
GMRES: a Krylov method for linear systems

We know how to compute a basis of the Krylov subspace, now let’s
use it to solve a linear system.

Idea: look for best approximate solution inside Kn(A, y):

min∥Ax− y∥, over all x ∈ Kn(A, y), i.e., x = Qnz.

That is, minz∈Rn∥AQnz− y∥: we find z by solving a least-squares
problem.

Even better, we can reduce it to a smaller-size problem:

∥AQnz− y∥ = ∥Qn+1Hnz− y∥ =
∥∥∥[Qn+1 Qc

]T
(Qn+1Hnz− y)

∥∥∥
=

∥∥∥∥∥∥
Hnz− e1∥y∥

0

∥∥∥∥∥∥ =
∥∥Hnz− e1∥y∥

∥∥.
A LS problem of size (n + 1)× n.



Implementation

>> [Q, Hn] = arnoldi(A, y, n);

>> v = eye(n+1, 1) * norm(y);

>> z = H(:, 1:n) \ v;

>> x = Q(:, 1:n) * z;

▶ The residual norm ∥Axn − y∥ can be computed for free
(without another product with A) from the (n + 1)× n LS.

▶ qr(Hn) can be computed in O(n2) using the fact that Hn

already has many zeros below the diagonal.
(Details omitted; not such a big deal anyway because the
most expensive part of the algorithm is the Arnoldi iteration.)

▶ One can merge this computation with the Arnoldi loop: we
‘update’ the QR of Hk to that of Hk+1 after each step.
This avoids the need to choose n in advance: we compute
x1, x2, x3, . . . and stop when ∥Axn − y∥ is small enough.

We won’t see an implementation with all these details.

Matlab: gmres(A, b), Python: scipy.sparse.linalg.gmres.



Example

m = 1000;

A = 10*speye(m) + sprandn(m, m, 0.01);

y = randn(size(A,1), 1);

[Q, H] = arnoldi(A, y, 50);

r = nan(50,1);

% tests several ’slices’ of Q,H

% this simulates Arnoldi with various values of n.

for n = 1:50

z = H(1:n+1, 1:n) \ eye(n+1, 1) * norm(y);

x = Q(:, 1:n) * z;

r(n) = norm(A*x - y);

end

semilogy(r)

Observe: changing that factor 10 affects convergence speed!



Lucky breakdown

An interesting phenomenon: when Arnoldi breaks down, we can
obtain the exact solution to the linear system. Indeed, if
hn+1,n = 0, then in the (n + 1)× n least-squares problem

min
∥∥Hnz− e1∥y∥

∥∥
the last equation is 0 = 0.

The remaining equations form a square linear system Hnz = e1∥y∥.
We can reach residual 0 =⇒ the linear system Ax = y is solved
exactly at step n.

(Tricky question: why must Hn be invertible?)



GMRES convergence

We can mimic the convergence proof of CG.

x ∈ Kn(A, y) ⇐⇒ x = p(A)y for a polynomial p(t) of degree < n.

min
x=p(A)y

p of degree < n

∥Ax− y∥ = min
p of degree < n

∥(Ap(A)− I )y∥.

GMRES finds the best polynomial for us!

If A = VΛV−1 diagonalizable, then

Ap(A)− I = V

λ1p(λ1)− 1
. . .

λmp(λm)− 1

V−1.

▶ If A has very few distinct eigenvalues (k ≤ n of them), then
we can find p such that p(λi ) =

1
λi

for all i : interpolation!

▶ If A has few ‘clusters’ of eigenvalues, we can find p such that
λip(λi )− 1 is small for all i .



GMRES convergence

Passing to norms,

∥rn∥ = min
x∈Kn(A,y)

∥Ax− y∥ ≤ κ(V )min
p(t)

max
λi

|λip(λi )− 1|∥y∥.

▶ If A has only n distinct eigenvalues, GMRES converges in n
steps.

▶ (informally) If A has a few ‘clusters’ of eigenvalues well
separated from 0, then GMRES converges fast.

Example Repeat the previous experiment with A=bucky().



Wrap-up

GMRES computes the vector x that minimizes ∥Ax− y∥ among all
vectors in Kn(A, y).

It provably gives lower residual ∥Axn − y∥ than any other algorithm
that produces iterates in Kn(A, y), e.g.,

function x = secret_accelerated_descent(A, y)

m = length(y);

x = zeros(m, 1);

for k = 1:n

w = some_combination_of_previous_iterates_and_rs(...);

r = A*w - w;

x = some_combination_of_previous_iterates_and_rs(...);

end

(Similarly, any algorithm that makes 2 products with A per step is
no better than 2n steps of GMRES.)

Book references Trefethen–Bau, Lecture 35; Demmel, Section
6.6.6 (in part).



Lanczos = symmetric Arnoldi

If A is symmetric (A = AT ), then Hn is symmetric for each n and
hence it is tridiagonal.

A = bucky(); y = randn(size(A, 1), 1);

[Q, H] = arnoldi(bucky, y, 40);

spy(H);

Indeed, Hji = qTj Aqi = (qTj Aqi )
T = qTi Aqj = Hij .

So we can shorten the orthogonalization loop:

w = A * Q(:, j);

for i = j-1:j % only 2 vectors to check

%and actually we already know H(j-1,j)=H(j,j-1)

H(i,j) = Q(:, i)’ * w;

w = w - H(i,j) * Q(:, i);

end

This reduces the cost to n matrix products + O(mn).



Uses for Lanczos

This ‘symmetric Arnoldi’ is known as Lanczos iteration.

Symmetry reduces the cost not only of the orthogonalization loop,
but also of the small-scale least-squares systems: Hn is tridiagonal.

The resulting ‘symmetric GMRES’ is called MINRES.



Final notes

Which Krylov method to use for Ax = y

▶ Is A very small, or completely without sparsity/structure?
Probably you should be using a direct method instead. . .

▶ Is A posdef? Use conjugate gradient.

▶ Is A symmetric? Use MINRES (=symmetric GMRES).

▶ None of the above? Use GMRES.

Book refs Trefethen–Bau, Lecture 38; Demmel, Sections 6.6.3,
6.6.4.

Practical warning often, when computing with Krylov methods
numerically, exact orthogonality is lost after a few iterations: the
value of qTi qj slowly grows (by accumulation of errors, starting
from machine precision) as i , j become more far apart.



Exercises

▶ Show that, if we have lucky breakdown at step n, then the
matrix Hn is invertible whenever A is invertible. (Hint: use
AQn = QnHn. What happens if Hnv = 0 for a vector v ̸= 0?)


