj+1∥ = 1, qTi qj = 0 for i < j .



Arnoldi algorithm: the code

Input y ∈ Rm, A ∈ Rm×m (possibly as ‘anonymous function’
v 7→ Av), number of steps n.
Output Orthonormal basis Q = [q1,q2, . . . ,qn+1] of Kn+1(A, y).

function Q = arnoldi(A, y, n)

Q = zeros(length(b), n); %will be filled in

Q(:, 1) = y / norm(y);

for j = 1 : n

w = A * Q(:, j);

for i = 1:j

betai = Q(:, i)’ * w;

w = w - Q(:, i) * betai;

end

nw = norm(w);

Q(:, j+1) = w / nw;

end



Arnoldi algorithm: the factorization

For j = 1, 2, . . . , n, we have written

Aqj = q1h1,j + q2h2,j + · · ·+ qjhj ,j + qj+1hj+1,j = Q



h1,j
h2,j
...

hj+1,j

0
0
...
0

.
Write these relations down one next to the other:

A

q1 q2 . . . qn

 =

q1 q2 . . . qn qn+1




∗ ∗ ∗ ... ∗
∗ ∗ ∗ ... ∗
0 ∗ ∗ ... ∗
0 0 ∗ ... ∗

0
. . .

. . .
...

0 0 ... 0 ∗

.

AQn = Qn+1Hn for some matrix Hn ∈ R(n+1)×n that contains the
coefficients hi ,j = (Hn)ij .



The factorization: different forms

AQn = Qn+1Hn for some matrix Hn ∈ R(n+1)×n

Here Qn ∈ Rm×n, Qn+1 ∈ Rm×(n+1).
It is easy to modify the code to store the entries of Hn.

Variant if you want the same (rectangular) matrix Qn in both
terms, you can write

AQn = QnHn + qn+1hn+1,ne
T
n

where eTn =
[
0 0 . . . 0 1

]
and Hn ∈ Rn×n are the first n rows

of Hn.
(divide Hn into blocks. . . )

Remark A ̸= Qn+1HnQ
T
n : rectangular matrices can’t be inverted!



Breakdown

Arnoldi breaks down when hj+1 = 0, i.e., after orthogonalization
w = 0.
The vector w always has degree j , i.e., it is a linear combination
yα0 + Ayα1 + · · ·+ αjA

jy with αj ̸= 0. If this linear combination
gives 0, then the vectors y,Ay, . . . ,Ajy are not linearly
independent.

Breakdown in Arnoldi happens when dimKj(A, y) < j (for the first
time).



Book references

Trefethen-Bau, Lecture 33; Demmel, Section 6.6.1.

Word of warning Even if it is better than

>> [Q, R] = qr([v, A*v, A^2*v ...]),

Arnoldi is still not perfectly stable: if you check ∥QT
n Qn − I∥, it

will slowly grow when the matrices are large (more about this in
the exercises, if you are interested).

Thus, in practice Arnoldi-based algorithms often take a few more
iterations to converge in practice than what theory predicts. When
you need to work with large matrices (m≫ 1000), some stability
trade-offs are needed.



Exercises

1. Check that the inner for loop in the Arnoldi algorithm is
equivalent to

w = Aqj ,

hi = qTi w, i = 1, 2, . . . , j ,

qj+1hj+1 = w − q1h1 − q2h2 − · · · − qjhj .

(The content of the variable w is different in the two variants!)

2. Implement both versions, and compare their stability.
Theoretical note: The version in this slide is known as
traditional Gram–Schmidt (GS), while the one we showed
earlier is known as modified Gram–Schmidt (MGS). GS is
more suitable to optimizations (parallelization, turning into
block operations. . . ), but also less stable. Intuitively, the
reason is that there are other computations between when you
compute hi and when you subtract qihi , so numerical errors
can creep in.



Exercises

1. Even with MGS, Arnoldi often suffers from loss of
orthogonality. Try it on a large matrix (m ≈ 1000). Does the
computed Qn satisfy QT

n Qn = I exactly? What is the residual
∥QT

n Qn − I∥?
2. Modify the code for Arnoldi so that the orthogonalization loop

is run two times, one after the other (yes, just run the for loop
twice). Has ∥QT

n Qn − I∥ improved? (This trick is called
re-orthogonalization.)

3. Modify the code for Arnoldi so that it computes the matrix
Hn as well. Compute the (relative!) residual of
AQn = Qn+1Hn. Is it large, compared to that of QT

n Qn = I?
4. Show that QT

n AQn = Hn.
5. Did we encounter already in this course other “black-box

algorithms” that compute v 7→ Av for a certain matrix A?
(Solution in ROT-13: (1) onpx-fhofgvghgvba sbe n
gevnathyne flfgrz Gk=l, juvpu pbzchgrf vai(G)*l jvgubhg
sbezvat G (2) fbyivat n yrnfg fdhnerf ceboyrzf, juvpu pbzchgrf
cvai(N)*l jvgubhg sbezvat cvai(N).).


