
Examples of solving symmetric linear systems
We first experiment with a symmetric positive definite A with
zeros in random locations:

>> rng(0);
>> B = sprandsym(4000, 0.001);
>> A = speye(size(B)) - 0.1*B;
>> tic; R = chol(full(A)); toc
Elapsed time is 1.059630 seconds.
>> tic; R = chol(A); toc
Elapsed time is 0.910553 seconds.
>> nnz(R)
ans =

2360808
>> nnz(A)
ans =

19984



Reordering entries to reduce bandwidth
The instruction symrcm reorders the entries of A according to a
(sort of) BFS on its adjacency graph. This often reduces the
bandwidth and the number of nonzeros in chol(A).
>> p = symrcm(A);
>> tic; R = chol(A(p, p)); toc
Elapsed time is 0.374971 seconds.
>> nnz(R)
ans =

1576535
>> spy(R)

All these factorizations can be used to solve linear systems, e.g.,
>> x = R \ (R’ \ y(p));
>> x(p) = x; %inverse permutation
>> norm(A*x-y)
ans =

7.8569e-14



Iterative methods
The function pcg solves a system with conjugate gradient.

>> tic;[x, ˜, ˜, ˜, resvec] = pcg(A, y);toc
Elapsed time is 0.014492 seconds.
>> norm(A*x-y)
ans =

6.1736e-05
>> semilogy(resvec)

A is a reasonably well-conditioned matrix, and CG converges fast
on it.

>> ev = eig(full(A)); plot(real(ev), imag(ev), ’x’);



Don’t use inv
Direct inversion with inv is not competitive by any metric.

>> tic; P = inv(A); toc
Elapsed time is 2.178261 seconds.
>> tic; x = P*y; toc
Elapsed time is 0.027226 seconds.
>> norm(A*x - y)
ans =

1.4211e-13

Drawbacks:
▶ inv(A) is typically very dense: high cost and storage.
▶ Even for ignoring sparsity, computing inv(A) is more

expensive than solving a linear system: it’s basically equivalent
to solving m linear systems Axj = ej for j = 1, 2, . . . , m.

▶ . . . and it’s less accurate (basically as the least accurate of all
Axj = ej)



A different example
This ‘thin-band’ matrix comes from discretization of a differential
equation; it is more suitable to direct solvers than iterative ones.

>> A = delsq(numgrid(’S’,50));
>> size(A)
ans =

2304 2304
>> spy(A)
>> b = randn(length(A), 1);
>> tic; R = chol(A); toc;
Elapsed time is 0.028630 seconds.
>> pcg(A, b, 1e-8, 100);
pcg stopped at iteration 100 without converging to the desired tolerance 1e-08
because the maximum number of iterations was reached.
The iterate returned (number 100) has relative residual 8.1e-05.
>> [x, ˜, ˜, ˜, resvec] = pcg(A, b, 1e-8, 100); semilogy(resvec);



Preconditioning
A powerful idea: preconditioning. Since the performance of CG
and GMRES on Ax = y depends a lot on where the eigenvalues of
A are located, we may replace Ax = y with PAx = Py to try to
‘improve’ its eigenvalues.

What is the ideal P?

Two extreme choices:
▶ P = I: trivial to invert, but does not change eigenvalue

location.
▶ P = A−1: changes eigenvalue location to all=1 (perfect!), but

it takes too much work to compute: even more than solving a
linear system! (Actually, if I know A−1, why am I even using
an iterative method?)

Idea: drop some coefficients of A to make it easier to invert. For
instance, if A has small off-diagonal entries, we can invert diag(A).



Preconditioning: practical choices
Some intermediate choices:
▶ P = diag(A)−1: cheap to compute, but might be ineffective.

Use it if A is close to a diagonal matrix.
▶ U = triu(A)−1: upper triangle of A. Might be effective if A is

almost triangular.
▶ Better preconditioners are obtained with so-called ‘incomplete

LU’: start by computing A = LU, but cheat to obtain more
zeros: whenever an element is small-ish, replace it with 0!
[L,U] = ilu(A).
Then, A ≈ LU, and hence PA = (U−1L−1)A ≈ I.
Do not compute P explicitly! Rather, use Arnoldi with a
black-box function:
[L, U] = ilu(A);
f = @(v) U \ (L \ (A*v))
x = gmres(f, U \ (L \ y))

Matlab’s gmres has syntax to specify a preconditioner (matrix or
function) in optional arguments.



Symmetric preconditioners
When A = AT , there is another issue: even with a symmetric P,
the matrix PA is not going to be symmetric.

Idea: apply a matrix on both sides of A, getting an equivalent
linear system:

PAPT (P−T x) = Pb.

Notation: P−T stands for (P−1)T = (PT )−1.
This time, we want PAPT to be close to the identity matrix, or at
least “with favorable eigenvalues”.
Example: P = diag(A−1/2

11 , A−1/2
22 , . . . , A−1/2

nn ), which works well if
A is close to a diagonal matrix.



Incomplete Cholesky
Similarly to incomplete LU, we can compute an incomplete
Cholesky factorization: ichol(A) computes L such that LLT ≈ A,
and L is sparse (by arbitrarily setting certain entries to zero
liberally during the factorization).

If we take P = L−1, then PAPT is more well-conditioned than A:

>> L = ichol(A);
>> cond(A)
ans =

1.4136e+03
>> ev = cond(L \ A / L’)
ev =

2.0379e+02



>> matvec = @(v) L \ (A*(L’ \ v))
matvec =

function_handle with value:
@(v)L\(A*(L’\v))

>> x = L’ \ pcg(matvec, L \ y, 1e-8, 100);
pcg converged at iteration 51 to a solution
with relative residual 7e-09.
>> norm(A*x - y)
ans =

2.9117e-07

Note that the residual used for stopping is the residual of the
preconditioned system ∥L−1AL−T (LT x) − L−1y∥, which is different
from that of ∥Ax − y∥.
However, we can still compute the residual ∥Ax̃ − y∥ at the end to
figure out how close the computed x̃ is to the true solution:

∥x̃ − x∥
∥x∥

≤ κ(A)∥Ax̃ − y∥
∥y∥

.



Preconditioners are a dark art
When solving huge linear systems (m ≈ millions), finding a good
preconditioner can improve performance dramatically.

There are many more techniques than dropping zeros in LU
factorizations.

Good preconditioners often come from the structure of the
problem: solving the same differential equation problem on coarser
grids, considering a simpler subgraph of the graph such as a
spanning tree, etc.

Randomization is another technique that is becoming popular
recently: for instance, get simpler problems by randomly sampling
unknowns/equations.

We don’t see much here.



Wrap-up
In this part of the course, we have seen the ‘simple’ problems in
linear algebra:
▶ Dense least-squares problems:

▶ Normal equations
▶ QR
▶ SVD
▶ Accuracy issues
▶ Regularization

▶ Sparse linear systems:
▶ Sparse LU / LDL / Cholesky (depending on

symmetry/definiteness)
▶ GMRES / MINRES / CG (depending on

symmetry/definiteness)
▶ Preconditioning


