GMRES: a Krylov method for linear systems

We know how to compute a basis of the Krylov subspace, now let's
use it to solve a linear system.

Idea: look for best approximate solution inside K,(A,y):
min||Ax — y||, over all x € K,(A,y), i.e., x = Qnz.

That is, mingern||AQnz — y||: we find z by solving a least-squares
problem.

Even better, we can reduce it to a smaller-size problem:

1AQuz =y = | @ui1Hoz ~yl| = [[@ner Qc]T (QuiaHyz)|

H,z—ey||
= = ||Hnz —ellyll]-
0

A LS problem of size (n+1) x n.

Implementation

>> [Q, Hn] = arnoldi(A, y, n);

>> v = eye(n+l, 1) * norm(y);
>> z = H(:, 1:n) \ v;
>> x = Q(:, 1:n) * z;

» The residual norm ||Ax, — y|| can be computed for free
(without another product with A) from the (n+ 1) x n LS.

» qr(Hn) can be computed in O(n?) using the fact that H,,
already has many zeros below the diagonal.
(Details omitted; not such a big deal anyway because the
most expensive part of the algorithm is the Arnoldi iteration.)

» One can merge this computation with the Arnoldi loop: we
‘update’ the QR of H, to that of H, after each step.
This avoids the need to choose n in advance: we compute
X1,X2,X3, ... and stop when ||Ax, — y|| is small enough.

We won't see an implementation with all these details.

Matlab: gmres(A, b), Python: scipy.sparse.linalg.gmres.

Example

m = 1000;
A = 10*speye(m) + sprandn(m, m, 0.01);
y = randn(size(A,1), 1);

[Q, H] = arnoldi(A, y, 50);
r = nan(50,1);
% tests several ’slices’ of Q,H
% this simulates Arnoldi with various values of n.
for n = 1:50
z = H(1:n+1, 1:n) \ eye(n+l, 1) * norm(y);
x = Q(:, 1:n) * z;
r(n) = norm(A*x - y);
end
semilogy (r)

Observe: changing that factor 10 affects convergence speed!

Lucky breakdown

An interesting phenomenon: when Arnoldi breaks down, we can
obtain the exact solution to the linear system. Indeed, if
hnt1,n =0, then in the (n+ 1) x n least-squares problem

minHﬂnZ - el||¥||H

the last equation is 0 = 0.

The remaining equations form a square linear system Hp,z = eq|y].
We can reach residual 0 = the linear system Ax =y is solved
exactly at step n.

(Tricky question: why must H, be invertible?)

GMRES convergence

We can mimic the convergence proof of CG.
x € Ky(A,y) <= x = p(A)y for a polynomial p(t) of degree < n.

min [[Ax—y[l= min _[[(Ap(A) — y].
x=p(A)y p of degree < n
p of degree < n

GMRES finds the best polynomial for us!
If A= VAV1 diagonalizable, then

)\1[3()\1) -1
Ap(A) — 1 =V v-L
Amp(Am) — 1

» If A has very few distinct eigenvalues (k < n of them), then

we can find p such that p()\;) =)\i for all i: interpolation!

» If A has few ‘clusters’ of eigenvalues, we can find p such that
Aip(A;j) — 1 is small for all i.

GMRES convergence

Passing to norms,

toll = min ||Ax — <k min max|\; —1
lenll = cein || yll < w(V)p(t))\,‘ p(A) — 1 llyll-

» If A has only n distinct eigenvalues, GMRES converges in n
steps.

» (informally) If A has a few ‘clusters’ of eigenvalues well
separated from 0, then GMRES converges fast.

Example Repeat the previous experiment with A=bucky ().

Wrap-up

GMRES computes the vector x that minimizes ||Ax — y|| among all
vectors in K,(A,y).

It provably gives lower residual ||Ax, — y|| than any other algorithm
that produces iterates in K,(A,y), e.g.,

function x = secret_accelerated_descent(A, y)
m = length(y);

x = zeros(m, 1);

for k = 1:n

w = some_combination_of_previous_iterates_and_rs(...

r = Axw - w;

X = some_combination_of_previous_iterates_and_rs(...

end
(Similarly, any algorithm that makes 2 products with A per step is
no better than 2n steps of GMRES.)

Book references Trefethen—Bau, Lecture 35; Demmel, Section
6.6.6 (in part).

Lanczos = symmetric Arnoldi

If Ais symmetric (A= AT), then H, is symmetric for each n and
hence it is tridiagonal.

A = bucky(); y = randn(size(A, 1), 1);
[Q, H] = arnoldi(bucky, y, 40);
spy (H) ;

Indeed, Hj;i = quAq,- = (qJ-TAq,-)T = q,-Tqu = Hj.

So we can shorten the orthogonalization loop:

w=Ax*QC, j);

for i = j-1:j % only 2 vectors to check
%and actually we already know H(j-1,j)=H(j,j-1)
H(i,j) = QC:, 1)’ * w;
w=uw-H(@,j) *QC:, 1);

end

This reduces the cost to n matrix products + O(mn).

Uses for Lanczos

This ‘symmetric Arnoldi’ is known as Lanczos iteration.

Symmetry reduces the cost not only of the orthogonalization loop,
but also of the small-scale least-squares systems: H,, is tridiagonal.

The resulting ‘symmetric GMRES' is called MINRES.

Final notes

Which Krylov method to use for Ax =y

» Is A very small, or completely without sparsity/structure?
Probably you should be using a direct method instead. ..

> Is A posdef? Use conjugate gradient.

» Is A symmetric? Use MINRES (=symmetric GMRES).

» None of the above? Use GMRES.

Book refs Trefethen—Bau, Lecture 38; Demmel, Sections 6.6.3,
6.6.4.

Practical warning often, when computing with Krylov methods
numerically, exact orthogonality is lost after a few iterations: the
value of q,-qu slowly grows (by accumulation of errors, starting
from machine precision) as i,j become more far apart.

Exercises

» Show that, if we have lucky breakdown at step n, then the
matrix H, is invertible whenever A is invertible. (Hint: use
AQ, = QnH,. What happens if H,v = 0 for a vector v # 07)

