
Factorizations

One of the main tools to solve linear systems: factorizations.

Idea: break up a matrix into pieces “easier to invert”.

For instance: Ax = b, with A ∈ Rm×m square invertible.

▶ Compute A = QR. Now x = A−1b = R−1(QTb). 4
3m

3

▶ Compute c = QTb. O(m2)

▶ Compute x = R−1c by solving Rx = c via back-substitution.
O(m2)

Similarly you can use A = UΣV T and A = LU.

Added benefit: sometimes the same factorization can be reused to
solve more than one linear system.



Review of LU / Gaussian elimination

Gaussian elimination can be seen as a factorization, too: A = LU.

Add multiples of row 1 to rows 2. . . n to eliminate A2:end ,1:
1
∗ 1
∗ 1
∗ 1
∗ 1



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 =


∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗


L1A = A1.

(L1)k1 = −
Ak1

A11
, k = 2, 3, . . . ,m.



LU factorization


1

1
∗ 1
∗ 1
∗ 1



∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

 =


∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗


L1A1 = A2,

(L2)k2 =
(A1)k2
(A1)22

, k = 3, . . . ,m.

Then go on: [
1
1
1
∗ 1
∗ 1

][ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗

]
=

[ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗

]
[

1
1
1
1
∗ 1

][ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗

]
=

[ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗

]



LU factorization

At the end, we have

Lm−1Lm−2 . . . L1A = U,

with U upper triangular, or

A = L−1
1 L−1

2 . . . L−1
m−1︸ ︷︷ ︸

=L

U.

where U upper triangular and L lower triangular.

Theorem

Any matrix A ∈ Rm×m for which we do not encounter zero pivots
in the algorithm admits a factorization A = LU, where L is lower
triangular with ones on its diagonal, and U is upper triangular.



‘Stroke of luck’ (as Trefethen–Bau put it)

The product of the L−1
i ’s can be computed with zero operations:

 1
−a2 1
−a3 1
−a4 1
−a5 1

−1 1
1

−b3 1
−b4 1
−b5 1

−1[ 1
1

1
−c4 1
−c5 1

]−1[ 1
1
1

1
−d5 1

]−1

=

 1
a2 1
a3 b3 1
a4 b4 c4 1
a5 b5 c5 d5 1


Theorem

Suppose we can perform Gaussian elimination without row
exchanges on A ∈ Rm×m, obtaining an upper triangular matrix U.
Then, A = LU, where L is lower triangular with ones on the
diagonal, containing the ‘multipliers’ used when computing

(row i)← (row i)− Lik(pivot row k).



LU factorization — code

function [L, U] = lu_factorization(A)

m = size(A, 1);

L = eye(m);

U = A;

for k = 1 : m - 1

% invariant: L*U == A

% compute multipliers

L(k+1:end, k) = U(k+1:end, k) / U(k, k);

% update U

U(k+1:end, k) = 0;

U(k+1:end, k+1:end) = U(k+1:end, k+1:end) ...

- L(k+1:end, k) * U(k, k+1:end);

end

Cost (for a dense matrix): 2
3m

3 + O(m2): half as much as QR
factorization.



Use to solve linear systems

function x = solve_system_lu(A)

[L, U] = lu_factorization(A);

c = L \ b;

x = U \ c;

Useful point to remark: in Matlab, \ checks matrix structure and
does the right thing:

▶ upper/lower triangular systems: back-substitution (O(m2)).

▶ non-triangular linear systems: LU (then throw away the
factors).

▶ symmetric and/or sparse systems: uses appropriate LU
variants (will see in the following).

Note: Q \ b doesn’t expand to QTb for an orthogonal Q. Why?
Note: Python does not have an ‘automagic’ equivalent. Scipy fits
most needs (e.g., scipy.linalg.solve,
scipy.linalg.solve_triangular), but be sure to check which
algorithm you are using!



Stability

Is LU factorization numerically stable? Absolutely not.
Main issue: small pivots. E.g.,10−30 1 1

1 1 1
1 1 −1

 =

 1
1030 1
1030 1

10−30 1 1
0 1− 1030 1− 1030

0 1− 1030 −1− 1030

 .

In floating point arithmetic, ±1− 1030 gets approximated with
1030 =⇒ failure (division by 0). However, that matrix is very far
from singular.

In an analysis similar to the one we did for QR, one can prove that
L̃Ũ = Â with

∥Â− A∥ ≤ ∥L∥∥U∥O(u),

however, ∥L∥∥U∥ can get much larger than ∥A∥, as seen above.



Pivoting

Typical fix: column (or partial) pivoting. At each step, for instance
∗ ∗ ∗ ∗ ∗
0 b22 ∗ ∗ ∗
0 b32 ∗ ∗ ∗
0 b42 ∗ ∗ ∗
0 b52 ∗ ∗ ∗

 ,

instead of using row 2 as a ‘pivot row’, swap rows so that
max(|b22|, |b32|, |b42|, |b52|) occurs in the pivot position: for
instance, swap row 2 and 5:

L2


1

1
1

1
1



∗ ∗ ∗ ∗ ∗
0 b22 ∗ ∗ ∗
0 b32 ∗ ∗ ∗
0 b42 ∗ ∗ ∗
0 b52 ∗ ∗ ∗

 =


∗ ∗ ∗ ∗ ∗
0 b52 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗

 .



Pivoting

Carrying out the same process gives

Lm−1Pm−1 . . . L2P2L1P1A = U.

Another stroke of luck: we can rearrange the factor to get

Pm−1Pm−2 . . .P1︸ ︷︷ ︸
P

A = L̂−1
1 L̂−1

2 . . . L̂−1
m−1︸ ︷︷ ︸

L

U,

where P is a permutation matrix (orthogonal), and the L̂k are
obtained by applying the same row exchanges to the non-identity
part of Lk .

Matlab’s lu(A) returns [L, U, P] such that PA = LU (or, when
called with 2 outputs, [L, U] with L ‘permuted triangular’ s.t.
A = LU).



Solving linear systems

Theorem

Any matrix A ∈ Rm×m admits a factorization A = PTLU, where P
is a permutation matrix, L is lower triangular with ones on its
diagonal, and U is upper triangular.

Systems with P, L,U can all be solved in O(m2) or less.

In practice, one can store P as a permutation of [1, . . . ,m] (check
help lu).

This is what Matlab’s x = A \ b and scipy.linalg.solve do
for a general, dense square A: compute PLU, solve the system,
throw away the factors.

Note: overhead of partial pivoting: O(m2) instructions (though,
arguably, zero floating point operations).



LU with partial pivoting — code

function [L, U, perm] = lu_factorization(A)

m = size(A, 1); L = eye(m); U = A; perm = 1:m;

for k = 1 : m - 1 % loop invariant: L*U == A(perm,:)

% determine pivot position

[val, pos] = max(abs(U(k:end, k)));

% convert index into k:end into index in 1:end

p = pos + k-1;

% swap rows

U([k,p], 1:end) = U([p,k], 1:end);

L([k,p], 1:k-1) = L([p,k], 1:k-1);

perm([k, p]) = perm([p, k]);

% proceed with LU factorization step

L(k+1:end, k) = U(k+1:end, k) / U(k, k);

U(k+1:end, k) = 0;

U(k+1:end, k+1:end) = U(k+1:end, k+1:end) ...

- L(k+1:end, k) * U(k, k+1:end);

end



Stability of LU with partial pivoting

Pivoting ensures that |Lij | ≤ 1, hence ∥L∥ stays small.
Is LU stable now? Still no, in the worst case.

Worst case: ∥U∥/∥A∥ may grow as ≈ 2m — see the exercises for
an example.
Average case: In practice, “real world” matrices basically always
have small ∥U∥/∥A∥.

You can safely use LU + residual test rather than QR, to solve
square linear systems: it saves a factor 2 on the cost.

Note: we cannot use LU to solve least-squares problems: we
needed the norm-invariance properties of the orthogonal Q there.



Sparse matrices

>> A = sprandn(5,5, 0.6)

A =

(2,1) -2.4372e-01

(3,2) -1.1480e+00

(4,2) 7.2225e-01

[...]

(4,4) 2.5855e+00

(2,5) -1.1658e+00

(3,5) 1.0487e-01

>> spy(A) 
∗

∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗





LU of sparse matrices

LU / Gaussian elimination causes some fill-in:



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


→



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗


(and, in case you were thinking about it, QR causes even more
fill-in).



Example: fill-in

>> A = bucky(); %sample sparse matrix

>> spy(A)

>> [L,U] =lu(bucky, 0);

>> nnz(A), nnz(L), nnz(U) %no. of nonzeros

ans =

180

ans =

541

ans =

539



Avoiding fill-in

Fill-in depends a lot on the sparsity pattern of each specific matrix;
some have more, some have less.
How can one (try to) avoid it?

Idea Choose the pivot row to be as sparse as possible at each step.
Better idea Try to predict sparsity pattern after one or several
steps, instead of being ‘greedy’.

Some but’s
. . . but finding the optimal sparsity pattern is NP-complete.
. . . but we already wanted to choose the pivot row to ensure
stability. We need a tradeoff between these two criteria.



Sparse LU

We will not see a sparse LU implementation here.

▶ The tradeoff heuristics may be complex.

▶ It is a tight for loop, so not something you’d want to write in
(interpreted) Matlab, Python, etc. anyway.

▶ One needs to deal with the sparse representation, allocate
memory for these lists. . .

▶ Another detail we have glossed over: blocking. In practice,
one matrix-matrix multiplication is faster than n matrix-vector
multiplications (cache reuse, vectorization. . . ). So it’s better
to lump operations into blocks — especially for dense LU.

▶ And we didn’t even start speaking about multi-threaded code.

Use libraries: [L,U] = lu(A), scipy.sparse.linalg.splu.
Or directly A b, scipy.sparse.linalg.spsolve.
Remark the cost of [L,U] = lu(A); c = L b; x = U c (using
sparse matrix storage) is O(m · (nnz(L) + nnz(U))).



Avoiding fill-in

. . . Sometimes, you just can’t avoid it.

>> A = sprandn(2000, 2000, 0.005);

>> [L,U] = lu(A);

>> nnz(A) % number of nonzeros

ans =

19955

>> nnz(L)

ans =

1272931

>> nnz(U)

ans =

1289056



Wrap-up

▶ LU factorization is the go-to algorithm to solve linear
equations. Costs half as much as QR; stable in practice.

▶ It works on sparse matrices, too, with a suitable
implementation, at least until fill-in becomes problematic (and
that happens).

▶ When your L,U factors are too large for your memory, it is
time to look for other algorithms (coming in the next
lectures).

▶ In real life, use a library for this (but it’s always good to have
an idea of what it does). Blocking, storage format, compiled
code, and other low-level optimizations give a substantial
speedup.



Exercises

1. Check the ‘stroke of luck’ identity (for m = 5 is enough) by
computing the matrix products.

2. Make some numerical experiments: take many m ×m
matrices, for a fixed m; what is (as a function of m) the
maximum ratio ∥L∥∥U∥/∥A∥ that you can obtain with
unpivoted Gaussian elimination? With pivoted GE?

3. Compute (using Gaussian elimination) the U factor of the LU
factorization of 

1 0 0 0 1
−1 1 0 0 1
−1 −1 1 0 1
−1 −1 −1 1 1
−1 −1 −1 −1 1


and check that ∥U∥ ≥ 24. Can you see how this example
extends to larger dimension?



Book reference: Trefethen–Bau, Lectures 20–22.


