
Symmetric elimination

If M is symmetric, can we exploit this property to reduce the cost
of LU factorization?

Idea: choose L1 as before, but now compute L1MLT1 instead of
L1M. This matrix is symmetric (check) and block upper triangular
(because both L1M and LT1 are so):[

1
∗ 1
∗ 1
∗ 1
∗ 1

][∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

][1 ∗ ∗ ∗ ∗
1
1
1
1

]
=

[∗ 0 0 0 0
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

]
and continue in the same fashion:[

1
1
∗ 1
∗ 1
∗ 1

][∗ 0 0 0 0
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

][
1
1 ∗ ∗ ∗
1
1
1

]
=

[∗ 0 0 0 0
0 ∗ 0 0 0
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗

]

Example

>> A = randn(5,5); M = A*A’;

>> L1 = eye(size(M));

>> L1(2:end, 1) = -M(2:end, 1) / M(1, 1);

>> M1 = L1*M*L1’

M1 =

4.3142e+00 0 0 0 0

0 1.1666e+01 -5.0430e+00 -4.8709e+00 -2.5910e+00

0 -5.0430e+00 7.0707e+00 6.0102e-01 7.0771e-01

0 -4.8709e+00 6.0102e-01 1.5633e+01 9.5604e+00

0 -2.5910e+00 7.0771e-01 9.5604e+00 6.0887e+00

Example

>> L2 = eye(size(M1));

>> L2(3:end, 2) = -M1(3:end, 2) / M1(2, 2);

>> L2 * M1 * L2’

ans =

4.3142e+00 0 0 0 0

0 1.1666e+01 0 0 -8.8818e-16

0 0 4.8907e+00 -1.5045e+00 -4.1231e-01

0 0 -1.5045e+00 1.3599e+01 8.4786e+00

0 0 -4.1231e-01 8.4786e+00 5.5132e+00

LDLT factorization

In the end, we get

Lm−1Lm−2 . . . L1ML1T . . . LTm−2L
T
m−1 = D,

where D is diagonal, or

M = L−1
1 L−1

2 . . . L−1
m−1DL

−T
m−1 . . . L

−T
2 L−T

1 = LDLT .

Any symmetric matrix M = MT ∈ Rm×m (for which we do not
encounter zero pivots in the algorithm) admits a factorization
M = LDLT , where L is lower triangular with ones on its diagonal,
and D is diagonal.

Formulas and symmetry

[
1
w I

] [
α aT

aT Â

] [
1 wT

I

]
=

[
α

B

]
,

w = − 1
αa, B = Â+waT = Â− a 1

αa
T .

function [L, D] = ldl_factorization(M)

m = size(M, 1);

L = eye(m); D = zeros(m);

for k = 1:m-1

D(k, k) = M(k, k);

L(k+1:end, k) = M(k+1:end, k) / M(k, k);

M(k+1:end, k+1:end) = M(k+1:end, k+1:end) ...

- L(k+1:end, k) * A(k, k+1:end);

end

D(m, m) = M(m, m);

LDL - details

Cost On dense matrices, 1
3m

3 + O(m2), half as much as LU —
provided we compute only half of the entries and fill the rest in by
symmetry (our implementation above doesn’t).

Stable? Absolutely not, unless we do some form of pivoting.
Pivoting must be symmetric: PTMP.

There are pivoting strategies (Bunch–Parlett, Bunch–Kaufman)
that produce LDLT factorizations which are stable for almost all
matrices (like LU).
However, they have to use 2× 2 block pivots inside D.

Matlab’s [L, D, P] = ldl(M) produces matrices such that
PTMP = LDLT , where D may have 2× 2 diagonal blocks.

[K, D] = ldl(M) returns K = PL and D (so that M = KDKT).

Positive definite factorization

Things work better for positive definite matrices.

Lemma

▶ M = MT ∈ Rm×m is positive definite if and only if LALT is
so, for any invertible L ∈ Rm×m.

▶ If A =
[
M11 M12
M21 M22

]
is symmetric positive definite, then M11 and

M22 are, too.

(Proof: use the definition zTMz > 0, and for the second bullet
take z = [z10] and

[
0
z2

]
).

Using this result, one can prove that

When computing the LDLT factorization of a positive definite
matrix A, at each step we have Dkk > 0, hence the algorithm never
breaks down even without pivoting (and never needs 2× 2 blocks).

Cholesky factorization

For positive definite matrices, there is also a slightly different form,
Cholesky factorization:

M = LDLT = LD1/2(D1/2TLT) = RTR,

where D1/2 = diag(D
1/2
11 ,D

1/2
22 , . . . ,D

1/2
mm), and R is upper

triangular.

Matlab: R = chol(A)

One can show (using an SVD of R) that ∥R∥ = ∥M∥1/2, hence
norms do not increase exceedingly. Cholesky factorization is
backward stable for all SPD matrices.

So, in a sparse positive-definite matrix, we can choose the
(symmetric) permutation with the only goal of reducing fill-in.

Summary

▶ Another weapon in our arsenal: symmetric variants of LU.

▶ They reduce time and space cost by 1/2.

▶ Again, we can use them to solve linear systems, e.g.,
[L, D] = ldl(M); x = L’ \ (diag(D) .\ (L \ b));

Which method to use for Ax = b

▶ Is your matrix posdef? Use Cholesky.

▶ Is your matrix symmetric? Use LDL.

▶ Non-symmetric? Then use LU.

▶ Is your matrix sparse? Use sparse storage (list-based) and
sparse variants of all the above.

▶ Too slow, or out of memory, because of fill-in? Switch to
approximate iterative methods (in the next lectures).

Exercises

1. Let R be the Cholesky factor of a positive definite M ∈ Rm×m.
Show that ∥R∥ = ∥M∥1/2. Hint: use the SVD of R.

2. Write Matlab code that implements the Cholesky factorization
(without calling lu).

3. Add a form of symmetric diagonal pivoting to your
implementation of Cholesky factorization: at each step, find
max((Mk−1)kk , (Mk−1)k+1,k+1, . . . , (Mk−1)mm), and bring it
in position (k, k) by swapping rows and columns. Code it in
Matlab; what is a loop invariant?

Book refs: for LU, Trefethen–Bau Lectures 20–22, Demmel,
Sections 2.3, 2.4.1, 2.4.2; for Cholesky, Trefethen–Bau Lecture 23;
Demmel, Sections 2.7.1, 2.7.2.

