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Introduction

In these lecture notes, we will illustrate some basic concepts in topo-
logical data analysis. To do so, we must first introduce the notions of
abstract and geometric simplicial complexes and their main proper-
ties, and describe how simplicial complexes can be associated with
point clouds in Euclidean space, in order to geometrically structure
the information represented by such clouds. We will then introduce
simplicial homology with coefficients in Z2 and use it to study the
qualitative properties of the previously defined simplicial complexes.
This will allow us to introduce some elementary concepts in Topolog-
ical Data Analysis, based on the material presented in the first part
of these notes. Specifically, we will present the concept of persistence
diagrams and their applications to shape description. At the conclu-
sion of the course, we will show how the invariance of persistence
diagrams can be refined using Group Equivariant Non-Expansive
Operators (GENEOs). The use of GENEOs in Machine Learning will
also be briefly illustrated. The course will prioritize practical appli-
cations over theoretical aspects, often citing results without formal
proofs. The main reference is the book [Herbert Edelsbrunner and
John Harer (2010)]1. For the sake of completeness, these notes contain 1 Herbert Edelsbrunner and John Harer.

Computational Topology - an Introduction.
American Mathematical Society, 2010.
ISBN 978-0-8218-4925-5. URL http:

//www.ams.org/bookstore-getitem/

item=MBK-69

much more material than will actually be used in the course. The
course requires knowledge of basic concepts in algebra and linear
algebra.

http://www.ams.org/bookstore-getitem/item=MBK-69
http://www.ams.org/bookstore-getitem/item=MBK-69
http://www.ams.org/bookstore-getitem/item=MBK-69




Finite Simplicial Complexes

Finite Geometric Simplicial Complexes

Definition 1. Let u0, . . . , uk ∈ Rd and λ0, . . . , λk ∈ R, with ∑k
i=0 λi = 1.

The point p = ∑k
i=0 λiui is called an affine combination of u0, . . . , uk with

coefficients λ0, . . . , λk ∈ R.

Definition 2. The set of all affine combinations of the points u0, . . . , uk ∈
Rd is called the affine hull of u0, . . . , uk.

Definition 3. The points u0, . . . , uk ∈ Rd are called affinely independent
if this implication holds for (λ0, . . . , λk), (µ0, . . . , µk) ∈ Rk+1: ∑k

i=0 λi =

∑k
i=0 µi = 1 ∧ ∑k

i=0 λiui = ∑k
i=0 µiui =⇒ λi = µi for every index i. If

the points u0, . . . , uk ∈ Rd are not affinely independent, then they are called
affinely dependent.

Remark 1. It is trivial to check that the definition of affinely independent
points does not depend on the ordering of the points.

Proposition 1. The points u0, . . . , uk ∈ Rd are affinely independent if and
only if the vectors u1 − u0, . . . , uk − u0 are linearly independent.

Proof. =⇒ ) From the equality ∑k
i=1 λi(ui − u0) = 0 it follows that

u0 + ∑k
i=1 λi(ui − u0) = u0. Hence

(
1 − ∑k

i=1 λi

)
u0 + λ1u1 +

. . . + λkuk = 1u0 + 0u1 + . . . + 0uk. Since u0, . . . , uk are affinely
independent, λ1 = . . . = λk = 0. Therefore, the vectors u1 −
u0, . . . , uk − u0 are linearly independent.

⇐= ) Let us assume ∑k
i=0 λiui = ∑k

i=0 µiui with ∑k
i=0 λi = ∑k

i=0 µi =

1. Then,
(

∑k
i=0 λiui

)
− u0 =

(
∑k

i=0 µiui

)
− u0. Since ∑k

i=0 λi =

∑k
i=0 µi = 1, it follows that ∑k

i=0 λiui − ∑k
i=0 λiu0 = ∑k

i=0 µiui −
∑k

i=0 µiu0, so that ∑k
i=1 λi(ui − u0) = ∑k

i=1 µi(ui − u0). Since the
vectors u1 − u0, . . . , uk − u0 are linearly independent, we have that
λ1 = µ1, . . . , λk = µk. From the equality ∑k

i=0 λi = ∑k
i=0 µi = 1, it

follows that λ0 = µ0. Therefore, the points u0, . . . , uk are affinely
independent.
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Before proceeding, we recall these two definitions:

• A convex subset of a vector space X is a subset S of X such that

x1, x2 ∈ S, t ∈ [0, 1] =⇒ (1 − t)x1 + tx2 ∈ S.

• A compact subset of Rn (or a space Y homeomorphic to Rn) is
a closed and bounded subset of Rn (or Y). We recall that each
compact set C ⊆ Y has this property: if {Ui}i∈I is an infinite
family of open subsets of Y such that C ⊆ ⋃

i∈I Ui, then a finite
subfamily {Ui1 , . . . , Uin} exists, such that C ⊆ ⋃n

r=1 Uir .

Corollary 1. The points u0, . . . , uk ∈ Rd are affinely dependent if and only
if there exists an affine space of dimension k − 1 that contains them.

Proof. It immediately follows from Proposition 1, by observing that
the smallest affine space containing u0, . . . , uk has the dimension of
the vector space generated by the vectors u1 − u0, . . . , uk − u0, since
any point in such a space can be represented as u0 + ∑k

i=1 λi(ui − u0)

for suitable values of λ1, . . . , λk.

Definition 4. Each affine combination p = ∑k
i=0 λiui with nonnegative

coefficients is called a convex combination of u0, . . . , uk.

Definition 5. If U ⊆ Rd, the set conv U of all convex combinations of
points of U is called the convex hull of U. If U = {u0, . . . , uk}, we will
often write ⟨u0, . . . , uk⟩ in place of conv U.

Exercise 1. Prove that ⟨u0, . . . , uk⟩ is the smallest convex set containing
u0, . . . , uk.

Definition 6. The convex hull σ of k + 1 affinitely independent points is
called a geometric k-simplex. The number k is called the dimension of
the geometric simplex σ.

We say that the empty set is the unique −1-simplex. In this text,
with abuse of notation, we will often denote the 0-simplex {u} by u.

Exercise 2. Prove that each simplex is compact and convex.

Definition 7. If σ = ⟨u0, . . . , uk⟩ is a simplex, the convex hull of any
subset of {u0, . . . , uk} is called a face of σ. If τ is a face of σ we write τ ≤
σ (or σ ≥ τ). If τ ≤ σ and τ ̸= σ), we say that τ is a proper face of σ

and write τ < σ (or σ > τ). If τ is a (proper) face of σ, we say that σ is a
(proper) coface of τ.

NB: The empty set is a face of any simplex.

Definition 8. The (set) boundary bd σ of a simplex σ is the union of all
proper faces of σ. The interior int σ of σ is the set σ \ bd σ.
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Definition 9. A (finite) geometric simplicial complex is a finite set
K ̸= {∅} of simplexes such that

1. if σ ∈ K and τ ≤ σ, then τ ∈ K;

2. if σ1, σ2 ∈ K, then σ1 ∩ σ2 ≤ σ1 and σ1 ∩ σ2 ≤ σ2.

The dimension of a geometric simplicial complex is the maximum
dimension of any of its simplexes.

Definition 10. The body |K| of a geometric simplicial complex K is the
union of all simplexes in K, endowed with the topology induced by the
Euclidean topology in Rd.

Exercise 3. Prove that the body of each geometric simplicial complex is
compact.

Definition 11. Let K be a geometric simplicial complex. Every geometric
simplicial complex L such that L ⊆ K is called a subcomplex of K.

Definition 12. Let K be a geometric simplicial complex. Its subcomplex
K(j) := {σ ∈ K : dim σ ≤ j} is called the j-skeleton of K. K(0) is called the
vertex set of K and denoted by the symbol Vert K.

Finite Abstract Simplicial Complexes

Definition 13. A (finite) abstract simplicial complex is a finite family
A ̸= {∅} of sets such that if α ∈ A and β ⊆ α then β ∈ A. Each
element of an abstract simplicial complex is called an abstract simplex. The
dimension of an abstract simplex α ∈ A is card α − 1. The dimension
of an abstract simplicial complex A is the value max{dim α : α ∈ A}.
Any (proper) subset of α ∈ A is called a (proper) face of α. The union of
the abstract simplexes of A is called the vertex set of A, and denoted by the
symbol Vert A.

Exercise 4. Prove that each abstract simplex is a finite set.

Definition 14. Let A be an abstract simplicial complex. Every abstract
simplicial complex B such that B ⊆ A is called a subcomplex of A.

Definition 15. Two abstract simplicial complexes A, B are isomorphic if
there exists a bijection φ : Vert A → Vert B such that α ∈ A implies that
φ(α) := {φ(a) : a ∈ α} ∈ B and β ∈ B implies that φ−1(β) := {φ−1(b) :
b ∈ B} ∈ A. The map φ̄ : A → B induced by the map φ is called an
isomorphism between the abstract simplicial complexes A, B.

Proposition 2. Let K be a geometric simplicial complex. Let Ab(K) be
the set whose elements are the subsets {u0, . . . , uk} of Vert K such that
⟨u0, . . . , uk⟩ ∈ K. Then Ab(K) is an abstract simplicial complex, and is
called the vertex scheme of K.

Proof. Trivial.
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Geometric realizations of Abstract Simplicial Complexes

Definition 16. Let K be a geometric simplicial complex. If an abstract
simplicial complex B is isomorphic to Ab(K), then K is called a geometric
realization of B.

Geometric Realization Theorem

Theorem 1 (Geometric Realization Theorem). Every abstract simplicial
complex A of dimension d has a geometric realization in R2d+1.

Proof. First of all, let us prove that for every set {a0, . . . , ak−1} a map
f : {a0, . . . , ak−1} → R2d+1 exists, such that the following property
holds: (∗) if S ⊆ {a0, . . . , ak−1} and card S ≤ 2d + 2, then the points
in f (S) are affinely independent. If (∗) holds, we say that f is a good
embedding map for {a0, . . . , ak−1}. We observe that f is injective.

Let us prove (∗) by induction on the cardinality k. The state-
ment is trivial for k ≤ 2d + 2, since we can consider the map f :
{a0, . . . , ak−1} → R2d+1 taking a0 to 0 and each other point ai to ei,
where e1, . . . , e2d+1 is the canonical basis of R2d+1. Let us now as-
sume that the statement is true for k = n ≥ 2d + 2, and prove that
it is also true for k = n + 1. Therefore, assume that k = n + 1,
and consider the set {a0, . . . , ak−1} = {a0, . . . , an}. Let us now
build a good embedding map f ′ for {a0, . . . , an−1} and denote by
C the set given by the union of the affine 2d-dimensional subspaces
of R2d+1 that contain at least (but in fact exactly) 2d + 1 points of
f ′({a0, . . . , an−1}). We observe that set of these subspaces is finite.
Therefore, C is a proper subset of R2d+1, and hence there exists a
w ∈ R2d+1 \ C. Let us take the map f : {a0, . . . , an} → R2d+1 that
extends f ′ and is defined by setting f (an) = w. We claim that f
is a good embedding map for {a0, . . . , an}. If this were not true, a
subset S of {a0, . . . , an} would exist, such that card S ≤ 2d + 2 and
f (S) is an affinely dependent set. Up to a possible extension of S, we
can assume that S = {ai0 , . . . , ai2d+1

}. Then, because of Corollary 1,
there exists a 2d-dimensional affine subspace containing the points
f (ai0) = f ′(ai0), . . . , f (ai2d) = f ′(ai2d) and the point f (ai2d+1

) = w,
against the assumption w ∈ R2d+1 \ C.

Therefore, (∗) holds for k = n + 1. This concludes the proof of (∗)
by induction.

Let us now consider a good embedding map f for A, and the
set K of all the convex hulls of the sets f (α) for α ∈ A. We have to
prove that 1) K is a geometric simplicial complex and 2) Ab(K) is
isomorphic to A. Let us now prove these two statements.

1) Let σ1, σ2 ∈ K. The definition of K implies that α1, α2 ∈ A exist,
such that σ1 is the convex hull of f (α1) and σ2 is the convex hull of
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f (α2). If x ∈ σ1 ∩ σ2, we can write

x = ∑
ai∈α1∩α2

λi f (ai) + ∑
aj∈α1\α2

λj f (aj)

and

x = ∑
ai∈α1∩α2

µi f (ai) + ∑
ah∈α2\α1

µh f (ah)

where all coefficients are nonnegative and

∑
ai∈α1∩α2

λi + ∑
aj∈α1\α2

λj = ∑
ai∈α1∩α2

µi + ∑
ah∈α2\α1

µh = 1.

It follows that

∑
ai∈α1∩α2

λi f (ai) + ∑
aj∈α1\α2

λj f (aj) + ∑
ah∈α2\α1

0 f (ah)

= ∑
ai∈α1∩α2

µi f (ai) + ∑
aj∈α1\α2

0 f (aj) + ∑
ah∈α2\α1

µh f (ah).

Since card α1 ∪ α2 ≤ 2d + 2 (we recall that dim α1, dim α2 ≤
dim A ≤ d, and hence card α1, card α2 ≤ d + 1), the points of
f (α1 ∪ α2) are affinely independent, and hence the coefficients in
the first sum are correspondingly equal to the coefficients in the
second sum. In particular, λj = 0 for aj ∈ α1 \ α2. Therefore,
x = ∑ai∈α1∩α2

λi f (ai), with λi ≥ 0 for every ai ∈ α1 ∩ α2 and
∑ai∈α1∩α2

λi = 1. Since this equality holds for every x ∈ σ1 ∩ σ2,
then σ1 ∩ σ2 ⊆ conv f (α1 ∩ α2).

Since conv f (α1 ∩ α2) ⊆ conv f (α1) = σ1 and conv f (α1 ∩ α2) ⊆
conv f (α2) = σ2, the other inclusion conv f (α1 ∩ α2) ⊆ σ1 ∩ σ2 is
trivial. Hence, σ1 ∩ σ2 = conv f (α1 ∩ α2). Therefore, σ1 ∩ σ2 is a
simplex of K and a common face of σ1 and σ2.

If σ ∈ K, then we can find α ⊆ Vert A such that σ = conv f (α). If
τ ≤ σ, then there exists Y ⊆ f (α) such that τ = conv Y. If we set
β := f−1(Y), we have that τ = conv f (β) with β ⊆ α. This proves
that τ is a simplex of K.

In conclusion, K is a geometric simplicial complex.

2) It is easy to check that the map that takes each {ai0 , . . . , aik} ∈ A
to { f (ai0), . . . , f (aik )} ∈ Ab(K) is an isomorphism between A and
Ab(K).
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Simple Graphs

Definition 17. A (simple) graph G is an abstract or geometric simpli-
cial complex of dimension d ≤ 1. The 0-simplexes and the 1-simplexes of
a graph are respectively called vertexes and edges of the graph. The ver-
texes of a 1-simplex in G are called adjacent in G. If any pair of distinct
vertexes of the graph G are adjacent in G, we say that G is complete. Any
sequence (⟨P1, P2⟩, ⟨P2, P3⟩, . . . , ⟨Pn−1, Pn⟩, ⟨Pn, Pn+1⟩) of edges in G with
card {P1, . . . , Pn} = n and Pn+1 = P1 is called a (regular) cycle. Any
vertex that is a face of exactly one edge is called a leaf.

In this section, we will need the following Definition 18 and
Proposition 3.

Definition 18. Let Γ be a graph in R2. Any (bounded or unbounded) con-
nected component of the set R2 \ |Γ| is called a region for Γ (see Figure 1).

Figure 1: A graph in R2, its bounded
regions (in yellow, orange and red), and
its unbounded region (in green).

In the following, if Γ is graph in R2, we will set cΓ, vΓ, eΓ, rΓ equal
to the number of connected components of |Γ|, vertexes of Γ, edges
of Γ, and regions for Γ, respectively. Sometimes, when Γ is clear from
the context, we will omit the index Γ in the symbols cΓ, vΓ, eΓ, rΓ.

Proposition 3. Let Γ be a graph in R2. Then vΓ − eΓ + rΓ = cΓ + 1.

Proof. If the statement of Proposition 3 is false, we can find a coun-
terexample Γ (i.e., vΓ − eΓ + rΓ ̸= cΓ + 1) such that the value vΓ + eΓ is
minimal.

Firstly, we observe that there exists no vertex P of Γ, such that P
is a face of exactly one edge a (i.e., Γ does not contain any leaf). Oth-
erwise we could remove both a and P, and obtain a new geometric
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simplicial complex Γ̂ with cΓ̂ = cΓ, vΓ̂ = vΓ − 1, eΓ̂ = eΓ − 1, rΓ̂ = rΓ,
respectively (see Figure 2). It would follow that vΓ̂ − eΓ̂ + rΓ̂ =

vΓ − eΓ + rΓ ̸= cΓ + 1 = cΓ̂ + 1, and hence Γ̂ would be another
counterexample to the statement of Proposition 3. This would be a
contradiction, since vΓ̂ + eΓ̂ < vΓ + eΓ, while we assumed that vΓ + eΓ

had the minimum value.

Figure 2: The graphs Γ and Γ̂ in the
proof of Proposition 3. The graph Γ̂ is
obtained from Γ by removing the vertex
P and the edge a.

Secondly, no bounded region for Γ exists (i.e., Γ does not contain
any cycle). Otherwise we could find a bounded region R for Γ whose
closure touches the closure of the unbounded region U for Γ along an
edge b (prove it! Hint: consider a suitable polygonal chain connecting
a point of the unbounded region to a point of the region R). Then,
we could remove b and obtain a new geometric simplicial complex
Γ̄ with cΓ̄ = cΓ, vΓ̄ = vΓ, eΓ̄ = eΓ − 1, rΓ̄ = rΓ − 1, respectively.
Therefore vΓ̄ − eΓ̄ + rΓ̄ = vΓ − eΓ + rΓ ̸= cΓ + 1 = cΓ̄ + 1, and hence
Γ̄ would be another counterexample to the statement of Proposition 3

(see Figure 3). This would be a contradiction, since vΓ̄ + eΓ̄ < vΓ + eΓ,
while we assumed that vΓ + eΓ had the minimum value.

In conclusion, Γ is a complex of dimension 0, i.e., eΓ = 0. It follows
that cΓ = vΓ and rΓ = 1. Hence vΓ − eΓ + rΓ = cΓ + 1, contradicting
the statement that Γ is a counterexample.

Definition 19. Kn is the complete graph with n vertexes (up to isomor-
phisms).

Proposition 4. The graph K5 has no geometric realization in R2.

Proof. By contradiction, assume that such a geometric realization Γ of
K5 exists. Proposition 3 implies that v − e + r = 2 (where the symbols
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Figure 3: The graphs Γ and Γ̄ in the
proof of Proposition 3. The graph Γ̄ is
obtained from Γ by removing the edge
b.

v, e, r have the usual meaning). Since Γ is a geometric realization
of K5, each vertex of Γ is a face of exactly 4 edges, and hence 4v =

2e (because every edge has exactly two vertexes in its boundary).
Furthermore, each region for Γ has at least 3 edges in its boundary,
and each edge touches exactly two regions. Hence 3r ≤ 2e. It follows
that

2 = v − e + r ≤ v − e +
2
3

e = v − 2v +
2
3
· 2v =

1
3

v.

Therefore, v ≥ 6, against the equality v = 5.

Definition 20. Kn,n is the graph with distinct vertexes A1, . . . , An, B1, . . . , Bn,
whose edges are all the sets {Ai, Bj} with 1 ≤ i, j ≤ n (up to isomorphisms).

Proposition 5. The graph K3,3 has no geometric realization in R2.

Proof. By contradiction, assume that such a geometric realization
Γ of K3,3 exists. Proposition 3 implies that v − e + r = 2 (where
the symbols v, e, r have the usual meaning). Since Γ is a geometric
realization of K3,3, each vertex of Γ is a face of exactly 3 edges, and
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hence 3v = 2e (because every edge has exactly two vertexes in its
boundary). Furthermore, each region for Γ has at least 4 edges in its
boundary (because of the definition of K3,3), and each edge touches
exactly two regions. Hence 4r ≤ 2e. It follows that

2 = v − e + r ≤ v − e +
1
2

e = v − 3
2

v +
1
2
· 3

2
v =

1
4

v.

Therefore, v ≥ 8, against the equality v = 6.

Definition 21. Let G be an (abstract) graph containing a vertex B that
is adjacent to exactly two vertexes A, C of G. Let G′ be the graph obtained
from G by deleting the vertex B and the edges {A, B}, {B, C}, and adding
the edge {A, C}. We say that G′ has been obtained from G by an elemen-
tary edge contraction. If a graph G1 is isomorphic to a graph G2 that
has been obtained from a graph G3 by applying a finite sequence of edge
contractions and inverses of edge contractions, we say that G1 and G3 are
isomorphic up to edge contractions.

Propositions 4 and 5 show that the statement of the Geometric Re-
alization Theorem is sharp. They are strengthened by the following
theorem, whose proof is omitted.

Theorem 2 (Kuratowski Theorem). A graph admits a geometric realiza-
tion in R2 if and only if it does not contain subcomplexes isomorphic to K5

or to K3,3, up to edge contractions.

Barycentric Coordinates

In this subsection we will assume that a geometric simplicial complex
K is given.

Proposition 6. For every x ∈ |K| a unique simplex σ ∈ K exists, such that
x ∈ int σ.

Proof. Existence. Since x ∈ |K| =
⋃

τ∈K τ, x belongs to at least
one simplex of K. Let us take a simplex σ that contains x and
has minimal dimension. If x ∈ ∂σ, then x belongs to a face of σ,
against the minimality of the dimension of σ. Therefore, x ∈ int σ.

Uniqueness. If x ∈ int σ1 ∩ int σ2, then x ∈ σ1 ∩ σ2. The simplex
τ = σ1 ∩ σ2 is a face of both σ1 and σ2. If τ were a proper face of
σ1, x would belong to ∂σ1, against the condition x ∈ int σ1. Hence
τ = σ1. Analogously, we can show that τ = σ2. Therefore, σ1 = σ2.

Definition 22. Let x ∈ |K|. Assume that σ ∈ K and x ∈ int σ. Also,
assume that u0, . . . , uk are the vertexes of σ and x = ∑k

i=0 λiui, with
∑k

i=0 λi = 1 and λi > 0 for i = 0, . . . , k. Each value λi is called
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the barycentric coordinate of x with respect to ui, while we say that the
barycentric coordinate of x with respect to any u ∈ Vert K \ {u0, . . . , uk}
is 0.

Proposition 6 implies that the barycentric coordinate of x with re-
spect to u is uniquely defined for every x ∈ |K| and every u ∈ Vert K.

Simplicial Maps

Definition 23. Let K, L be two geometric simplicial complexes. A vertex
map is a map φ : Vert K → Vert L such that if ui0 , . . . , uik are vertexes of a
simplex of K, then φ(ui0), . . . , φ(uik ) are vertexes of a simplex of L.

NB: φ is not required to be injective (see Figure 4).

Definition 24. Let K, L be two geometric simplicial complexes. If φ :
Vert K → Vert L is a vertex map, the map f : K → L defined by setting
f (α) := conv φ(α) is called a simplicial map.

Figure 4: The map φ taking A to D, and
B and C to E is a vertex map. The map
taking A to D, B and C to E, a to E,
and b, c and α to d is the simplicial map
induced by φ.

Definition 25. Let K, L be two geometric simplicial complexes. If f : K →
L is the simplicial map induced by the vertex map φ : Vert K → Vert L,
we can consider the map | f | : |K| → |L| defined by setting | f |(x) :=
∑ui∈Vert K λi φ(ui) where λi is the barycentric coordinate of x with respect
to ui. The map | f | is called the PL map (piecewise linear map) induced
by φ (and f ).

Proposition 7. If φ : Vert K → Vert L is bijective and both φ and φ−1 are
vertex maps, then the induced PL map | f | is a homeomorphism between |K|
and |L|.

Proof. Let σ ∈ K. It is easy to check that | f | is a homeomorphism
from σ to f (σ). The statement of the proposition follows from the
Gluing Lemma, since each simplex is a compact set.

Categories and Functors

A category C consists of a class ob(C) (whose elements are called
objects of C) and, for avery ordered pair (X, Y) of objects in C, of a
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class HomC(X, Y) (whose elements are called morphisms from X to
Y). If f belongs to HomC(X, Y) we write f : X → Y, but we do not
require that f is a function (see our next examples). We require that
the following properties hold:

1. There exists an associative morphism composition from HomC(X, Y)×
HomC(Y, Z) to HomC(X, Z);

2. Every class HomC(X, X) contains a special element 1X that acts as
a unit for the composition (when it is defined).

NB: Pay attention to the fact the classes may be not sets (see Rus-
sell’s Paradox). Some examples of categories:

• Groups and homomorphisms of groups;

• Abelian Groups and homomorphisms of Abelian groups;

• Vector spaces and linear transformations;

• Topological spaces and continuous maps;

• Geometric simplicial complexes and simplicial maps;

• Polyhedra and PL maps.

Two examples of categories where the morphisms are not func-
tions:

• The category C where the objects are the elements of a partially
ordered set (X,≤) and, for every ordered pair of objects (x1, x2),
HomC(x1, x2) contains just the pair (x1, x2) if x1 ≤ x2, and is
empty otherwise. The composition of (x1, x2) with (x2, x3) is sim-
ply the ordered pair (x1, x3).

• The category C whose objects are the points P1, P2, P3, and whose
morphisms from Pi to Pj are the oriented arcs from Pi to Pj rep-
resented in Figure 5. The composition of arcs is the most natural
one: the composition of the arc from Pi to Pj with the arc from Pj

to Pk is the arc from Pi to Pk.

Definition 26. Let X, Y be two categories. A covariant functor F from X
to Y (F : X → Y) is a map that takes each object x of X to an object F(x)
of Y and every morphism f : x1 → x2 to a morphism F( f ) : F(x1) →
F(x2), and verifies these two properties with respect to the composition ◦ of
morphisms:

1. F(g ◦ f ) = F(g) ◦ F( f ) for every ordered pair ( f , g) of composable
morphisms;
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Figure 5: An example of category
whose morphisms are not functions.

2. F(1x) = 1F(x) for every object x in X.

Example 1. Let X be the category whose objects are the geometric simplicial
complexes and whose morphisms are the simplicial maps. Let Y be the cate-
gory whose objects are the polyhedra and whose morphisms are the PL maps.
The map taking each geometric simplicial complex K to its body |K| and
each simplicial map f to the PL map | f | is a covariant functor. We observe
that the restriction of this functor to HomX(K, L) is not injective, i.e., there
are distinct simplicial maps that induce the same PL map (we say that it is
not faithful).

Definition 27. Let X, Y be two categories. A contravariant functor F from
X to Y (F : X → Y) is a map that takes each object x of X to an object F(x)
of Y and every morphism f : x1 → x2 to a morphism F( f ) : F(x2) →
F(x1), and verifies these two properties with respect to the composition ◦ of
morphisms:

1. F(g ◦ f ) = F( f ) ◦ F(g) for every ordered pair ( f , g) of composable
morphisms;

2. F(1x) = 1F(x) for every object x in X.

Example 2. Let X be the category whose objects are the vector spaces and
whose morphisms are the linear transformations between vector spaces. The
map taking each vector space V to its dual V∗ and each linear transforma-
tion f : V → W to its dual f ∗ : W∗ → V∗ is a contravariant functor.

Nerve of a finite collection of sets

Definition 28. The nerve Nrv F of a finite collection F of subsets of a
nonempty set Y is the abstract simplicial complex whose simplexes are all
the subsets F′ of F, such that

⋂
X∈F′ X ̸= ∅.

Remark 2. Observe that, for F′ = ∅, the statement

∃y ∈ Y s.t. ∀X ∈ F′ y ∈ X
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is true. Therefore, Nrv F always contains at least the empty set.

Exercise 5. Prove that Nrv F is an abstract simplicial complex.

Figure 6: A family F of sets and a
geometric realization of its nerve in R2.

Čech complexes and Vietoris-Rips complexes

Definition 29. Let F and S be a finite collection of closed balls of radius
r ≥ 0 in Rd and the set of their centers, respectively. The abstract simplicial
complex Nrv F is called the Čech complex of S with radius r.

We will denote the Čech complex of S with radius r by the symbol
Čech(S, r) (or simply by Čech(r), when the set S is understood).
When a Čech complex Čech(S, r) is given, for each σ ∈ Čech(S, r)
we can consider the set σ̂ of all centers of the balls belonging to σ.
We denote the abstract simplicial complex {σ̂ : σ ∈ Čech(S, r)}
by the symbol ̂Čech(S, r). Of course, ̂Čech(S, r) and Čech(S, r) are
isomorphic.

Figure 7: A set of balls of radius 1 in
R2 and a geometric realization of the
corresponding Čech complex.

Proposition 8. For each non-empty compact set K ⊂ Rd there exists a
unique closed ball containing K and having minimum radius.

Proof. Existence. Let us consider a sequence of closed balls B̄i of
center pi and radius ri, such that K ⊆ B̄i and limi→∞ ri equals the
infimum r̄ of the radii of the closed balls containing K. Let us fix
a point q̄ ∈ K. Since K ⊆ B̄i, for any large enough index i the
inequalities ∥q̄ − pi∥ ≤ ri ≤ r̄ + 1 hold, and hence the point pi

belongs to the closed ball of center q̄ and radius r̄ + 1. Therefore, it
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is not restrictive to assume that (pi) converges to a point p̄ ∈ Rd.
Since K ⊆ B̄i, ∥q − pi∥ ≤ ri for every q ∈ K. Passing to the limit, we
get ∥q − p̄∥ ≤ r̄. Therefore, the closed ball B̄ of center p̄ and radius
r̄ must contain K. The definition of r̄ implies that no closed ball of
radius strictly smaller than r̄ can contain K. It follows that B̄ is a
closed ball containing K and having minimum radius.

Uniqueness. We will prove our statement by contradiction. Let us
assume that two distinct closed balls B̄′, B̄′′ of radius r̄ exist, such
that K ⊆ B̄′, B̄′′ and r̄ is the infimum of the radii of the closed
balls containing K. Let M be the middle point of the segment
connecting the centers p′, p′′ of B̄′ and B̄′′, respectively. The points
of the set ∂B̄′ ∩ ∂B̄′′ have a constant distance r̂ =

√
r̄2 − ∥M − p′∥2

from M, and r̂ is strictly smaller than r̄. We can easily check that
max{∥p − M∥ : p ∈ B̄′ ∩ B̄′′} = r̂ (it is sufficient to prove that
max{∥p − M∥ : p ∈ B̄′ ∩ B̄′′ ∩ α} = r̂ for any plane α containing
p′ and p′′). Therefore, the closed ball B̂ of center M and radius r̂
contains B̄′ ∩ B̄′′. Since K ⊆ B̄′ ∩ B̄′′, the closed ball B̂ contains K,
while it has a radius strictly smaller than r̄. This contradicts the
definition of r̄.

Figure 8: The construction used in the
proof of uniqueness of the miniball.

Proposition 8 allows us to give the following definition.

Definition 30. For each non-empty compact set K ⊂ Rd, the unique closed
ball containing K and having minimum radius is called miniball of K.

The next proposition makes available three equivalent methods to
define simplexes in Čech complexes.

Proposition 9. Let {p1, . . . , pn} ⊂ Rd. If F = {B̄1, . . . , B̄n} is the set of
all closed balls B̄i of center pi and radius r ≥ 0, for 1 ≤ i ≤ n, then these
three properties are equivalent:

1.
⋂n

i=1 B̄i ̸= ∅;
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2. There exists a point p̄ ∈ Rd, such that the closed ball of center p̄ and
radius r contains {p1, . . . , pn};

3. The miniball of {p1, . . . , pn} has radius less than or equal to r.

Proof. 1) =⇒ 2) Just take a point p̄ ∈ ⋂n
i=1 B̄i.

2) =⇒ 3) It trivially follows from the minimality of the radius of
the miniball containing {p1, . . . , pn}.

3) =⇒ 1) It is sufficient to observe that the center of the miniball
containing {p1, . . . , pn} belongs to

⋂n
i=1 B̄i.

Definition 31. Let S = {p1, . . . , pn} be a finite subset of Rd. The abstract
simplicial complex whose simplexes are all the subsets of S having diameter
at most 2r is called the Vietoris-Rips complex of S with radius r.

We will denote the Vietoris-Rips complex of S with radius r by the
symbol VR(S, r) (or simply by VR(r), when the set S is understood).

Exercise 6. Prove that VR(S, r) is indeed an abstract simplicial complex.

Figure 9: A set of balls of radius 1 in R2

and a geometric realization of VR(S, 1),
where S is the set of centers of the balls.
Compare this figure with Figure 7.

Remark 3. Our definitions immediately imply that if 0 ≤ r1 ≤ r2, then
̂Čech(S, r1) ⊆ ̂Čech(S, r2) ⊆ VR(S, r2).

Vietoris-Rips Lemma

Theorem 3 (Vietoris-Rips Lemma). Let S = {p1, . . . , pn} be a finite

subset of Rd. For every r ≥ 0, ̂Čech(S, r) ⊆ VR(S, r) ⊆ ̂Čech(S,
√

2r).

Proof. The first inclusion is trivial (see Remark 3). Let M(σ) be the
miniball of a k-simplex σ = {pi0 , . . . , pik} ∈ VR(r). Call p̄ the center of
M(σ) and ρ its radius. We start by proving that

√
2ρ ≤ diam σ ≤ 2ρ.

Since this statement trivially holds for k = 0, let us assume that k ≥ 1
(and hence ρ > 0).

The inequality diam σ ≤ 2ρ is trivial, since σ ⊆ M(σ) and
diam M(σ) = 2ρ. Let us now prove that

√
2ρ ≤ diam σ. By con-

tradiction, let us assume that
√

2ρ > diam σ. Then a positive ε exists,
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such that diam σ < ε <
√

2ρ. In σ there exists at least one point pij

belonging to ∂M(σ) (otherwise M(σ) would not be the miniball of
σ). Since diam σ < ε, the closed ball B̄(pij , ε) contains σ, and hence
σ ⊆ B̄(pij , ε) ∩ M(σ). We observe that ∂B̄(pij , ε) ∩ ∂M(σ) is a (d − 2)-
dimensional spherical surface having center at a point C belonging
to the line s through pij and p̄ (observe that B̄(pij , ε) ̸⊇ M(σ), be-

cause 0 < ε <
√

2ρ < 2ρ). Let ρ̂ be the radius of this spherical
surface. Let us now prove that, for every plane α containing the line
s, B̄(C, ρ̂) ∩ α ⊇ B̄(pij , ε) ∩ M(σ) ∩ α. In order to do that, let us choose
a reference frame on α, such that pij ≡ (0, 0) and p̄ ≡ (0, ρ). There-
fore, the circumferences ∂(B̄(pij , ε) ∩ α) and M(σ) ∩ α in the plane α

have respective equations x2 + y2 = ε2 and x2 + (y − ρ)2 = ρ2. These

circumferences meet each other at the points A ≡
(√

ε2 − ε4

4ρ2 , ε2

2ρ

)
and B ≡

(
−
√

ε2 − ε4

4ρ2 , ε2

2ρ

)
(check it!). Since ε <

√
2ρ, it follows

that yA = yB = yC = ε2

2ρ < ρ. This implies that C belongs to the
interior of the segment connecting pij and p̄. As a consequence, it
is easy to check by elementary trigonometry that A and B are the
points of the set B̄(pij , ε) ∩ M(σ) ∩ α that maximize the distance from
C (just apply the law of cosines to the triangle of vertexes C, p̄, p,
with p ∈ B̄(pij , ε) ∩ M(σ) ∩ α). Moreover, their distance from C is ρ̂ =√

ρ2 − ∥ p̄ − C∥2 < ρ. It follows that B̄(C, ρ̂)∩ α ⊇ B̄(pij , ε)∩ M(σ)∩ α.
Since this inclusion holds for for every plane α containing the line s,
we have that B̄(C, ρ̂) ⊇ B̄(pij , ε) ∩ M(σ) ⊇ σ. Therefore, B̄(C, ρ̂)

is a closed ball that contains σ and has a radius ρ̂ strictly less than
ρ. Such a statement contradicts the assumption that B̄( p̄, ρ) is the
miniball of σ. This concludes the proof that

√
2ρ ≤ diam σ ≤ 2ρ.

Since σ ∈ VR(r), we know that diam σ ≤ 2r. It follows that√
2ρ ≤ 2r, and hence ρ ≤

√
2r. Therefore, the definition of Čech

complex and Proposition 9 imply that the collection σ′ of balls of
radius

√
2r, whose centers belong to σ, is a simplex in Čech(

√
2r). It

follows that VR(S, r) ⊆ ̂Čech(S,
√

2r).

Remark 4. In the proof of the Vietoris-Rips Lemma we use the inequality
ε <

√
2ρ. If this inequality does not hold, then our construction fails, since

it is no more true that B̄(C, ρ̂) ∩ α ⊇ B̄(pij , ε) ∩ M(σ) ∩ α ⊇ σ (see
Figure 11).

Theorem 4 (Optimality of the Vietoris-Rips Lemma). The statement of
the Vietoris-Rips Lemma is sharp, in the sense that

√
2 equals the minimum

of the set A of all real values α such that for any r ≥ 0, any positive integer

d and any finite subset S of Rd the inclusion VR(S, r) ⊆ ̂Čech(S, αr) holds.

Proof. Let us consider the set S̄ = {u0, . . . , ud} of all vertexes of a
regular d-simplex σ ⊆ Rd, with B(σ) = 0, such that ∥ui∥ = 1 for any
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Figure 10: The construction used in the
proof of the Vietoris-Rips Lemma.

Figure 11: If ε >
√

2ρ, the construction
used in the proof of the Vietoris-Rips
Lemma fails, since A and B are no
longer the furthest points from C in the
set B̄(pij , ε) ∩ M(σ) ∩ α (in yellow).
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i ∈ {0, . . . , d}. Since σ is regular, for every pair (i, j) ∈ {0, . . . , d}2

with i ̸= j we have that ∥ui − uj∥ = ∥u1 − u0∥, and hence ui · uj =

u1 · u0. Let us set c := u1 · u0. Since 1
d+1 ∑d

i=0 ui = B(σ) = 0, it follows

that ∑d
i=0 ui = 0. This implies that 0 =

(
∑d

i=0 ui

)
· u0 = ∑d

i=0 ui · u0 =

1 + dc, and hence c = − 1
d . As a consequence, diam {u0, . . . , ud} =

∥u1 − u0∥ =
√
∥u1∥2 + ∥u0∥2 − 2u1 · u0 =

√
2 − 2c =

√
2 + 2

d . It

follows that {u0, . . . , ud} ∈ VR

(
S̄,

√
2+ 2

d
2

)
. Then, for any α ∈ A,

the inclusion VR

(
S̄,

√
2+ 2

d
2

)
⊆

̂
Čech

(
S̄, α

√
2+ 2

d
2

)
implies that

{u0, . . . , ud} ∈
̂

Čech

(
S̄, α

√
2+ 2

d
2

)
, i.e., the radius ρ of the miniball

of {u0, . . . , ud} verifies the inequality ρ ≤ α

√
2+ 2

d
2 . We now observe

that ρ = 1, since the miniball of the set {u0, . . . , ud} is the closed ball

centered at 0, with radius 1. Therefore, for any α ∈ A, 1 ≤ α

√
2+ 2

d
2 ,

and hence α ≥ 2√
2+ 2

d

=
√

2
√

d
d+1 . Passing to the limit for d → ∞,

we get the inequality α ≥
√

2, for any α ∈ A. This implies that
inf A ≥

√
2. The Vietoris-Rips Lemma states that

√
2 ∈ A, and hence√

2 = min A.

Remark 5. The statement of the Vietoris-Rips Lemma is no longer optimal

if we fix d. For example, if d = 1 then VR(S, r) = ̂Čech(S, r)}. Further
information about this topic can be found in the paper [Vin de Silva and
Robert Ghrist (2007)]2, Theorem 2.5. 2 Vin de Silva and Robert Ghrist. Cov-

erage in sensor networks via persis-
tent homology. Algebr. Geom. Topol.,
7:339–358, 2007. ISSN 1472-2747.
doi: 10.2140/agt.2007.7.339. URL
https://doi-org.ezproxy.unibo.it/

10.2140/agt.2007.7.339

Exercise 7. Prove that if d = 1 then VR(S, r) = ̂Čech(S, r)}.

Delaunay complexes

The use of Čech complexes and Vietoris-Rips complexes of a set
S = {p1, . . . , pn} ⊆ Rd has two computational drawbacks: when the
parameter r is large enough, these complexes contain a large number
of simplexes (2n) and have a large dimension (n − 1), independently
from the value of d. As a first step to solve these problems, we will
introduce the concept of Delaunay simplex. Before doing that, we
have to present the concept of Voronoi diagram.

Definition 32. Let S = {p1, . . . , pn} be a finite subset of Rd. The Voronoi
cell Vu of a point u ∈ S is the set {p ∈ Rd : ∀v ∈ S, ∥p − u∥ ≤ ∥p − v∥}.
The set {Vu : u ∈ S} is called the Voronoi diagram of S. For each Voronoi
cell Vu, we say that u is its center.

https://doi-org.ezproxy.unibo.it/10.2140/agt.2007.7.339
https://doi-org.ezproxy.unibo.it/10.2140/agt.2007.7.339
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Figure 12: The Voronoi diagram of a set
of nine points in R2.

NB: Since each Voronoi cell is an intersection of closed half-spaces,
it is both closed and convex.

Definition 33. Let S = {p1, . . . , pn} be a finite subset of Rd. The Delau-
nay complex Del(S) of S is the nerve of the Voronoi diagram of S.

When a Delaunay complex Del(S) is given, for each σ ∈ Del(S) we
can consider the set σ̂ of all centers of the Voronoi cells belonging to
σ. We denote the abstract simplicial complex {σ̂ : σ ∈ Del(S)} by the

symbol D̂el(S). Of course, D̂el(S) and Del(S) are isomorphic.

Figure 13: A Voronoi diagram and a ge-
ometric realization of the corresponding
Delaunay complex.

Definition 34. We say that the points of the set S = {p1, . . . , pn} ⊆
Rd are in general position if for each subset S′ = {pi1 , . . . , pid+2

} of
cardinality d + 2 of S there is no spherical surface of dimension d − 1 that
contains S′.

Exercise 8. Prove that for every set S = {p1, . . . , pn} ⊆ Rd and every
ε > 0 there exists another set Ŝ = { p̂1, . . . , p̂n} ⊆ Rd such that the points
of Ŝ are in general position and max1≤i≤n ∥pi − p̂i∥ ≤ ε.

The following result shows the advantage of using Delaunay com-
plexes.

Proposition 10. If the points of the set S = {p1, . . . , pn} ⊆ Rd are in
general position, then dim Del(S) ≤ d.
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Proof. Let σ = {Vpi0
, . . . , Vpik

} ∈ Del(S). The definition of Delaunay

complex implies that
⋂k

j=0 Vpij
̸= ∅. Let p̃ ∈ ⋂k

j=0 Vpij
. The definition

of Voronoi cell guarantees that ∥ p̃ − pi0∥ = . . . = ∥ p̃ − pik∥, and hence
the spherical surface of dimension d − 1 and center p̃ contains the
points pi0 , . . . , pik . Since the points of the set S are in general position,
k + 1 ≤ d + 1. Therefore, dim σ = k ≤ d.

Remark 6. The example represented in Figure 14 shows that the assump-
tion of general position is indeed necessary in the statement of Proposi-
tion 10.

Figure 14: The statement of Propo-
sition 10 does not hold if the
points of S are not in general po-
sition. In this figure, a 3-simplex
σ = {Vp1 , Vp2 , Vp3 , Vp4} ∈ Del(S) is rep-
resented, for S = {p1, p2, p3, p4} ⊆ R2.
We observe that dim Del(S) = 3.

Exercise 9. Prove that if the points of the set S = {p1, . . . , pn} ⊆ R2 are
in general position, then card Del(S) ≤ 6n − 4.

Before proceeding, we invite the reader to do the following exer-
cise.

Exercise 10 (Extension of Exercise 8). Prove that for every set S =

{p1, . . . , pn} ⊆ Rd and every ε > 0 there exists another set Ŝ =

{ p̂1, . . . , p̂n} ⊆ Rd such that max1≤i≤n ∥pi − p̂i∥ ≤ ε and the follow-
ing properties hold:

1. For each subset S′ = {pi0 , . . . , pid+1
} of cardinality d + 2 of Ŝ there is no

(d − 1)-dimensional spherical surface that contains S′ (i.e., the points of
Ŝ are in general position according to Definition 34);

2. For each subset S′′ = {pi0 , . . . , pid} of cardinality d + 1 of Ŝ there is no
(d − 1)-dimensional affine space that contains S′′ (i.e., the points of any
subset of Ŝ of cardinality d + 1 are affinely independent).

Hint: use the fact that no finite union of hyperplanes and (d− 1)-dimensional
spherical surfaces in Rd can be equal to Rd.

Lemma 1. If S = {p1, . . . , pn} is a finite subset of Rd, and S′ =

{pi0 , . . . , pik} ∈ D̂el(S), then the following properties hold:

1.
⋂k

j=0 Vpij
̸= ∅;

2. If p ∈ ⋂k
j=0 Vpij

, then ∥p − pi0∥ = . . . = ∥p − pik∥, and the open ball B

of center p and radius ∥p − pi0∥ does not contain any point of S;



finite simplicial complexes 31

3. A unique point c̄(S′) ∈ ⋂k
j=0 Vpij

exists, minimizing the continuous

function r(p) : ∥p − pi0∥ = . . . = ∥p − pik∥ over
⋂k

j=0 Vpij
. The point

c̄(S′) will be called the center of the abstract simplex S′ ∈ D̂el(S).

Proof. 1. By definition of D̂el(S).

2. By definition of Voronoi cell, all points in S′ take the minimum
distance from p in S.

3. The existence and uniqueness of c̄(S′) follows from the fact that
the set

⋂k
j=0 Vpij

is closed and convex, and the function r2(p) is
strictly convex on its domain.

Remark 7. We observe that if S′ is a singleton {pi0}, then c̄(S′) = pi0 .

Figure 15: An example of center c̄
(in red) of an abstract simplex S′ =

{pi0 , . . . , pik} ∈ D̂el(S) (in blue). S′ is a
subset of S = {p1, . . . , pn}. No point in
the yellow region can belong to S.

Theorem 5 (Realization Theorem for Delaunay complexes). Let us
assume that S = {p1, . . . , pn} is a finite set of points of Rd with n > d,
verifying the following properties:

1. For each subset S′ = {pi0 , . . . , pid+1
} of cardinality d + 2 of S there is no

(d − 1)-dimensional spherical surface that contains S′;

2. For each subset S′′ = {pi0 , . . . , pid} of cardinality d + 1 of S there is no
(d − 1)-dimensional affine space that contains S′′.

Then the set K := {conv S̃ : ∅ ̸= S̃ ⊆ S,
⋂

p∈S̃ Vp ̸= ∅} ∪ {∅} is a
geometric simplicial complex that realizes Del(S).

Proof. The case d = 1 is trivial, and hence we can assume d ≥ 2.
By definition, if ∅ ̸= S̃ = {pi0 , . . . , pik} ⊆ S and

⋂k
j=0 Vpij

̸= ∅

(so implying conv S̃ ∈ K), then statement 2 in Lemma 1 guarantees
that the points pi0 , . . . , pik belong to at least one (d − 1)-dimensional
spherical surface centered at a point of

⋂k
j=0 Vpij

. Assumption 1)
implies that k + 1 ≤ d + 1. Then, from assumption 2) it follows
that the points pi0 , . . . , pik are affinely independent (since n > d,
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we can indeed complete {pi0 , . . . , pik} to an affinely independent set
{pi0 , . . . , pid} ⊆ S), and hence σ := conv {pi0 , . . . , pik} is a geometric
simplex, which can be written as ⟨pi0 , . . . , pik ⟩.

Furthermore, if τ ≤ σ, the definition of K immediately implies
that τ ∈ K. Therefore, the only nontrivial property we have to
prove in order to show that K is indeed a geometric simplicial com-
plex is that if σ1 = ⟨pi0 , . . . pir ⟩ and σ2 = ⟨pj0 , . . . , pjs⟩ belong to
K (i.e.,

⋂r
a=0 Vpia

̸= ∅ and
⋂s

b=0 Vpjb
̸= ∅), then σ1 ∩ σ2 is a com-

mon face of σ1 and σ2. In order to do that, let us consider the sets
S1 = {pi0 , . . . pir} and S2 = {pj0 , . . . , pjs}, the centers q1 = c̄(S1)

of S1 and q2 = c̄(S2) of S2 (see Lemma 1), and the closed balls
B̄1 := B̄(c̄(S1), ∥pi0 − c̄(S1)∥) and B̄2 := B̄(c̄(S2), ∥pj0 − c̄(S2)∥).

First of all, let us examine the trivial case in which at least one
of the two closed balls reduces to a singleton {pi} (remember Re-
mark 7!). In this case, assuming σ1 = {pi}, either σ1 ∩ σ2 = ∅,
and hence σ1 ∩ σ2 is a trivial common face of σ1 and σ2 in K, or
σ1 ∩ σ2 = {pi}. In this last case, since pi /∈ int B̄2 (because of state-
ment 2 in Lemma 1) and the vertexes of σ2 are the only points of σ2

that do not belong to int B̄2, the point pi is a vertex of σ2, and hence
σ1 ∩ σ2 ∈ K.

Therefore, we can assume that both B̄1 and B̄2 are different from
singletons, i.e., card S1 ≥ 2 and card S2 ≥ 2. Since S1 is included
in the (d − 1)-dimensional spherical surface ∂B̄1, we observe that as-
sumption 1) implies the inequality card S1 ≤ d + 1. Then assumption
2) guarantees that the points of S1 are affinely independent. Similarly,
the points of S2 are affinely independent.

If B̄1 ∩ B̄2 = ∅, then σ1 ∩ σ2 = ∅ ∈ K, since σ1 ⊆ B̄1 and σ2 ⊆ B̄2.
If B̄1 = B̄2, then q1 = q2 and hence S1 ∪ S2 ∈ D̂el(S), because

q1 = q2 ∈
(⋂r

a=0 Vpia

)
∩
(⋂s

b=0 Vpib

)
. Since S1 ∪ S2 is included in

the (d − 1)-dimensional spherical surface ∂B̄1 = ∂B̄2, assumption 1)
implies that card S1 ∪ S2 ≤ d + 1. Then assumption 2) guarantees
that the points of S1 ∪ S2 are affinely independent. It follows that
σ1 ∩ σ2 = conv S1 ∩ conv S2 = conv (S1 ∩ S2) ∈ K.

If B̄1 ̸= B̄2 and B̄1 ∩ B̄2 ̸= ∅, we can observe that B̄1 cannot
be a proper subset of B̄2, and B̄2 cannot be a proper subset of B̄1,
because of statement 2 in Lemma 1. As a consequence, if B̄1 and
B̄2 are tangent to each other, then their interiors cannot meet, and
hence either σ1 ∩ σ2 = ∅, or σ1 ∩ σ2 is a singleton containing a vertex
of both σ1 and σ2 (because ∂B̄1 cannot meet int σ1 and ∂B̄2 cannot
meet int σ2). In both cases, σ1 ∩ σ2 is a common face of σ1 and σ2

in K. In summary, we can assume that B̄1 ̸= B̄2, B̄1 ∩ B̄2 ̸= ∅, B̄1

and B̄2 are not tangent to each other, and are not singletons. Then
∂B̄1 ∩ ∂B̄2 is a (d − 2)-dimensional spherical surface, and we can
consider the hyperplane α containing such a surface. Let us now
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define the (possibly empty) sets Sα
1 := S1 ∩ α, Sα

2 := S2 ∩ α.
Since the sets S1, S2 are affinely independent, their respective sub-

sets Sα
1 , Sα

2 are affinely independent too. As a consequence, we can
define the geometric simplexes σα

1 := conv Sα
1 and σα

2 := conv Sα
2 .

Since S1 ⊆ B̄1 \ int B̄2 (because of statement 2 in Lemma 1), there
exists a closed half-space π1 such that α = ∂π1 and S1 ⊆ π1.
Moreover, since S2 ⊆ B̄2 \ int B̄1, there exists a closed half-space
π2 ̸= π1 such that α = ∂π2 and S2 ⊆ π2. Of course, this implies
that σ1 ⊆ π1 and σ2 ⊆ π2 (see Figure 16). Since π1 ∩ π2 = α, it
follows that if p ∈ σ1 ∩ σ2, then p ∈ α. In other words, the simplexes
σ1, σ2 are respectively contained in two opposed half-spaces, and
can meet each other only at points of α. If we represent p ∈ σ1 ∩ σ2

as ∑r
a=0 λa pia ∈ σ1 and as ∑s

b=0 µb pib ∈ σ2, it follows that λa = 0
for pia ∈ S1 \ Sα

1 , and µb = 0 for pjb ∈ S2 \ Sα
2 . This implies that

p ∈ σα
1 ∩ σα

2 , and hence σ1 ∩ σ2 = σα
1 ∩ σα

2 . Since Sα
1 ∪ Sα

2 is included
in the (d − 2)-dimensional spherical surface ∂B̄1 ∩ ∂B̄2, we have that
Sα

1 ∪ Sα
2 ⊆ ∂B̄1. Assumption 1) implies that card Sα

1 ∪ Sα
2 ≤ d + 1.

Then assumption 2) guarantees that the points of Sα
1 ∪ Sα

2 are affinely
independent, and hence conv (Sα

1 ∪ Sα
2) is a geometric simplex. Since

σα
1 ∩ σα

2 is a face of conv (Sα
1 ∪ Sα

2), then σα
1 ∩ σα

2 is a geometric sim-
plex too. This concludes the proof that K is a geometric simplicial
complex. Finally, we observe that the geometric simplicial complex K
realizes Del(S) by construction.

Figure 16: A (rough) description of the
key step in the proof of Theorem 5.
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Alpha complexes

The concepts of Čech complex and Delaunay complex can be com-
bined. This leads to the definition of Alpha complex.

Definition 35. Let us choose a finite subset S = {p1, . . . , pn} of Rd and a
nonnegative value r. For each pi ∈ S let us consider the Voronoi cell Vpi , the
closed ball B̄(pi, r), and the set R(pi, r) := Vpi ∩ B̄(pi, r). The nerve of the
collection of sets {R(pi, r) : pi ∈ S} is called the Alpha complex of S with
radius r.

We will denote the Alpha complex of S with radius r by the
symbol Alpha(S, r) (or simply by Alpha(r), when the set S is un-
derstood). When an Alpha complex Alpha(S, r) is given, for each
σ ∈ Alpha(S, r) we can consider the set σ̂ of all centers of the
balls belonging to σ. We denote the abstract simplicial complex

{σ̂ : σ ∈ Alpha(S, r)} by the symbol ̂Alpha(S, r). Of course,
̂Alpha(S, r) and Alpha(S, r) are isomorphic.

Figure 17: A geometric realization of
the Alpha complex Alpha(S, r) of a set
S of ten points in R2.

Figure 18: An example of Alpha com-
plex obtained from a point cloud.
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Proposition 11. Let S be a finite nonempty subset of Rd. For every non-

negative value r, ̂Alpha(S, r) ⊆ ̂Čech(S, r) and ̂Alpha(S, r) ⊆ D̂el(S).

Proof. If S = {p1, . . . , pn}, it is sufficient to observe that
⋂n

i=1 R(pi, r) ̸=
∅ implies that

⋂n
i=1 B̄(pi, r) ̸= ∅ and

⋂n
i=1 Vpi ̸= ∅.

Proposition 12. If the points of the finite nonempty set S ⊆ Rd are in
general position, then dim Alpha(S, r) ≤ d for every nonnegative value r.

Proof. It follows from Proposition 10 and Proposition 11.

Collapsibility

Definition 36. Let K be a geometric simplicial complex, and assume that
the simplex τ has only one coface σ in K (we say that τ is a free face). Then
we say that the geometric simplicial complex K′ := K \ {τ, σ} has been
obtained from K by an elementary collapse. We also say that K has been
obtained from K′ by the inverse of an elementary collapse.

NB: Since τ has only one coface σ in K, dim σ = dim τ + 1.

Figure 19: An example of elementary
collapse.

Definition 37. If we can reduce a geometric simplicial complex K to a
geometric simplicial complex K′ having only one vertex by a sequence of
elementary collapses, we say that K is collapsible.
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Homology groups of a chain complex

Definition 38. A chain complex C is a sequence of vector spaces Vp

over a field K and homomorphisms vp : Vp → Vp−1 indexed by the
integer numbers, such that vp−1 ◦ vp is the null homomorphism, for every
p ∈ Z. Each homomorphism vp is called a p-boundary map. The elements
of Vp, ker vp, Im vp+1 are respectively called p-chains, p-cycles and p-
boundaries.

NB: The assumption vp ◦ vp+1 ≡ 0 immediately implies that

Im vp+1 ⊆ ker vp, and hence the quotient vector space ker vp
Im vp+1

is well

defined. Sometimes, we will use the symbols Zp(C) and Bp(C) to
denote the vector spaces ker vp and Im vp+1, respectively.

Figure 20: Representation of a chain
complex.

Definition 39. If a chain complex C = (Vp, vp)p∈Z is given, we say that

the vector space ker vp
Im vp+1

is the p-th homology group (or homology group
in degree p) of C. We use the symbol Hp(C) to denote such a vector space.

As we will see in the following, for any geometric simplicial com-
plex K a chain complex C(K) can be easily defined.

Definition 40. If X is a set, a formal linear combination of elements of
X with coefficients in a field K is a finitely supported function f : X → K.
The set of all such functions is a vector space with respect to the usual sum
of functions and the usual multiplication by elements of the field K.

Each formal linear combination f of elements of X with coeffi-
cients in a field K is usually represented in the form ∑k

i=1 aixi, where
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each xi belongs to X and each coefficient ai equals f (xi). The null
function (i.e., the trivial formal linear combination) is often repre-
sented by the symbol 0.

Definition 41. Let K be a geometric simplicial complex. For every integer p
with 0 ≤ p ≤ dim K, we can consider the vector space Cp(K) of all formal
linear combinations ∑k

i=1 aiσi of p-simplexes of K with coefficients in Z2

(for any positive integer k). If p < 0 or p > dim K, we set Cp(K) := 0 (i.e.,
the trivial vector space over Z2).

In the following, if a p-simplex ⟨u0, . . . , up⟩ is given for p > 0, we
will set ⟨u0, . . . , ûi, . . . , up⟩ := conv

(
{u0, . . . , up} \ {ui}

)
.

Proposition 13. Let K be a geometric simplicial complex. For each p ∈ Z

with 0 < p ≤ dim K, let us consider the homomorphism ∂p : Cp(K) →
Cp−1(K) that takes each p-simplex ⟨u0, . . . , up⟩ to the vector ∑

p
i=0⟨u0, . . . , ûi, . . . , up⟩.

If p ≤ 0 or p > dim K, we set ∂p : Cp(K) → Cp−1(K) equal to the null
homomorphism. The sequence C(K) := (Cp(K), ∂p)p∈Z is a chain complex.

Proof. The statement ∂p−1 ◦ ∂p ≡ 0 is trivial for p ≤ 0 and for
p > dim K. Therefore, we can assume that 0 < p ≤ dim K. We have
just to prove that ∂p−1 ◦ ∂p(σ) is the null chain, for every p ∈ Z and
every p-simplex σ = ⟨u0, . . . , up⟩ of K. Let us define the symbol σij by
setting

σij :=

⟨u0, . . . , ûi, . . . , ûj, . . . , up⟩, if i < j

null chain in Cp−2(K), if i ≥ j.

We have that

∂p−1 ◦ ∂p(σ) = ∂p−1

(
p

∑
i=0

⟨u0, . . . , ûi, . . . , up⟩
)

=
p

∑
i=0

∂p−1
(
⟨u0, . . . , ûi, . . . , up⟩

)
=

p

∑
i=0

(
i−1

∑
j=0

⟨u0, . . . , ûj, . . . , ûi, . . . , up⟩+
p

∑
j=i+1

⟨u0, . . . , ûi, . . . , ûj, . . . , up⟩
)

=
p

∑
i=0

(
i−1

∑
j=0

σji +
p

∑
j=i+1

σij

)

=
p

∑
i=0

(
p

∑
j=0

σji +
p

∑
j=0

σij

)

=
p

∑
i=0

p

∑
j=0

σji +
p

∑
i=0

p

∑
j=0

σij

=
p

∑
i=0

p

∑
j=0

σij +
p

∑
i=0

p

∑
j=0

σij

= 0
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where the last equality follows from the fact that K = Z2.

In the following, for any given geometric simplicial complex K
and every p ∈ Z we will use the symbols Zp(K), Bp(K) and Hp(K)
to denote Zp(C(K)) = ker ∂p, Bp(C(K)) = Im ∂p+1 and the p-th

homology group Hp(C(K)) =
ker ∂p

Im ∂p+1
, respectively. The vector space

Hp(K) is called the p-th homology group of K with coefficients in Z2.
Moreover, we will set

• np(K) := dim Cp(K) (= number of p-simplexes in K, for p ̸= −1,
and 0 for p = −1);

• zp(K) := dim Zp(K);

• bp(K) := dim Bp(K);

• βp(K) := dim Hp(K).

The number βp(K) will be called the p-th Betti number of K. We ob-

serve that card Cp(K) = 2np(K), and Hp(K) is isomorphic to ∑
βp(K)
i=1 Z2

(where the empty sum is set equal to 0).

Proposition 14. If K is a geometric simplicial complex, then βp(K) =

np(K)− bp(K)− bp−1(K) for any p ∈ Z.

Proof. Let us consider the dimensional equations for the linear maps

∂p : Cp(K) → Cp−1(K) and πp : Zp(K) → Hp(K) =
Zp(K)
Bp(K)

, where πp

is the quotient projection map. They respectively state that np(K) =

zp(K) + bp−1(K) and zp(K) = bp(K) + βp(K). Our thesis immediately
follows from these two equalities.

Since Hp(K) is isomorphic to ∑
βp(K)
i=1 Z2, the computation of ho-

mology groups over the field Z2 reduces to compute Betti numbers.
The equality βp(K) = np(K) − bp(K) − bp−1(K) shows that the
computation of Betti numbers reduces to compute the values bp, i.e.,
dim Im ∂p+1. For 0 ≤ p ≤ dim K − 1, the value bp equals the rank
of the matrix associated with the linear map ∂p+1 with respect to any
bases of Cp+1(K) and Cp(K). We observe that the natural bases for
these vector spaces are respectively given by the sets of all (p + 1)-
simplexes and all p-simplexes in K.

Remark 8. Since Bp(K) ⊆ Cp(K) for any index p, and Cp(K) is the null
space for every p < 0 and every p > dim K, it follows that bp(K) = 0
for every p < 0 and every p > dim K. Moreover, since Cdim K+1(K) is
the null space, bdim K(K) := dim ∂dim K+1(Cdim K+1(K)) = 0. Therefore,
bp(K) = 0 for every p < 0 and every p ≥ dim K.
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Example 3. Let us compute the homology groups of the geometric simplicial
complex represented in Figure 21. We will call Ap+1(K) the matrix associ-
ated with the linear map ∂p+1 with respect to the natural bases of Cp+1(K)
and Cp(K). The natural ordered bases of C0(K), C1(K) and C2(K) are
respectively (A, B, C, D, E, F), (a, b, c, d, e, f , g, h, i) and (α).

Figure 21: The complex K in Example 3.

We have that n0(K) = 6, n1(K) = 9, n2(K) = 1, and np(K) = 0 for
every p < 0 and every p > 2. Let us now compute the matrixes A1(K) and
A2(K):

A1(K) =

a b c d e f g h i

1 0 0 0 0 1 0 0 0
1 1 0 0 0 0 1 1 0
0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 1 1
0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 1 0 1



A
B
C
D
E
F

A2(K) =

α

0
0
0
0
0
0
1
1
1



a
b
c
d
e
f
g
h
i

We can easily check that rank A1(K) = 5 and rank A2(K) = 1.
Therefore, b0(K) = 5 and b1(K) = 1. Moreover, bp(K) = 0 for every p < 0
and every p ≥ 2 because of Remark 8. Hence

• β0(K) = n0(K)− b0(K)− b−1(K) = 6 − 5 − 0 = 1;

• β1(K) = n1(K)− b1(K)− b0(K) = 9 − 1 − 5 = 3;
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• β2(K) = n2(K)− b2(K)− b1(K) = 1 − 0 − 1 = 0;

• βp(K) = np(K)− bp(K)− bp−1(K) = 0 − 0 − 0 = 0 for b ̸= 0, 1, 2.

It follows that H0(K) ∼= Z2, H1(K) ∼= Z2 ⊕ Z2 ⊕ Z2 and Hp(K) ∼= 0 for
p ̸= 0, 1.

Computation of bases for Zp(K), Bp(K) and Hp(K)

Let K be a geometric simplicial complex. A method to compute bases
for the vector spaces Zp(K), Bp(K) and Hp(K) consists in the follow-
ing steps:

1. For every index p with 1 ≤ p ≤ dim K, compute the matrix
Ap associated with the homomorphism ∂p, with respect to the
standard bases of the vector spaces Cp(K) and Cp−1(K). Label each
column of Ap with the corresponding vector in the basis of Cp(K).

2. For every index p with 1 ≤ p ≤ dim K, by means of a finite
sequence of elementary column operations, transform Ap into
its reduced column echelon form Rp. Each time you apply an
elementary column operation, apply the same operation also to
the labels of the columns. Now, the labels of the null columns
represent a basis BZp(K) of Zp(K). The (p − 1)-chains in Cp−1(K)
whose coordinates are given by the non-null columns of Rp are a
basis BBp(K) for Bp(K).

3. For every index p with 0 ≤ p ≤ dim K, build a matrix Mp whose
first bp(K) columns are the columns of the coordinates of the vec-
tors in BBp(K), while the remaining zp(K) columns are the columns
of the coordinates of the vectors in BZp(K). Call M̂p the submatrix
of Mp containing the first bp(K) columns of Mp.

4. Add some of the columns of M̂p to some of the last zp(K) columns
of Mp until the new matrix M′

p does not contain units in the cells
belonging to the rows of the pivot elements in M̂p. Observe that
now the last zp(K) columns of M′

p may be linearly dependent.
However, if two columns in this set are different from each other,
then they represent different elements of Hp(K), since the dif-
ference between them cannot contain units at the positions cor-
responding to pivots in M̂p, and hence it cannot be a boundary.
Furthermore, the equivalence classes represented by these columns
are a system of generators for Hp(K).

5. By means of a finite sequence of elementary column operations
involving only the last zp(K) columns of M′

p, transform M′
p into

a new matrix M′′
p where the last zp(K) columns are in column
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echelon form. The equivalence classes of the (p − 1)-chains in
Cp−1(K) whose coordinates are given by the non-null columns
among the last zp(K) columns in M′′

p are a basis BHp(K) for Hp(K).

Example 4. Let us apply the algorithm previously described to the geomet-
ric simplicial complex considered in Example 3.

1. Computation of Ap :

A1(K) =

a b c d e f g h i

1 0 0 0 0 1 0 0 0
1 1 0 0 0 0 1 1 0
0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 1 1
0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 1 0 1



A
B
C
D
E
F

A2(K) =

α

0
0
0
0
0
0
1
1
1



a
b
c
d
e
f
g
h
i

2. Reduction of A1(K) and A2(K) to their respective column echelon
forms R1(K) and R2(K):

R1(K) =

a b c d e a + b + c + d + e + f b + c + d + e + g b + c + h d + e + i

1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0 0



A
B
C
D
E
F

Therefore, BZ1 (K) = {a + b + c + d + e + f , b + c + d + e + g, b + c +
h, d + e + i} and BB0 (K) = {A + B, B + C, C + D, D + E, E + F}.
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R2(K) =

α

0
0
0
0
0
0
1
1
1



a
b
c
d
e
f
g
h
i

Therefore, BZ2 (K) = ∅ and BB1 (K) = {g + h + i}.

3. Computation of Mp (remember that Z0(K) = C0(K)):

M0(K) =



1 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 1



A
B
C
D
E
F

The first b0(K) columns are colored in red. These are the columns of M̂0.
The pivots in M̂0 are circled.

M1(K) =



0 1 0 0 0
0 1 1 1 0
0 1 1 1 0
0 1 1 0 1
0 1 1 0 1
0 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1



a
b
c
d
e
f
g
h
i

The first b1(K) columns are colored in red. These are the columns of M̂1.
The pivot in M̂1 is circled.

4. Computation of M ′
p :

M ′
0(K) =



1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1



A
B
C
D
E
F
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M ′
1(K) =



0 1 0 0 0
0 1 1 1 0
0 1 1 1 0
0 1 1 0 1
0 1 1 0 1
0 1 0 0 0
1 0 0 0 0
1 0 1 1 0
1 0 1 0 1



a
b
c
d
e
f
g
h
i

5. Computation of M ′′
p :

M ′′
0 (K) =



1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0



A
B
C
D
E
F

Therefore, BH0 (K) = {[F]}.

M ′′
1 (K) =



0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0
1 1 1 0 0
1 1 0 1 0



a
b
c
d
e
f
g
h
i

Therefore, BH1 (K) = {[a + f + h + i], [b + c + h], [d + e + i]}.

Exercise 11. Choose a geometric simplicial complex and compute its homol-
ogy groups.

Exercise 12. Choose a geometric simplicial complex and compute the bases
of its homology groups.

Chain maps

Definition 42. Let U = (Up , up)p∈Z and V = (Vp , vp)p∈Z be two
chain complexes. An indexed family of homomorphisms φ = (φp : Up →
Vp)p∈Z is called a chain map from U to V if vp ◦ φp = φp−1 ◦ up for
every index p. If each homomorphism φp is an isomorphism, we say that φ

is an isomorphism between chain complexes.
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Figure 22: According to the definition
of chain map, this diagram must
commute. We express this by inserting
a square in the diagram.

The importance of the concept of chain map is given by the next
proposition.

Proposition 15. Let φ = (φp : Up → Vp)p∈Z be a chain map from
U = (Up , up)p∈Z to V = (Vp , vp)p∈Z. Then each map φp∗ : Hp(U ) →
Hp(V ) defined by setting φp∗([z]) := [φp(z)] is a well defined homomor-
phism for every p ∈ Z. If φ is an isomorphism between chain complexes,
then each map φp∗ : Hp(U ) → Hp(V ) is an isomorphism.

Proof. Each element of Hp(U ) can be represented as [z], where z is
a p-cycle, i.e., up(z) = 0. First of all, vp(φp(z)) = φp−1(up(z)) =

φp−1(0) = 0, and hence φp(z) ∈ Zp(V ). Therefore, φp(z) identifies
an element [φp(z)] of Hp(V ). Furthermore, if [z ′ ] = [z] we have
that z ′ − z is a p-boundary, i.e., a (p + 1)-chain c ∈ Up+1 exists,
such that z ′ − z = up+1(c). It follows that φp(z ′) − φp(z) =

φp(z ′ − z) = φp(up+1(c)) = vp+1(φp+1(c)), and hence φp(z ′) −
φp(z) is a p-boundary. This implies that [φp(z ′)] = [φp(z)] in
Hp(V ). Therefore, the map φp∗ is well defined. The linearity of φp∗
immediately follows from the linearity of φp . If φ is an isomorphism
from U to V and [z] ∈ Hp(U ), then we can easily check that φ−1 =

(φ−1
p : Vp → Up)p∈Z is a chain map from V to U . Furthermore,

(φ−1
p )∗ ◦ φp∗([z]) = [φ−1

p ◦ φp(z)] = [z], and hence φp∗ is an
isomorphism, for every index p ∈ Z.

Definition 43. Let φ = (φp : Up → Vp)p∈Z be a chain map from U
to V . The indexed family of homomorphisms φ∗ = (φp∗ : Hp(U ) →
Hp(V ))p∈Z defined in Proposition 15 is called an induced map from
H(U ) := (Hp(U ))p∈Z to H(V ) := (Hp(V ))p∈Z.

Proposition 16. Let f : K → L be a simplicial map. For every index
p ∈ Z with 0 ≤ p ≤ dim K, let us consider the linear map f p# :
Cp(K) → Cp(L) defined by setting, for every p-simplex σ ∈ K,

f p#(σ) :=

 f (σ), if dim f (σ) = dim σ

null chain in Cp(L), if dim f (σ) < dim σ.
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For p < 0 and for p > dim K we set f p# : Cp(K) → Cp(L) equal to the
null map. The collection of maps f# = ( f p# : Cp(K) → Cp(L))p∈Z is a
chain map from C (K) to C (L).

Proof. We have just to prove that f(p−1)#(∂p(σ)) = ∂p( f p#(σ))

for every index p with 1 ≤ p ≤ dim K and every p-simplex σ =

⟨u0 , . . . , up⟩ in K. We can indeed observe that such an equality is
trivial for p ≤ 0 and for p > dim K. Before proceeding, we recall
that the points f (u0), . . . , f (up) are (possibly coinciding) vertexes of
a simplex τ in L, because of the definition of a simplicial map. The
following cases are possible:

card { f (u0), . . . , f (up)} = p + 1 . In this case the points f (u0), . . . , f (up)

are distinct vertexes of a simplex in L and dim f (σ) = dim σ.
Moreover,

f(p−1)#(∂p(σ)) = f(p−1)#

(
p

∑
i=0

⟨u0 , . . . , ûi , . . . , up⟩
)

=
p

∑
i=0

f(p−1)#
(
⟨u0 , . . . , ûi , . . . , up⟩

)
=

p

∑
i=0

⟨ f (u0), . . . , f̂ (ui), . . . , f (up)⟩

= ∂p
(
⟨ f (u0), . . . , f (up)⟩

)
= ∂p ◦ f p#(σ).

card { f (u0), . . . , f (up)} = p In this case exactly two of the points

f (u0), . . . , f (up) coincide (say f (ur ) and f (us)), and dim f (σ) =

dim σ − 1. Therefore, f(p−1)#(⟨u0 , . . . , ûi , . . . , up⟩) = 0 for i /∈
{r, s}, since in this case two of the points f (u0), . . . , f̂ (ui), . . . , f (up)

coincide. For the same reason, f p#(⟨u0 , . . . , up⟩) = 0. We also ob-

serve that ⟨ f (u0), . . . , f̂ (ur ), . . . , f (up)⟩ = ⟨ f (u0), . . . , f̂ (us), . . . , f (up)⟩.
It follows that

f(p−1)#(∂p(σ)) = f(p−1)#

(
p

∑
i=0

⟨u0 , . . . , ûi , . . . , up⟩
)

=
p

∑
i=0

f(p−1)#
(
⟨u0 , . . . , ûi , . . . , up⟩

)
= ⟨ f (u0), . . . , f̂ (ur ), . . . , f (up)⟩ + ⟨ f (u0), . . . , f̂ (us), . . . , f (up)⟩
= 0

= ∂p(0)

= ∂p
(

f p#
(
⟨u0 , . . . , up⟩

))
= ∂p( f p#(σ)).
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card { f (u0), . . . , f (up)} < p In this case dim f (σ) < dim σ − 1

and for any choice of i at least two of the points f (u0), . . . , f̂ (ui), . . . , f (up)

coincide. Hence, f p#(⟨u0 , . . . , up⟩) = 0, and f(p−1)#(⟨u0 , . . . , ûi , . . . , up⟩) =
0 for any index i. It follows that

f(p−1)#(∂p(σ)) = f(p−1)#

(
p

∑
i=0

⟨u0 , . . . , ûi , . . . , up⟩
)

=
p

∑
i=0

f(p−1)#
(
⟨u0 , . . . , ûi , . . . , up⟩

)
= 0

= ∂p(0)

= ∂p
(

f p#
(
⟨u0 , . . . , up⟩

))
= ∂p( f p#(σ)).

Therefore, the equality f(p−1)#(∂p(σ)) = ∂p( f p#(σ)) holds in any
case.

The following theorem states one of the most important properties
of homology.

Theorem 6. The map Fp taking each geometric simplicial complex K to
Hp(K) and each simplicial map f : K → L to the map f p#∗ : Hp(K) →
Hp(L) (induced by the chain map f p# defined in Proposition 16) is a co-
variant functor for every p ∈ Z.

Proof. First of all, let us prove that if f : K → L and g : L → M are
simplicial maps, and p ∈ Z, then (g ◦ f )p# = gp# ◦ f p#. This equality
is trivial for p < 0 and for p > dim K, hence we can assume that
0 ≤ p ≤ dim K. It will be sufficient to prove that for each p-simplex
σ = ⟨u0 , . . . , up⟩ in K, the equality (g ◦ f )p# = gp#( f p#(σ)) holds.
Since dim σ ≥ dim f (σ) ≥ dim g( f (σ)), there are four possibilities:

1. dim σ = dim f (σ) = dim g( f (σ)). In this case (g ◦ f )p#(σ) =

(g ◦ f )(σ) = g( f (σ)) = gp#( f p#(σ)) = gp# ◦ f p#(σ).

2. dim σ > dim f (σ) = dim g( f (σ)). In this case f p#(σ) = 0
and (g ◦ f )p#(σ) = 0. Hence (g ◦ f )p#(σ) = 0 = gp#(0) =

gp#( f p#(σ)) = gp# ◦ f p#(σ).

3. dim σ = dim f (σ) > dim g( f (σ)). In this case gp#( f (σ)) = 0
and (g ◦ f )p#(σ) = 0. Hence (g ◦ f )p#(σ) = 0 = gp#( f (σ)) =

gp#( f p#(σ)) = gp# ◦ f p#(σ).

4. dim σ > dim f (σ) > dim g( f (σ)). In this case f p#(σ) = 0
and (g ◦ f )p#(σ) = 0. Hence (g ◦ f )p#(σ) = 0 = gp#(0) =

gp#( f p#(σ)) = gp# ◦ f p#(σ).
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Therefore, (g ◦ f )p# = gp# ◦ f p# in any case. Because of this equality,
if [z] ∈ Hp(K), then

Fp(g ◦ f )([z]) = (g ◦ f )p#∗([z])

= [(g ◦ f )p#(z)]

= [gp# ◦ f p#(z)]

= [gp#( f p#(z))]

= Fp(g)([ f p#(z)])

= Fp(g)(Fp( f )([z]))

= Fp(g) ◦ Fp( f )([z]).

Therefore, Fp(g ◦ f ) = Fp(g) ◦ Fp( f ). Finally, if id : K → K is the
identity, then idp# : Cp(K) → Cp(K) is the identity. It follows that
Fp(id)([z]) = [idp#(z)] = [z] for every [z] ∈ Hp(K), and hence
Fp(id) : Hp(K) → Hp(K) is the identity.

The following result simplifies the computation of homology
groups.

Theorem 7. If a geometric simplicial complex L can be obtained from
a geometric simplicial complex K by applying a sequence of elementary
collapses and inverses of elementary collapses, then Hp(L) is isomorphic to
Hp(K) for every p ∈ Z.

Proof. It is sufficient to prove that Hp(L) is isomorphic to Hp(K) in
the case that L can be obtained from K by applying an elementary
collapse involving the pair (τ , σ), where τ = ⟨v1 , . . . , vk⟩ is a (k −
1)-simplex whose only coface is σ = ⟨v0 , . . . , vk⟩.

Let us consider the inclusion ψ : Vert L → Vert K. If k > 1,
then ψ is a bijection. In any case, ψ is a vertex map. (We observe that,
even if ψ−1 exists, it may not be a vertex map.) Let g : L → K be the
simplicial map induced by ψ, i.e, the inclusion of L into K. We will
show that the homomorphism gp#∗ = Fp(g) : Hp(L) → Hp(K)

is bijective, and hence an isomorphism. In the following, if z is a p-
cycle in L (K), we will denote by [z]L ([z]K) the equivalence class of z
in Hp(L) (Hp(K)).

gp#∗ is surjective Let [z]K ∈ Hp(K). Of course, z is a p-cycle in K.

If p /∈ {k − 1, k}, then z is also a p-cycle in L. Since gp#(z) = z,
then gp#∗([z]L) = [gp#(z)]K = [z]K .

If p = k − 1, then z = ∑m
j=1 λ j τj + aτ ∈ Cp(K), for suitable values

λ1 , . . . , λm , a ∈ Z2 and (k − 1)-simplexes τ1 , . . . , τm ∈ L. Let us
consider the p-chain z̃ = ∑m

j=1 λ j τj + a ∑k
r=1⟨v0 , . . . , v̂r , . . . vk⟩ ∈

Cp(L). Since τ = ⟨v̂0 , v1 , . . . , vk⟩, then z̃ − z = a∂σ (remember
that the coefficients we are considering belong to Z2). Therefore,
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∂ z̃ = ∂z + a∂∂σ = 0 (i.e., z̃ s a cycle), and [ z̃]K = [z]K . Moreover,
gp#( z̃) = z̃, and hence gp#∗([ z̃]L) = [gp#( z̃)]K = [ z̃]K = [z]K .

If p = k, then the chain z cannot contain σ as a summand, because
otherwise ∂z should contain τ as a summand, and hence z could
not be a cycle. It follows that z is a cycle in L. Since gp#(z) = z,
then gp#∗([z]L) = [gp#(z)]K = [z]K .

Therefore, in any case [z]K is the image by gp#∗ of an element of
Hp(L).

gp#∗ is injective Let [z]L ∈ Hp(L), with gp#∗([z]L) = 0 ∈ Hp(K).

Of course, z is a p-cycle in L and gp#(z) = z is a p-boundary in K.
Therefore, we can write z = ∂γ for a suitable γ ∈ Cp+1(K).

If p + 1 /∈ {k − 1, k}, then Cp+1(K) = Cp+1(L), and hence z is a
p-boundary in L too. Therefore, [z]L = 0 ∈ Hp(L).

If p + 1 = k − 1, then γ = ∑m
j=1 µ j τj + bτ ∈ Cp+1(K),

for suitable values µ1 , . . . , µm , b ∈ Z2 and (k − 1)-simplexes
τ1 , . . . , τm ∈ L. Let us consider the (p + 1)-chain γ̃ = ∑m

j=1 µ j τj +

b ∑k
r=1⟨v0 , . . . , v̂r , . . . vk⟩ ∈ Cp+1(L). Since τ = ⟨v̂0 , v1 , . . . , vk⟩,

then γ̃ − γ = b∂σ. Therefore, ∂γ̃ = ∂γ + b∂∂σ = ∂γ. Hence,
∂γ̃ = ∂γ = z. It follows that z is a p-boundary not only in K, but
also in L, and hence [z]L = 0 ∈ Hp(L).

If p + 1 = k, then the chain γ cannot contain σ as a summand,
because otherwise z = ∂γ should contain τ as a summand, against
the assumption z ∈ Cp(L). Therefore, γ ∈ Cp+1(L). Since z = ∂γ,
then [z]L = 0 ∈ Hp(L).

It follows that, in any case, gp#∗([z]L) = 0 ∈ Hp(K) implies that
[z]L = 0 ∈ Hp(L).

Reduced homology

The reader can observe that the chain complex we have used to de-
fine the homology groups of a geometric simplicial complex K is a
little weird: while we assume that K contains the (−1)-dimensional
simplex ∅, we have set C−1(K) equal to the trivial vector space,
and the 0-boundary map equal to the null map. This choice has
some important consequences. For example, we get that if K is
trivial (in the sense that it contains only one vertex), then H0(K)

is not trivial, while any other homology group is trivial. Moreover,
while dim Hp(K) counts the “number of p-dimensional holes in K”
for p ̸= 0, dim H0(K) counts the “number of connected compo-
nents in K” (this number differs by one unit from the “number of
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0-dimensional holes in K”, i.e., “gaps between connected compo-
nents”). These asymmetries can be removed if we consider a new
chain complex and the corresponding “reduced homology”.

Definition 44. Let K be a geometric simplicial complex. For every integer
p with −1 ≤ p ≤ dim K, we can consider the vector space C̃p(K) of all
formal linear combinations ∑k

i=1 ai σi of p-simplexes of K with coefficients
in Z2 (for any positive integer k). If p < −1 or p > dim K, we set
C̃p(K) := 0 (i.e., the trivial vector space over Z2).

NB: For p ̸= −1, C̃p(K) = Cp(K), while C̃−1(K) ∼= Z2 ̸= 0 =

C−1(K).

Proposition 17. Let K be a geometric simplicial complex. For each p ∈
Z with 1 ≤ p ≤ dim K, let us consider the homomorphism ∂̃p :
C̃p(K) → C̃p−1(K) that takes each p-simplex ⟨u0 , . . . , up⟩ to the vec-
tor ∑

p
i=0⟨u0 , . . . , ûi , . . . , up⟩. We set ∂̃0 : C̃0(K) → C̃−1(K) equal

to the homomorphism the takes each 0-simplex of K to the (−1)-simplex
∅ ∈ C̃−1(K) (seen as a (−1)-chain). If p < 0 or p > dim K, we set
∂̃p : C̃p(K) → C̃p−1(K) equal to the null homomorphism. The sequence
C̃ (K) := (C̃p(K), ∂̃p)p∈Z is a chain complex.

Proof. Since ∂̃p ≡ ∂p for p ̸= 0, −1, because of Proposition 13 we
can limit ourselves to prove that both ∂̃−1 ◦ ∂̃0 and ∂̃0 ◦ ∂̃1 are null
homomorphisms. On the one hand, the map ∂̃−1 ◦ ∂̃0 is null because
∂̃−1 is null. On the other hand, if σ = ⟨v0 , v1⟩ is a 1-simplex in K,
then ∂̃0 ◦ ∂̃1(σ) = ∂̃0(v0 + v1) = ∂̃0(v0) + ∂̃0(v1) = ∅ + ∅ = 0. It
follows that ∂̃0 ◦ ∂̃1 is the null map.

NB: The homomorphism ∂̃0 is called augmentation map and often
denoted by the symbol ϵ. For p ̸= 0, −1, we have that ∂̃p ≡ ∂p . We
will use the symbols Z̃p(K) and B̃p(K) to denote the vector spaces
Zp(C̃ (K)) = ker ∂̃p and Bp(C̃ (K)) = Im ∂̃p+1, respectively. We
observe that Z̃p(K) = Zp(K) for p ̸= 0, −1, and B̃p(K) = Bp(K) for
p ̸= −1.

In the following, for any given geometric simplicial complex K
and every p ∈ Z we will use the symbol H̃p(K) to denote the vector

space Hp(C̃ (K)) =
ker ∂̃p

Im ∂̃p+1
. We will call H̃p(K) the p-th reduced

homology group of K with coefficients in Z2. Moreover, we will set

• ñp(K) := dim C̃p(K) = number of p-simplexes in K (for any
integer p);

• z̃p(K) := dim Z̃p(K);

• b̃p(K) := dim B̃p(K);

• β̃ p(K) := dim H̃p(K).
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The number β̃ p(K) will be called the p-th reduced Betti number of
K. We observe that card C̃p(K) = 2ñp (K) , and H̃p(K) is isomorphic

to ∑
β̃ p (K)
i=1 Z2 (where the empty sum is set equal to 0). We stress that

dim B̃−1(K) = 1 and dim B−1(K) = 0, since B̃−1(K) is generated
by the (−1)-simplex ∅, while B−1(K) = 0.

Proposition 18. If K is a geometric simplicial complex, then β̃ p(K) =

ñp(K) − b̃p(K) − b̃p−1(K) for any p ∈ Z.

Proof. Completely analogous to the one of Proposition 14.

Proposition 19. If K is a geometric simplicial complex, then β̃ p(K) =

β p(K) for every p ̸= 0, and β̃0(K) = β0(K) − 1.

Proof. For p ̸= 0, −1, the equality β̃ p(K) = β p(K) follows from
Propositions 14 and 18, by recalling that ñp(K) = np(K) and b̃p = bp

for p ̸= −1. Moreover, since b0(K) = b̃0(K), b−1(K) = 0 and
b̃−1(K) = 1, we have that β̃0(K) = ñ0(K) − b̃0(K) − b̃−1(K) =

n0(K) − b0(K) − b−1(K) − 1 = β0(K) − 1.

The reader could wonder why we defined non-reduced homology
groups, given that reduced homology groups have better proper-
ties. The reason is that non-reduced homology groups are of use for
Poincaré Duality (a topic not illustrated in these lecture notes).

Exercise 13. Choose a geometric simplicial complex and compute its re-
duced homology groups.

Exercise 14. Prove or disprove this statement: For every ordered (n + 1)-
tuple (a0 , . . . , an) of natural numbers, there exists a geometric simplicial
complex K of dimension n, such that β̃ p(K) = ap for p ∈ {0, . . . , n} and
β̃ p(K) = 0 for p /∈ {0, . . . , n}.

Euler-Poincaré Theorem

Theorem 8. If K is a geometric simplicial complex, then χ(K) = ∑dim K
p=0 (−1)p β p(K).

Proof. Proposition 14 states that β p(K) = np(K) − bp(K) − bp−1(K).
From this equality and the equalities bdim K (K) = b−1(K) = 0, it
follows that

dim K

∑
p=0

(−1)p β p(K)

=
dim K

∑
p=0

(−1)p np(K) −
dim K

∑
p=0

(−1)p bp(K) −
dim K

∑
p=0

(−1)p bp−1(K)

=
dim K

∑
p=0

(−1)p np(K) −
dim K

∑
p=0

(−1)p bp(K) −
dim K−1

∑
q=−1

(−1)q+1bq(K)
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=
dim K

∑
p=0

(−1)p np(K) −
dim K

∑
p=0

(−1)p bp(K) +
dim K−1

∑
q=−1

(−1)q bq(K)

=
dim K

∑
p=0

(−1)p np(K) − (−1)dim K bdim K (K) − b−1(K)

=
dim K

∑
p=0

(−1)p np(K)

= χ(K).



The natural pseudo-distance

In this chapter, we introduce the concept of the natural pseudo-
distance (restricted to the case of simplicial complexes) and illustrate
its fundamental properties.

Perception pairs and topological groups

Let us consider a geometric simplicial complex K and a set Φ of
bounded functions from V = Vert K to R. Φ is a metric space with
respect to the distance DΦ defined by setting DΦ(φ, ψ) = ∥φ −
ψ∥∞ := maxv∈V |φ(v) − ψ(v)|. The functions in Φ will be called
admissible functions or admissible measurements or admissible signals, and
represent the data that can be produced by the measuring tools or
the observers we are interested in. The set V is endowed with the
(extended) pseudo-metric DV which distinguishes points only if they
are seen as different by some measurement:

DV (v1 , v2) = sup
φ∈Φ

|φ(v1) − φ(v2)| (1)

for every v1 , v2 ∈ V . We recall that a pseudo-metric is just a distance
d without the property that d(a, b) = 0 implies a = b. We say that a
pseudo-metric is extended if it can take an infinite value. We observe
that every function φ ∈ Φ is nonexpansive with respect to DV .

In the following, we will denote by IsoΦ(K) the set of all bijections
g : V → V such that:

1. If v0 , . . . , vk are vertexes of a k-simplex of K, then g(v0), . . . , g(vk)

and g−1(v0), . . . , g−1(vk) are also vertexes of k-simplexes of K.

2. φ ◦ g, φ ◦ g−1 ∈ Φ for every φ ∈ Φ.

The set IsoΦ(K) is a group with respect to the composition of maps,
called the group of Φ-preserving isomorphisms of K.

Definition 45. If G is a subgroup of IsoΦ(X), we say that (Φ, G) is a
perception pair.
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In some sense, considering a perception pair (Φ, G) means that G
represents a set of data transformations that are relevant for our anal-
ysis. If V is a bounded pseudo-metric space with respect to DV , then
the group G is a pseudo-metric space with respect to the pseudo-
metric DG defined by setting

DG (g1 , g2) := sup
φ∈Φ

DΦ(φ ◦ g1 , φ ◦ g2) (2)

for every g1 , g2 ∈ G.
We observe that

DG (g1 , g2) = sup
φ∈Φ

DΦ(φ ◦ g1 , φ ◦ g2)

= sup
φ∈Φ

max
v∈V

|φ(g1(v)) − φ(g2(v))|

= max
v∈V

sup
φ∈Φ

|φ(g1(v)) − φ(g2(v))|

= max
v∈V

DV (g1(v), g2(v)) .

Exercise 15. Prove that DV and DG are indeed pseudo-metrics.

We leave the simple proof of the following proposition to the
reader.

Proposition 20. The following statements hold:

1. DΦ(φ1 ◦ g, φ2 ◦ g) = DΦ(φ1 , φ2) for every φ1 , φ2 ∈ Φ and g ∈ G;

2. DV (g(v1), g(v2)) = DV (v1 , v2) for every v1 , v2 ∈ V and g ∈ G;

3. DG (g1 ◦ g, g2 ◦ g) = DG (g1 , g2) for every g1 , g2 , g ∈ G.

Exercise 16. Prove Proposition 20.

We recall that a right action of a group (Ĝ, ⋆) on a set Φ̂ is a map
α : Φ̂ × Ĝ → Φ̂ such that the following two properties hold:

1. α(φ, e) = φ for any φ ∈ Φ̂ (where e is the unit of Ĝ);

2. α(α(φ, g1), g2) = α(φ, g1 ⋆ g2) for any φ ∈ Φ̂ and any g1 , g2 ∈
Ĝ.

In our setting G acts on Φ by right composition: α(φ, g) := φ ◦ g
for every φ ∈ Φ and every g ∈ G.

Natural pseudo-distance with respect to a group G

Let us assume that (Φ, G) is a perception pair and call V the domain
of the functions in Φ.
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Definition 46. The function dG : Φ × Φ → R defined by setting
dG(φ1, φ2) := ming∈G ∥φ1 − φ2 ◦ g∥∞ is called the natural pseudo-
distance associated with the perception pair (Φ, G) (or simply with the
group G, in the case the set Φ is understood).

Proposition 21. The function dG is a pseudo-metric.

Proof. 1. 0 ≤ dG(φ, φ) := ming∈G ∥φ − φ ◦ g∥∞ ≤ ∥φ − φ ◦
idVert K∥∞ = ∥φ − φ∥∞ = 0, and hence dG(φ, φ) = 0 for every
φ ∈ Φ.

2. From Proposition 20 it follows that dG(φ1, φ2) := ming∈G ∥φ1 −
φ2 ◦ g∥∞ = ming∈G ∥φ1 ◦ g−1 − φ2∥∞ = ming∈G ∥φ2 − φ1 ◦ g−1∥∞ =

ming−1∈G ∥φ2 − φ1 ◦ g−1∥∞ = ming∈G ∥φ2 − φ1 ◦ g∥∞ = dG(φ2, φ1)

for every φ1, φ2 ∈ Φ.

3. Proposition 20 implies that for φ1, φ2 ∈ Φ and every fixed f ∈ G

dG(φ1, φ2) := min
g∈G

∥φ1 − φ2 ◦ g∥∞

= min
g∈G

∥φ1 − φ2 ◦ g ◦ f ∥∞

≤ min
g∈G

(∥φ1 − φ3 ◦ f ∥∞ + ∥φ3 ◦ f − φ2 ◦ g ◦ f ∥∞)

= min
g∈G

(∥φ1 − φ3 ◦ f ∥∞ + ∥φ3 − φ2 ◦ g∥∞)

= ∥φ1 − φ3 ◦ f ∥∞ + min
g∈G

∥φ3 − φ2 ◦ g∥∞

= ∥φ1 − φ3 ◦ f ∥∞ + dG(φ3, φ2).

It follows that for every φ1, φ2, φ3 ∈ Φ

dG(φ1, φ2) = min
f∈G

dG(φ1, φ2)

≤ min
f∈G

(∥φ1 − φ3 ◦ f ∥∞ + dG(φ3, φ2))

= min
f∈G

∥φ1 − φ3 ◦ f ∥∞ + dG(φ3, φ2)

= dG(φ1, φ3) + dG(φ3, φ2).

If G is the trivial group IdV , then dG = DΦ. Moreover, if G1 and G2

are subgroups of IsoΦ(K) and G1 ⊆ G2, then

dIsoΦ(K)(φ1, φ2) ≤ dG2(φ1, φ2) ≤ dG1(φ1, φ2) ≤ DΦ(φ1, φ2)

for every φ1, φ2 ∈ Φ.
The direct computation of dG is usually difficult, due to the size of

G. In the section “Non-expansive equivariant operators” we will see that
this difficulty can be worked around by means of persistent homol-
ogy and the concept of group equivariant non-expansive operator.
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The role of dG in Topological Data Analysis

The key property of the natural pseudo-distance dG is that it is
strongly invariant under the action of the group G. More explic-
itly, dG(φ1 ◦ f , φ2 ◦ g) = dG(φ1, φ2) for every φ1, φ2 ∈ Φ and every
f , g ∈ G. This property is of great use when we wish to compare data
“up to transformations in G”.

Exercise 17. Prove that the natural pseudo-distance dG is strongly invari-
ant under the action of the group G.



Persistent homology

Let K be a simplicial complex. If a function φ : Vert K → R is given,
a filtration Kφ

t := {σ ∈ K : φ(v) ≤ t for any vertex v of σ} is
defined, for t ∈ R. We will think of t as a time. Note that Kφ

t is
still a simplicial complex. After fixing a degree p ∈ Z, for every
ordered pair (s, t) ∈ R2 with s ≤ t we can consider the linear map
iφ∗
s,t : Hp(K

φ
s ) → Hp(K

φ
t ) induced by the inclusion iφ

s,t : Kφ
s →

Kφ
t (in practice, iφ∗

s,t takes the homology class of a cycle in Kφ
s to the

homology class of the same cycle in Kφ
t ).

Definition 47. A persistence module is a set {Vt}t∈R of vector spaces
on Z2, such that for every ordered pair (s, t) ∈ R2 with s ≤ t there exists
a linear map vs,t : Vs → Vt for which vt,t = idVt : Vt → Vt and
vs,t ◦ vr,s = vr,t for r ≤ s ≤ t.

In the following, the symbol iφ∗
s,∞ will represent the map induced

by the inclusion of Kφ
s into K = Kφ

max φ = Kφ
∞. The functoriality of

homology (Theorem 6) implies that iφ∗
v,w ◦ iφ∗

u,v = iφ∗
u,w for u ≤ v ≤ w.

Therefore, the maps iφ∗
s,t define a persistence module.

1-dimensional PBNFs

Definition 48 (Persistent homology group). For u ∈ R, v ∈ R ∪
{∞} with u < v, the group Im iφ∗

u,v ⊆ Hp(K
φ
v ) is denoted by the symbol

Hφ
p (u, v) and called the pth persistent homology group at (u, v). The

dimension β
φ
p(u, v) of Hφ

p (u, v) is called the pth persistent Betti numbers
function (PBNF) (or rank invariant) of φ, computed at the point (u, v) 3. 3 Herbert Edelsbrunner, David Letscher,

and Afra Zomorodian. Topological
persistence and simplification. Discrete
Comput. Geom., 28(4):511–533, 2002

Remark 9. We observe that Kφ
v = Kφ

max φ = Kφ
∞, and hence β

φ
p(·, v) ≡

β
φ
p(·, max φ) ≡ β

φ
p(·, ∞), for every v ≥ max φ.

Remark 10. We observe that β
φ
p(u, v) ≤ dim Hp(K

φ
v ) ≤ card

(
Kφ

v

)(p)
≤

card K < ∞.

Proposition 22. The function β
φ
p(u, v) is right-continuous in both its

variables.
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Proof. For each v ∈ R an ε > 0 exists such that if v ≤ v′ ≤ v + ε then
Kφ

v′ = Kφ
v . This implies that iφ

v,v′ is the identity. Therefore, β
φ
p(u, v′) =

Im iφ∗
u,v′ = Im iφ∗

v,v′ ◦ iφ∗
u,v = Im iφ∗

u,v = β
φ
p(u, v). This proves that β

φ
p(u, v)

is right-continuous in the variable v.
Analogously, For each u ∈ R an ε > 0 exists such that if u ≤ u′ ≤

u + ε then Kφ
u′ = Kφ

u . This implies that iφ
u,u′ is the identity. Therefore,

β
φ
p(u, v) = Im iφ∗

u,v = Im iφ∗
u′ ,v ◦ iφ∗

u,u′ = Im iφ∗
u′ ,v = β

φ
p(u′, v). This proves

that β
φ
p(u, v) is right-continuous in the variable u.

The following statement holds.

Lemma 2. Let U, V, W be finite dimensional vector spaces over the field K.
If f : U → V and g : V → W are linear maps, then the following equality
holds: dim Im g ◦ f = dim Im f − dim ker g|Im f .

Proof. The rank–nullity theorem applied to the linear map g|Im f :
Im f → W states that dim Im f = dim Im g ◦ f + dim ker g|Im f .

Proposition 23. The function β
φ
p(u, v) is nondecreasing in the variable u

and nonincreasing in the variable v.

Proof. If u ≤ u′, then iφ∗
u,v = iφ∗

u′ ,v ◦ iφ∗
u,u′ . This implies that Im iφ∗

u,v ⊆
Im iφ∗

u′ ,v , i.e., Hφ
p (u, v) ⊆ Hφ

p (u′, v). Hence dim Hφ
p (u, v) ≤ dim Hφ

p (u′, v).
Moreover, by applying Lemma 2 for f = iφ∗

u,v and g = iφ∗
v,v′ with

v′ ≥ v we get that dim Im iφ∗
u,v′ ≤ dim Im iφ∗

u,v , i.e., dim Hφ
p (u, v′) ≤

dim Hφ
p (u, v).

Hereafter, the symbol ∆ denotes the diagonal {(u, v) ∈ R2 : u =

v}, the symbol ∆+ denotes the half-plane {(u, v) ∈ R2 : u < v}, while
∆∗ is the set ∆+ ∪ {(u, ∞) : u ∈ R}. The finiteness of K implies that
the vector spaces Hp(K

φ
t ) are finitely generated for every time t. This

fact guarantees that β
φ
p(u, v) < ∞ for every (u, v) ∈ ∆∗. Hereafter,

we will assume that a degree p ∈ Z has been chosen, and that the
symbols ε, η, ε′, η′ refer to finite values.

The following result illustrates an interesting invariance property
of the persistent Betti numbers functions, in the case that g : K → L
is an isomorphism between two simplicial complexes (i.e. a bijective
map such that both it and its inverse take vertexes of simplexes to

vertexes of simplexes). We consider the filtrations Kφ
t and Lφ◦g−1

t .

Proposition 24. β
φ
p ≡ β

φ◦g−1

p for every isomorphism g : K → L.

Proof. It is sufficient to consider the chain map gp# : Cp(K) → Cp(L)
induced by g (Proposition 16) and check that it is an isomorphism
between chain complexes. From Proposition 15 it follows that the
linear map gp#∗ : Hp(K) → Hp(L) taking each homology class[

∑k
i=1 σi

]
to the homology class

[
∑k

i=1 g ◦ σi

]
is an isomorphism.
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Since iφ◦g−1∗
x,y ◦ gp#∗ = gp#∗ ◦ iφ∗

x,y, the map ρ : Hφ
p (u, v) → Hφ◦g−1

p (u, v)

taking iφ∗
x,y([z]) to iφ◦g−1∗

x,y
(

gp#∗ ([z])
)

is an isomorphism, for every pair
(u, v) ∈ ∆+.

Definition 49. Let ε ≥ 0, η ≥ 0, and u < v < ∞. If u + ε <

v − η, we define µ
φ
ε,η(u, v) := β

φ
p(u + ε, v − η) − β

φ
p(u − ε, v − η) −

β
φ
p(u + ε, v + η) + β

φ
p(u − ε, v + η). If u + ε ≥ v − η, we define

µ
φ
ε,η(u, v) := ∞. The value µ

φ
ε,η(u, v) will be called the total multiplic-

ity of the (ε, η)-box centered at (u, v) .

The next proposition shows that the value µ
φ
ε,η(u, v) is always

nonnegative.

Proposition 25. If ε ≥ 0, η ≥ 0, and u + ε < v − η < ∞, µ
φ
ε,η(u, v) =

dim ker iφ∗
v−η,v+η |Im iφ∗

u+ε,v−η
− dim ker iφ∗

v−η,v+η |Im iφ∗
u−ε,v−η

≥ 0.

Proof. By applying Lemma 2 for f = iφ∗
u+ε,v−η and g = iφ∗

v−η,v+η we get

dim Im iφ∗
u+ε,v+η = dim Im iφ∗

u+ε,v−η − dim ker iφ∗
v−η,v+η |Im iφ∗

u+ε,v−η
.

By applying Lemma 2 for f = iφ∗
u−ε,v−η and g = iφ∗

v−η,v+η we get

dim Im iφ∗
u−ε,v+η = dim Im iφ∗

u−ε,v−η − dim ker iφ∗
v−η,v+η |Im iφ∗

u−ε,v−η
.

It follows that

µ
φ
ε,η(u, v) =β

φ
p(u + ε, v − η)− β

φ
p(u − ε, v − η)

− β
φ
p(u + ε, v + η) + β

φ
p(u − ε, v + η)

=dim Im iφ∗
u+ε,v−η − dim Im iφ∗

u−ε,v−η

− dim Im iφ∗
u+ε,v+η + dim Im iφ∗

u−ε,v+η

=dim Im iφ∗
u+ε,v−η − dim Im iφ∗

u−ε,v−η

− dim Im iφ∗
u+ε,v−η + dim ker iφ∗

v−η,v+η |Im iφ∗
u+ε,v−η

+ dim Im iφ∗
u−ε,v−η − dim ker iφ∗

v−η,v+η |Im iφ∗
u−ε,v−η

=dim ker iφ∗
v−η,v+η |Im iφ∗

u+ε,v−η
− dim ker iφ∗

v−η,v+η |Im iφ∗
u−ε,v−η

≥ 0

where the last inequality follows from the inclusion

Im iφ∗
u−ε,v−η = Im iφ∗

u+ε,v−η ◦ iφ∗
u−ε,u+ε ⊆ Im iφ∗

u+ε,v−η

which implies

ker iφ∗
v−η,v+η |Im iφ∗

u−ε,v−η
⊆ ker iφ∗

v−η,v+η |Im iφ∗
u+ε,v−η

.
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In the following, unless otherwise specified, we will assume that
v < ∞. The next proposition shows that the function µ

φ
ε,η(u, v) is

non-decreasing in the variables ε and η.

Proposition 26. If 0 ≤ ε ≤ ε′, 0 ≤ η ≤ η′ and u < v, then µ
φ
ε,η(u, v) ≤

µ
φ
ε′ ,η′(u, v).

Proof. If u + ε′ ≥ v − η′, then µ
φ
ε′ ,η′(u, v) = ∞, and in this case the

statement of the proposition is trivial. Therefore, we can assume that
u + ε′ < v − η′. By directly applying Definition 49, it is easy to check
that

µ
φ
ε′ ,η′ (u, v)

= µ
φ

ε′−ε
2 , η′−η

2

(
u − ε + ε′

2
, v +

η + η′

2

)
+ µ

φ

ε, η′−η
2

(
u, v +

η + η′

2

)
+ µ

φ

ε′−ε
2 , η′−η

2

(
u +

ε + ε′

2
, v +

η + η′

2

)
+ µ

φ
ε′−ε

2 ,η

(
u − ε + ε′

2
, v
)
+ µ

φ
ε,η (u, v) + µ

φ
ε′−ε

2 ,η

(
u +

ε + ε′

2
, v
)

+ µ
φ

ε′−ε
2 , η′−η

2

(
u − ε + ε′

2
, v − η + η′

2

)
+ µ

φ

ε, η′−η
2

(
u, v − η + η′

2

)
+ µ

φ

ε′−ε
2 , η′−η

2

(
u +

ε + ε′

2
, v − η + η′

2

)
.

From the nonnegativity of the function µ
φ
ε,η (Proposition 25), it fol-

lows that µ
φ
ε,η(u, v) ≤ µ

φ
ε′ ,η′(u, v).

Let us explain the proof of Proposition 26 in plain words. The
value µ

φ
ε,η (u, v) is equal to the sum of the values at the red points

in Figure 23, with alternate signs. The value µ
φ
ε′ ,η′ (u, v) is equal to

the sum of the values at the green points in Figure 23, with alternate
signs. This last value is equal to the sum of the total multiplicities of
the nine boxes in the figure since the contributions of the non-green
points cancel each other out.

Lemma 3. Any open arcwise connected neighborhood of a discontinuity
point for the function β

φ
p(u, v) contains at least one discontinuity point in

the variable u or v.

Proof. Let p ∈ R2 be a discontinuity point for the function β
φ
p(p).

Then, in any open arcwise connected neighborhood U ⊆ R2 of p, a
point q exists such that β

φ
p(p) ̸= β

φ
p(q). We can connect p and q by

a path entirely contained in U and made of horizontal and vertical
segments. Since β

φ
p cannot be constant along this path, our claim

follows.

Proposition 27 (Propagation of discontinuities). The following state-
ments hold:

1. If ũ is a discontinuity point for β
φ
p(·, ṽ) and ũ < v < ṽ < ∞, then ũ is a

discontinuity point also for β
φ
p(·, v);
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Figure 23: The grid used in the proof of
Proposition 26.

2. If ṽ is a discontinuity point for β
φ
p(ũ, ·) and ũ < u < ṽ < ∞, then ṽ is a

discontinuity point also for β
φ
p(u, ·).

Proof. 1. Since β
φ
p is nondecreasing in its first variable, we have that

β
φ
p(ũ + ε, ṽ)− β

φ
p(ũ − ε, ṽ) ≥ 0 for any ε ≥ 0 (Proposition 23). The

assumption that ũ is a discontinuity point for β
φ
p(·, ṽ) implies that

β
φ
p(ũ + ε, ṽ)− β

φ
p(ũ − ε, ṽ) > 0 for any ε > 0. This last inequality

and the inequality

β
φ
p(ũ + ε, v)− β

φ
p(ũ − ε, v)

− β
φ
p(ũ + ε, ṽ) + β

φ
p(ũ − ε, ṽ) ≥ 0

(Proposition 25) imply that β
φ
p(ũ + ε, v)− β

φ
p(ũ − ε, v) > 0 for any

ε > 0. It follows that ũ is a discontinuity point also for β
φ
p(·, v);

2. Since β
φ
p is nonincreasing in its second variable, β

φ
p(ũ, ṽ + ε) −

β
φ
p(ũ, ṽ − ε) ≤ 0 for any ε ≥ 0 (Proposition 23). The assumption

that ṽ is a discontinuity point for β
φ
p(ũ, ·) implies that β

φ
p(ũ, v̄ + ε)−

β
φ
p(ũ, ṽ − ε) < 0 for any ε > 0. This last inequality and the inequal-

ity

β
φ
p(u, ṽ − ε)− β

φ
p(ũ, ṽ − ε)

− β
φ
p(u, ṽ + ε) + β

φ
p(ũ, ṽ + ε) ≥ 0

(Proposition 25) imply that β
φ
p(u, ṽ − ε)− β

φ
p(u, ṽ + ε) > 0 for any

ε > 0. It follows that ṽ is a discontinuity point also for β
φ
p(u, ·).
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Proposition 28. For every point p̄ = (ū, v̄) ∈ ∆+ an ε > 0 exists such
that the open set

Vε( p̄) := {(u, v) ∈ R2 : |u − ū| < ε, |v − v̄| < ε, u ̸= ū, v ̸= v̄}

is contained in ∆+ and does not contain any discontinuity point for β
φ
p .

Proof. Suppose, contrary to our assertion, that for every positive
integer n a discontinuity point pn = (un, vn) ∈ V1

n
( p̄) exists. By

applying Lemma 3, possibly by extracting a subsequence from (pn),
we can assume that each pn is a discontinuity point in either the u
or v direction. In the following, we shall assume that each pn is a
discontinuity point in the variable u. The case in which each pn is a
discontinuity point in the variable v has a similar proof. Let us fix
a natural number N that is so large that ū + 1

N < v̄ − 1
N , i.e., the

sets V1
n
( p̄) with n ≥ N lie entirely above the diagonal ∆. Let us

consider the function β
φ
p

(
·, v̄ − 1

N

)
:
]
ū − 1

N , ū + 1
N

[
→ N. From

Proposition 27 we know that discontinuities in u spread downwards.
Thus the function β

φ
p

(
·, v̄ − 1

N

)
should have an infinite number of

integer jumps. Now, since β
φ
p(u, v) is non-decreasing in the variable u

(Proposition 23), this fact would imply that β
φ
p

(
ū + 1

N , v̄ − 1
N

)
= ∞,

against the finiteness of β
φ
p (Remark 10).

Persistence diagrams and Representation Theorem

One of the main properties of the persistent Betti numbers functions
is that they admit a simple and compact representation. Precisely,
under our assumptions, it is possible to prove that each PBNF can be
compactly described by a multiset of points, proper and at infinity, of
the real plane 4, 5. This multiset will be called a persistence diagram. 4 Andrea Cerri, Barbara Di Fabio,

Massimo Ferri, Patrizio Frosini, and
Claudia Landi. Betti numbers in
multidimensional persistent homology
are stable functions. Math. Methods
Appl. Sci., 36(12):1543–1557, 2013. ISSN
0170-4214. doi: 10.1002/mma.2704.
URL http://dx.doi.org/10.1002/mma.

2704
5 David Cohen-Steiner, Herbert Edels-
brunner, and John Harer. Stability of
persistence diagrams. Discrete Comput.
Geom., 37(1):103–120, 2007. ISSN 0179-
5376. doi: 10.1007/s00454-006-1276-5.
URL http://dx.doi.org/10.1007/

s00454-006-1276-5

Before proceeding, we need to recall the definition of a multiset and a
matching between multisets.

Definition 50 (Multiset). A multiset is a function f from a set S to
N ∪ {∞}. If s ∈ S and f (s) > 0, we say that s is an element of the multiset
and its multiplicity is f (s). The realization of a multiset f is the set
S f := {(s, n) ∈ S × (N ∪ {∞}) : 0 < n ≤ f (s)}. A finite multiset is a
multiset whose realization is a finite set.

Definition 51 (Map between multisets). Let f1 : S1 → N ∪ {∞},
f2 : S2 → N ∪ {∞} be two multisets. Any map from S f1 to S f2 is called a
multiset map from the multiset f1 to the multiset f2.

Definition 52 (Matching between multisets). Let f1 : S1 → N ∪ {∞},
f2 : S2 → N ∪ {∞} be two multisets. Any bijection from S f1 to S f2 is
called a matching from the multiset f1 to the multiset f2.

http://dx.doi.org/10.1002/mma.2704
http://dx.doi.org/10.1002/mma.2704
http://dx.doi.org/10.1007/s00454-006-1276-5
http://dx.doi.org/10.1007/s00454-006-1276-5
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However, for the sake of simplicity, we will often denote a finite
multiset K with the standard notation K = {p1, . . . , pk}, assuming
that each point pj has a multiplicity mj.

Set ∆̄∗ = ∆∗ ∪ {∆}, where ∆ is the line {(u, v) ∈ R2 : u = v}. The
nonnegativity of the function µ

φ
ε,η (Proposition 25) and Proposition 26

imply that the following definition is well given.

Definition 53 (Persistence diagram). The persistence diagram Dgm(φ)

of the continuous function φ : X → R is the multiset f : ∆̄∗ → N ∪ {∞}
defined by setting, for every p = (u, v) ∈ ∆̄∗,

f (p) :=


µφ(p) := limε→0+ µ

φ
ε,ε(u, v), if u < v < ∞

νφ(p) := limε→0+ β
φ
p(u + ε, ∞)− β

φ
p(u − ε, ∞), if u < v = ∞

∞, if p = ∆.

Each element (u, v) of Dgm(φ) with u < v < ∞ is called a proper
cornerpoint. Each element (u, v) of Dgm(φ) with u < v = ∞ is called
a cornerpoint at infinity (or a cornerline, or an essential cornerpoint).
The point ∆ is called the trivial cornerpoint.

Proposition 29. Dgm(φ) = Dgm(φ ◦ g−1) for every isomorphism
g : K → L.

Proof. It immediately follows from Proposition 24 and the definition
of persistence diagram.

The two following statements hold.

Proposition 30 (Position of proper cornerpoints). If p = (u, v) ∈
Dgm(φ) and v < ∞, then u, v ∈ φ(V) (i.e., two vertexes x, y ∈ V exist,
such that u = φ(x) and v = φ(y)). Consequently, the number of proper
cornerpoints is finite.

Proof. Since µφ(p) := limε→0+ µ
φ
ε,ε(u, v) > 0, a positive and ar-

bitrarily small ε exists, such that β
φ
p(u + ε, v − ε)− β

φ
p(u − ε, v − ε)−

β
φ
p(u + ε, v + ε)+ β

φ
p(u − ε, v + ε) > 0. This implies that β

φ
p(u + ε, v − ε)−

β
φ
p(u + ε, v + ε) > β

φ
p(u − ε, v − ε)− β

φ
p(u − ε, v + ε) ≥ 0, and hence

β
φ
p(u + ε, v − ε) > β

φ
p(u + ε, v + ε). From Definition 48, it follows that

dim Im iφ∗
u+ε,v−ε > dim Im iφ∗

u+ε,v+ε = dim Im (iφ∗
v−ε,v+ε ◦ iφ∗

u+ε,v−ε).
As a consequence, iφ∗

v−ε,v+ε is not an isomorphism, and hence the
inclusion iφ

v−ε,v+ε : Kφ
v−ε → Kφ

v+ε must be proper. Since ε is arbi-
trarily small, v must belong to φ(V). Analogously, by observing that
β

φ
p(u + ε, v − ε) > β

φ
p(u − ε, v − ε) for an arbitrarily small ε > 0, we

can show that u ∈ φ(V).

Proposition 31 (Position of cornerpoints at infinity). If p = (u, ∞) ∈
Dgm(φ), then u ∈ φ(V) (i.e., a vertex x ∈ V exists, such that u = φ(x)).
Consequently, the number of cornerpoints at infinity is finite.
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Proof. Since νφ(p) := limε→0+ β
φ
p(u + ε, max φ)− β

φ
p(u − ε, max φ) >

0, a positive and arbitrarily small ε exists, such that β
φ
p(u + ε, max φ) >

β
φ
p(u − ε, max φ). From Definition 48, it follows that dim Im iφ∗

u+ε,max φ >

dim Im iφ∗
u−ε,max φ = dim Im (iφ∗

u+ε,max φ ◦ iφ∗
u−ε,u+ε). As a conse-

quence, iφ∗
u−ε,u+ε is not an isomorphism, and hence the inclusion

iφ
u−ε,u+ε : Kφ

u−ε → Kφ
u+ε must be proper. Since ε is arbitrarily small, u

must belong to φ(V).

Proposition 32 (Propagation of discontinuities from cornerpoints). If
p̄ = (ū, v̄) ∈ Dgm(φ), the following statements hold:

1. If ū < v < v̄ < ∞, then ū is a discontinuity point for β
φ
p(·, v);

2. If ū < u < v̄ < ∞, then v̄ is a discontinuity point for β
φ
p(u, ·);

3. If ū < v < v̄ = ∞, then ū is a discontinuity point for β
φ
p(·, v).

Proof. 1. Because of Proposition 26, since p̄ = (ū, v̄) is a proper
cornerpoint in Dgm(φ), we have that

i) β
φ
p(ū + η, v̄ − ε)− β

φ
p(ū − η, v̄ − ε)

− β
φ
p(ū + η, v̄ + ε) + β

φ
p(ū − η, v̄ + ε) > 0

for any small enough ε > 0 and any positive η < ε.

Since β
φ
p is nondecreasing in its first variable, we have that

ii) β
φ
p(ū + η, v̄ + ε)− β

φ
p(ū − η, v̄ + ε) ≥ 0

for any small enough ε > 0 and any positive η < ε (Proposi-
tion 23).

From i) and ii) it follows that β
φ
p(ū + η, v̄ − ε)− β

φ
p(ū − η, v̄ − ε) >

0 for any small enough ε > 0 and any positive η < ε. It follows
that ū is a discontinuity point of β

φ
p(·, v̄ − ε) for any small enough

ε > 0. Then Statement 1) in this proposition follows from State-
ment 1) in Proposition 27.

2. Because of Proposition 26, since p̄ = (ū, v̄) is a proper cornerpoint
in Dgm(φ), we have that

i) β
φ
p(ū + ε, v̄ − η)− β

φ
p(ū − ε, v̄ − η)

− β
φ
p(ū + ε, v̄ + η) + β

φ
p(ū − ε, v̄ + η) > 0

for any small enough ε > 0 and any positive η < ε.

Since β
φ
p is nonincreasing in its second variable, we have that

ii) β
φ
p(ū − ε, v̄ + η)− β

φ
p(ū − ε, v̄ − η) ≤ 0

for any small enough ε > 0 and any positive η < ε (Proposi-
tion 23).
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From i) and ii) it follows that β
φ
p(ū + ε, v̄ − η)− β

φ
p(ū + ε, v̄ + η) >

0 for any small enough ε > 0 and any positive η < ε. It follows
that v̄ is a discontinuity point of β

φ
p(ū + ε, ·) for any small enough

ε > 0. Then Statement 2) in this proposition follows from State-
ment 2) in Proposition 27.

3. Since p̄ = (ū, ∞) is an essential cornerpoint in Dgm(φ), we have
that β

φ
p(ū + ε, max φ)− β

φ
p(ū − ε, max φ) > 0 for any ε > 0. Because

of Remark 9, if v ≥ max φ then β
φ
p(ū + ε, v)− β

φ
p(ū − ε, v) > 0 for

any ε > 0. It follows that for any v ≥ max φ, ū is a discontinuity
point of β

φ
p(·, v). Then Statement 3) in this proposition follows

from Statement 1) in Proposition 27.

The following result completes the statement of Proposition 32,
showing that each discontinuity of a PBNF “comes from a corner-
point“.

Proposition 33 (All discontinuities come from cornerpoints). The
following statements hold:

1. If ū < v̄ is a discontinuity point for β
φ
p(·, v̄), then there exists at least

one cornerpoint (ū, v′) (proper or at infinity) with v′ ≥ v̄;

2. If v̄ > ū is a discontinuity point for β
φ
p(ū, ·), then there exists at least

one proper cornerpoint (u′, v̄) with u′ ≤ ū;

Proof. 1. If limε→0+ β
φ
p(ū + ε, max φ) − β

φ
p(ū − ε, max φ) > 0,

then (ū, ∞) is a cornerpoint at infinity and hence property 1)
holds. Therefore, we can assume that an ε̄ > 0 exists, such that
β

φ
p(ū + ε, max φ) − β

φ
p(ū − ε, max φ) = 0 for any positive ε ≤ ε̄.

Let us now consider the open cover V = {Vp}p∈c of the closed
segment c connecting the points p1 = (ū, v̄) and p2 = (ū, max φ),
where Vp is an open square centered at p ∈ c, with the sides par-
allel to the axes. If c does not contain cornerpoints, we can assume
that µ

φ

ε(p),ε(p)(p) = 0 for every p ∈ c, where ε(p) is a suitable posi-
tive constant depending on p. Since c is compact, V admits a finite
subcover {Vp1 , . . . , Vpn}. Let us set ε′ := min ε(pi) and η′ equal
to half the length of c. From Proposition 25 and Proposition 26, it
easily follows that µ

φ
ε′ ,η′( p̂) = ∑n

i=1 µ
φ

ε(pi),ε(pi)
(pi) = 0, where p̂ is

the middle point of c. This implies that

β
φ
p(ū + ε′, v̄)− β

φ
p(ū − ε′, v̄)

= β
φ
p(ū + ε′, max φ)− β

φ
p(ū − ε′, max φ) = 0,

against the assumption that ū < v̄ is a discontinuity point for
β

φ
p(·, v̄).



66 a basic and concise introduction to topological data analysis

2. We know that β
φ
p(min φ − 1, v̄ + ε) = β

φ
p(min φ − 1, v̄ − ε) = 0 for

any positive ε. Let us now consider the open cover V = {Vp}p∈c

of the closed segment c connecting the points p1 = (ū, v̄) and
p2 = (min φ − 1, v̄), where Vp is an open square centered at
p ∈ c, with the sides parallel to the axes. If c does not contain
cornerpoints, we can assume that µ

φ

ε(p),ε(p)(p) = 0 for every
p ∈ c, where ε(p) is a suitable positive constant depending on
p. Since c is compact, V admits a finite subcover {Vp1 , . . . , Vpn}.
Let us set ε′ := min ε(pi) and η′ equal to half the length of c.
From Proposition 25 and Proposition 26, it easily follows that
µ

φ
ε′ ,η′( p̂) = ∑n

i=1 µ
φ

ε(pi),ε(pi)
(pi) = 0, where p̂ is the middle point of c.

This implies that

β
φ
p(ū, v̄ − ε′)− β

φ
p(min φ − 1, v̄ − ε′)

= β
φ
p(ū, v̄ + ε′)− β

φ
p(min φ − 1, v̄ + ε′) = 0,

i.e., β
φ
p(ū, v̄ − ε′) = β

φ
p(ū, v̄ + ε′), against the assumption that v̄ > ū

is a discontinuity point for β
φ
p(ū, ·).

In the following we will need the next lemma, where the continu-
ity of β

φ
p at (ū, ∞) means the continuity of β

φ
p(·, max φ) at ū. We recall

that the sum over an empty set of indexes is defined to be equal to 0.

Lemma 4. If (ū, ∞) ∈ ∆∗, then β
φ
p(ū, ∞) = ∑u≤ū νφ(u, ∞).

Proof. We can assume that Dgm(φ) contains at least one corner-
point at infinity with abscissa less than or equal to ū, otherwise our
statement is trivial. Because of Propositions 30 and 31, we can find
u0 < . . . < um such that

1. u0 < min φ (and hence Kφ
u0 = ∅; moreover, because of Proposi-

tion 31, the abscissa of each cornerpoint at infinity of Dgm(φ) is
greater than u0);

2. um > ū, and there is no essential cornerpoint (u, ∞) for β
p
p having

its abscissa in ]ū, um] (and hence, because of Proposition 33, no
value in ]ū, um] is a discontinuity point of the function β

p
p(·, ∞));

3. There is no essential cornerpoint for β
p
p having its abscissa in

{u0, . . . , um} (and hence, because of Proposition 33, no value ui is a
discontinuity point of the function β

p
p(·, ∞));

4. Each open interval ]ui−1, ui[ with 1 ≤ i ≤ m, contains exactly one
abscissa of a cornerpoint pi at infinity (possibly endowed with a
multiplicity greater than 1). If we set βi := β

φ
p(ui, ∞) for any i with

0 ≤ i ≤ m, we can write that νφ(pi) = βi − βi−1.
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Due to assumption 1, β0 = 0. Therefore

∑
u≤ū

νφ(u, ∞) = ∑
1≤i≤m

νφ(pi)

= ∑
1≤i≤m

βi − βi−1

= ∑
1≤i≤m

βi − ∑
1≤i≤m

βi−1

= ∑
1≤i≤m

βi − ∑
0≤i≤m−1

βi

= βm − β0

= βm := β
φ
p(um, ∞) = β

φ
p(ū, ∞)

because the function β
φ
p(u, ∞) is right-continuous in the variable u

(Proposition 22), and no value in ]ū, um] is a discontinuity point of
the function β

p
p(·, ∞).

The key role of persistence diagrams is shown in the following
Representation Theorem 6,7, claiming that persistence diagrams 6 Andrea Cerri, Barbara Di Fabio,

Massimo Ferri, Patrizio Frosini, and
Claudia Landi. Betti numbers in
multidimensional persistent homology
are stable functions. Math. Methods
Appl. Sci., 36(12):1543–1557, 2013. ISSN
0170-4214. doi: 10.1002/mma.2704.
URL http://dx.doi.org/10.1002/mma.

2704
7 David Cohen-Steiner, Herbert Edels-
brunner, and John Harer. Stability of
persistence diagrams. Discrete Comput.
Geom., 37(1):103–120, 2007. ISSN 0179-
5376. doi: 10.1007/s00454-006-1276-5.
URL http://dx.doi.org/10.1007/

s00454-006-1276-5

uniquely determine 1-dimensional PBNFs (the converse also holds by
definition of persistence diagram).

Theorem 9 (Representation Theorem). If (ū, v̄) ∈ ∆+, then

β
φ
p(ū, v̄) = ∑

(u,v)∈∆+
u≤ū, v>v̄

µφ(u, v) + ∑
u≤ū

νφ(u, ∞).

Proof. We can assume that Dgm(φ) contains at least one proper
cornerpoint (u′, v′) with u′ ≤ ū and v′ > v̄, otherwise our statement
is trivial because of Proposition 33 (implying β

φ
p(ū, v̄) = β

φ
p(ū, ∞))

and Lemma 4. Propositions 30 and 31 guarantee that we can find
u0 < . . . < um and v0 < . . . < vn such that

1. u0 < min φ (and hence Kφ
u0 = ∅; moreover, because of Proposi-

tion 31, the abscissa of each cornerpoint at infinity of Dgm(φ) is
greater than u0);

2. v̄ > um > ū, and there is no (proper or essential) cornerpoint
(u, v) for β

p
p having its abscissa in ]ū, um], with v ≥ v0 (and hence,

because of Proposition 33, no value in ]ū, um] is a discontinuity
point of the function β

p
p(·, v), for any v ≥ v0);

3. v0 > v̄, and there is no cornerpoint (u, v) for β
p
p having its ordi-

nate in ]v̄, v0], with u ≤ ū (and hence, because of Proposition 33,
no value in ]v̄, v0] is a discontinuity point of the function β

p
p(u, ·),

for any u ≤ ū);

4. vn > max φ;

http://dx.doi.org/10.1002/mma.2704
http://dx.doi.org/10.1002/mma.2704
http://dx.doi.org/10.1007/s00454-006-1276-5
http://dx.doi.org/10.1007/s00454-006-1276-5
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5. There is no cornerpoint (and hence, because of Proposition 33, no
discontinuity point) for β

φ
p having its abscissa in {u0, . . . , um};

6. There is no cornerpoint (and hence, because of Proposition 33, no
discontinuity point) for β

φ
p having its ordinate in {v0, . . . , vn};

7. For 1 ≤ i ≤ m, 1 ≤ j ≤ n, each open rectangle Rj
i of vertexes

(ui, vj−1), (ui−1, vj−1), (ui, vj), (ui−1, vj) contains at most one cor-

nerpoint pj
i (possibly endowed with a multiplicity greater than 1).

If we set β
j
i := β

φ
p(ui, vj) for any i, j with 0 ≤ i ≤ m, 0 ≤ j ≤ n,

we can write that µφ(pj
i) = β

j−1
i − β

j−1
i−1 − β

j
i + β

j
i−1. If Rj

i does not

contain any cornerpoint, we set pj
i equal to an arbitrarily chosen

point in Rj
i (in this case µφ(pj

i) = 0).

Figure 24: The grid used in the proof
of Theorem 9. The red points are
cornerpoints of Dgm(φ).

Due to assumption 1, β
j
0 = 0 for any index j. Moreover, by re-

calling that the function β
φ
p(u, v) is right-continuous in the variable

u and no value in ]ū, um] is a discontinuity point of the function
β

p
p(·, v), for any v ≥ v0, Lemma 4 guarantees that βn

m = β
φ
p(um, vn) =

β
φ
p(ū, ∞) = ∑u≤ū νφ(u, ∞). Furthermore, by recalling that (1) the

function β
φ
p(u, v) is right-continuous in both its variables, (2) no value

in ]ū, um] is a discontinuity point of the function β
p
p(·, v), for any

v ≥ v0, and (3) no value in ]v0, v̄] is a discontinuity point of the func-
tion β

p
p(u, ·), for any u ≤ ū, we obtain that β

φ
p(um, v0) = β

φ
p(ū, v̄). It
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follows that

∑
(u,v)∈∆∗
u≤ū, v>v̄

µφ(u, v) = ∑
(u,v)∈∆∗

u<um , v>v0

µφ(u, v)

= ∑
1≤i≤m
1≤j≤n

µφ(pj
i)

= ∑
1≤i≤m
1≤j≤n

β
j−1
i − ∑

1≤i≤m
1≤j≤n

β
j−1
i−1 − ∑

1≤i≤m
1≤j≤n

β
j
i + ∑

1≤i≤m
1≤j≤n

β
j
i−1

= ∑
1≤i≤m

0≤j≤n−1

β
j
i − ∑

0≤i≤m−1
0≤j≤n−1

β
j
i − ∑

1≤i≤m
1≤j≤n

β
j
i + ∑

0≤i≤m−1
1≤j≤n

β
j
i

= ∑
0≤j≤n−1

β
j
m − ∑

0≤j≤n−1
β

j
0 − ∑

1≤j≤n
β

j
m + ∑

1≤j≤n
β

j
0

= β0
m − βn

m

= β
φ
p(um, v0)− β

φ
p(um, vn)

= β
φ
p(ū, v̄)− β

φ
p(ū, ∞)

= β
φ
p(ū, v̄)− ∑

u≤ū
νφ(u, ∞).

In plain words, Theorem 9 states that the value assumed by β
φ
p at

a point (ū, v̄) ∈ ∆+ equals the number of cornerpoints lying above
and on the left of (ū, v̄). The following corollary of Theorem 9 gives a
useful interpretation of the value µ

φ
η,η( p̄).

Corollary 2. Let p̄ = (ū, v̄) ∈ ∆+. Assume that ū + η < v̄ − η, with
η > 0. Then µ

φ
η,η( p̄) equals the number of (proper) points of Dgm(φ)

(counted with their multiplicities) that belong to the semi-open square

Q̂η := {(u, v) ∈ ∆+ : ū − η < u ≤ ū + η, v̄ − η < v ≤ v̄ + η}.

Proof. The statement follows from the definition of µ
φ
η,η( p̄) (Defini-

tion 49) and the Representation Theorem (Theorem 9), since

µ
φ
η,η( p̄) = β

φ
p(ū + η, v̄ − η)− β

φ
p(ū − η, v̄ − η)

− β
φ
p(ū + η, v̄ + η) + β

φ
p(ū − η, v̄ + η)

= ∑
(u,v)∈∆∗

u≤ū+η
v>v̄−η

µφ(u, v) + ∑
u≤ū+η

νφ(u, ∞)− ∑
(u,v)∈∆∗

u≤ū−η
v>v̄−η

µφ(u, v)− ∑
u≤ū−η

νφ(u, ∞)

− ∑
(u,v)∈∆∗

u≤ū+η
v>v̄+η

µφ(u, v)− ∑
u≤ū+η

νφ(u, ∞) + ∑
(u,v)∈∆∗

u≤ū−η
v>v̄+η

µφ(u, v) + ∑
u≤ū−η

νφ(u, ∞)

= ∑
(u,v)∈∆∗

ū−η<u≤ū+η
v>v̄−η

µφ(u, v)− ∑
(u,v)∈∆∗

ū−η<u≤ū+η
v>v̄+η

µφ(u, v)
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= ∑
(u,v)∈∆∗

ū−η<u≤ū+η
v̄−η<v≤v̄+η

µφ(u, v)

Figure 25: The set Q̂η cited in Corol-
lary 2. The points in black are included.

Bottleneck distance and stability of persistence diagrams

Our next goal is to introduce a metric for the space of persistence
diagrams. To do that, we have to see how β

φ
p(u, v) changes when φ

changes. In the following, we will use the symbol Cφ
p (u) to denote

the set of p-chains in Kφ
u .

A lower bound for the natural pseudo-distance

Proposition 34. Assume φ, ψ : Vert K → R and ∥φ − ψ∥∞ ≤ η. Then for
every (u, v) ∈ ∆+ we have that β

φ
p(u − η, v + η) ≤ β

ψ
p (u, v).

Proof. Let us choose an ordered basis (α1, . . . , αm) of the vector space
Hφ

p (u − η, v + η) ⊆ Hp(K
φ
v+η). Let us arbitrarily choose zi ∈ αi with

zi ∈ Cφ
p (u − η) for i = 1, . . . , m. For each index i, we can consider

the homology class α̂i ∈ Hψ
p (u, v) that contains zi (observe that

zi ∈ Cψ
p (u), because ∥φ − ψ∥∞ ≤ η). Let us now prove that the

homology classes α̂i are linearly independent in Hψ
p (u, v). If λ1α̂1 +

. . . + λmα̂m = 0 ∈ Hψ
p (u, v) := Im iψ∗

u,v ⊆ Hp(K
ψ
v ), we can find a chain

γ ∈ Cψ
p+1(v) such that ∂p+1γ = λ1z1 + . . . + λmzm. Since ∥φ − ψ∥∞ ≤

η, we have that γ ∈ Cφ
p+1(v + η), and hence λ1α1 + . . . + λmαm =
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0 ∈ Hφ
p (u − η, v + η) := Im iφ∗

u−v,v+η ⊆ Hp(K
φ
v+η). We know that

α1, . . . , αm are linearly independent, and hence λ1 = . . . = λm = 0.
Therefore, α̂1, . . . , α̂m are linearly independent too. This proves that
dim Hφ

p (u − η, v + η) ≤ dim Hψ
p (u, v).

Corollary 3. Assume φ, ψ : Vert K → R and G is a group of isomorphisms
from K to K. If (u, v) ∈ ∆+ and β

φ
p(u − η, v + η) > β

ψ
p (u, v), then

dG(φ, ψ) ≥ η.

Proof. Proposition 24 guarantees that β
ψ◦g
p (u, v) = β

ψ
p (u, v) for ev-

ery (u, v) ∈ ∆+ and every g ∈ G. Because of Proposition 34, the
inequality β

φ
p(u − η, v + η) > β

ψ
p (u, v) = β

ψ◦g
p (u, v) implies that

∥φ − ψ ◦ g∥∞ > η for every g ∈ G. It follows that dG(φ, ψ) :=
ming∈G ∥φ − ψ ◦ g∥∞ ≥ η.

Proposition 34 has the following interesting consequence.

Proposition 35 (Local constancy of multiplicity). Assume φ : Vert K →
R. If p̄ = (ū, v̄) ∈ ∆+, then there is a real number η̄ > 0 such that if
ψ ∈ Φ and ∥φ − ψ∥∞ ≤ η with 0 < η ≤ η̄, then the closed square

Qη := {(u, v) ∈ ∆+ : |u − ū| ≤ η, |v − v̄| ≤ η}

contains exactly µφ( p̄) (proper) points (counted with their multiplicities) of
the persistence diagram Dgm(ψ).

Proof. By Proposition 28, a sufficiently small ε > 0 exists such that
the set Vε( p̄) := {(u, v) ∈ R2 : |u − ū| < ε, |v − v̄| < ε, u ̸=
ū, v ̸= v̄} is contained in ∆+ and does not contain any discontinuity
point of β

φ
p . Proposition 32 (Propagation of discontinuities from

cornerpoints) implies that p̄ is the only point of ∆+ that could belong
to both Dgm(φ) and the open square

Qε := {(u, v) ∈ ∆+ : |u − ū| < ε, |v − v̄| < ε}.

Let η̄ be a real number such that 0 < η̄ < ε
2 . For each real number

η with 0 < η ≤ η̄, let us take a sufficiently small positive real number
δ < η with 2η + δ < ε, so that ū + 2η + δ < v̄ − 2η − δ (we recall
that ū + ε < v̄ − ε, since Vε( p̄) ⊆ ∆+). We define a = (ū + η + δ, v̄ −
η − δ), b = (ū − η − δ, v̄ − η − δ), c = (ū + η + δ, v̄ + η + δ), e =

(ū − η − δ, v̄ + η + δ) as illustrated in Figure 26.
By applying Proposition 34 twice,

β
φ
p(ū + δ, v̄ − δ) ≤ β

ψ
p (a) ≤ β

φ
p(ū + 2η + δ, v̄ − 2η − δ).

Since β
φ
p is constant in each connected component of the set Vε( p̄),

β
φ
p(ū + δ, v̄ − δ) = β

φ
p(a) = β

φ
p(ū + 2η + δ, v̄ − 2η − δ).
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Figure 26: The set Qε used in the
proof of Proposition 35. The set Vε

is obtained from Qε by removing the
points displayed in red.

This implies that β
φ
p(a) = β

ψ
p (a). Analogously, we can prove that

β
φ
p(b) = β

ψ
p (b), β

φ
p(c) = β

ψ
p (c), and β

φ
p(e) = β

ψ
p (e). Hence, µφ( p̄) =

µ
φ
η+δ,η+δ( p̄) = µ

ψ
η+δ,η+δ( p̄). From Corollary 2 (applied to ψ), it follows

that µφ( p̄) is equal to the number of cornerpoints in Dgm(ψ) that
are contained in the semi-open square Q̂η+δ with vertexes a, b, c, e,
defined by setting

Q̂η+δ := {(u, v) ∈ ∆+ : ū− η − δ < u ≤ ū+ η + δ, v̄− η − δ < v ≤ v̄+ η + δ}.

This is true for any sufficiently small δ > 0. Therefore, µφ( p̄) is equal
to the number of cornerpoints in Dgm(ψ) contained in the closed
square Qη =

⋂
δ>0 Q̂η+δ.

To proceed, we have to endow the set ∆̄∗ = ∆∗ ∪ {∆} with the
extended metric d introduced in the following definition.

Definition 54. For every p, q ∈ ∆̄∗ we set d(p, q) equal to

min
{

max {|u − u′|, |v − v′|} , max
{

v−u
2 , v′−u′

2

}}
if p = (u, v), q = (u′, v′) ∈ ∆+

|u − u′| if p = (u, ∞), q = (u′, ∞)
v−u

2 , if p = (u, v) ∈ ∆+, q = ∆
v′−u′

2 if p = ∆, q = (u′, v′) ∈ ∆+

0 if p = ∆, q = ∆

∞ otherwise.

Proposition 36. The function d given in Def. 54 is an extended metric.

Exercise 18. Prove Proposition 36.

We can now introduce a metric between persistence diagrams.
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Figure 27: The open ball of center
p and radius r with respect to the
metric d in the cases 1) r < d(p, ∆), 2)
r = d(p, ∆), 3) d(p, ∆) < r < 2d(p, ∆), 4)
r ≥ 2d(p, ∆).

Definition 55. For each pair (Dgm(φ), Dgm(φ′)) we set

dmatch(Dgm(φ), Dgm(φ′)) := inf
σ∈S(φ,φ′)

sup
p∈Dgm(φ)

d(p, σ(p))

where S(φ, φ′) is the set of all matchings from Dgm(φ) to Dgm(φ′).

Proposition 37. The function dmatch is a metric.

Proof. 1. We have that

dmatch(Dgm(φ), Dgm(φ)) := inf
σ∈S(φ,φ)

sup
p∈Dgm(φ)

d(p, σ(p))

≤ sup
p∈Dgm(φ)

d(p, id(p)) = 0.

2. If dmatch(Dgm(φ), Dgm(φ′)) = 0, then for every ε > 0 we can
find a matching σε ∈ S(φ, φ′) such that d(p, σε(p)) ≤ ε for every
p ∈ Dgm(φ), and hence µφ(p) ≤ µφ′

(p) for any p ∈ ∆+ and
νφ(p) ≤ νφ′

(p) for any p = (u, ∞). Analogously, µφ′
(p) ≤ µφ(p)

for any p ∈ ∆+ and νφ′
(p) ≤ νφ(p) for any p = (u, ∞). Therefore,

Dgm(φ) = Dgm(φ′);

3. We have that

dmatch(Dgm(φ), Dgm(φ′)) := inf
σ∈S(φ,φ′)

sup
p∈Dgm(φ)

d(p, σ(p))

= inf
σ∈S(φ,φ′)

sup
p∈Dgm(φ)

d(σ(p), p)

= inf
σ−1∈S(φ′ ,φ)

sup
q∈Dgm(φ′)

d(q, σ−1(q))
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= inf
σ−1∈S(φ′ ,φ)

sup
q∈Dgm(φ′)

d(q, σ−1(q))

= dmatch(Dgm(φ′), Dgm(φ));

4. If σ ∈ S(φ, φ′) and σ′ ∈ S(φ′, φ′′), then d(p, σ′(σ(p))) ≤
d(p, σ(p)) + d(σ(p), σ′(σ(p))) for every p ∈ Dgm(φ), and hence

sup
p∈Dgm(φ)

d(p, σ′(σ(p))) ≤ sup
p∈Dgm(φ)

(d(p, σ(p)) + d(σ(p), σ′(σ(p))))

≤ sup
p∈Dgm(φ)

(d(p, σ(p)) + sup
p∈Dgm(φ)

d(σ(p), σ′(σ(p))))

= sup
p∈Dgm(φ)

d(p, σ(p)) + sup
q∈Dgm(ψ)

d(q, σ′(q)).

It follows that for every σ′ ∈ S(φ, φ′)

dmatch(Dgm(φ), Dgm(φ′′)) = inf
σ′′∈S(φ,φ′′)

sup
p∈Dgm(φ)

d(p, σ′′(p))

= inf
σ′∈S(φ′ ,φ′′)

sup
p∈Dgm(φ)

d(p, σ′(σ(p)))

≤ sup
p∈Dgm(φ)

d(p, σ(p)) + inf
σ′∈S(φ′ ,φ′′)

sup
q∈Dgm(ψ)

d(q, σ′(q))

≤ sup
p∈Dgm(φ)

d(p, σ(p)) + dmatch(Dgm(φ′), Dgm(φ′′)).

By computing the infimum for σ varying in S(φ, φ′), we obtain the
triangle inequality

dmatch(Dgm(φ), Dgm(φ′′)) ≤ dmatch(Dgm(φ), Dgm(φ′))+ dmatch(Dgm(φ′), Dgm(φ′′)).

The metric dmatch is called bottleneck distance or matching distance.

Proposition 38. If φ, ψ : Vert K → R and ∥φ − ψ∥∞ ≤ ε, then for any
finite multiset X ⊆ Dgm(φ) ∩ ∆+ with minx∈X d(x, ∆) > ε, there is an
injective multiset map σ : X → Dgm(ψ) s.t. maxx∈X d(x, σ(x)) ≤ ε.

Proof. Let X = {p1, . . . , pk}, where each pj = (uj, vj) has multiplicity
in X equal to mj ≤ µφ(pj), and set m := ∑k

j=1 mj. Let us set φt :=
ε−t

ε φ + t
ε ψ for every t ∈ [0, ε]. Then, for every t, t′ ∈ [0, ε], ∥φt −

φt′∥∞ ≤ |t − t′|. Now we will consider the set A of all values δ ∈ [0, ε]

for which an injective multiset map σδ : X → Dgm(φδ) exists,
such that d(pj, σδ(pj)) ≤ δ for every pj ∈ X. In other words, if we
think of the variation of t as the flow of time, A is the set of times
δ for which the cornerpoints in X move less than δ itself, when φ is
changed into φδ. We want to prove that sup A = ε. First of all, we
observe that A is non-empty, since 0 ∈ A. Let us set δ̄ = sup A and
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show that δ̄ ∈ A. Indeed, let (δn) be a non-decreasing sequence in A,
converging to δ̄. Since δn ∈ A, for each n there exists an injective map
σδn : X → Dgm(φδn), such that maxj d(pj, σδn(pj)) ≤ δn. Since δn ≤ ε,
maxj d(pj, σδn(pj)) ≤ ε for any n. Thus, σδn(pj) ∈ Qε(pj) for any n,
where Qε(pj) := {(u, v) ∈ ∆+ : uj − ε ≤ u ≤ uj + ε, vj − ε ≤ v ≤ vj + ε}
for 1 ≤ j ≤ k, because minx∈X d(x, ∆) > ε and hence the closed
square Qε(pj) does not meet the diagonal ∆. Possibly by extracting a
subsequence, we can assume that the sequence σδn(pj) converges for
any index j. We set p̄j := limn→∞ σδn(pj). We have that d(pj, p̄j) ≤ δ̄.
Also, the following property holds:

(∗) If pj1 , . . . , pjr ∈ X and q̄ = p̄j1 = . . . = p̄jr , then the multiplicity
of q̄ = (ū, v̄) in Dgm(φδ̄) is not smaller than r.

In other words, if a submultiset of cardinality r of X becomes a
singleton at time δ̄, then the point q̄ in such a singleton has a multi-
plicity not smaller than r.

Let us prove (∗). We know that δn ≤ ε for any index n. Let η > 0.
If n is large enough then |δn − δ̄| ≤ η, and hence ∥φδn − φδ̄∥∞ ≤
η. As a consequence, on the one hand, if η is small enough then
Proposition 35 (local constancy of multiplicity) guarantees that for
any large enough n the multiplicity m of q̄ in Dgm(φδ̄) equals the
number of cornerpoints of Dgm(φδn) that belong to the closed square
Qη(q̄) := {(u, v) ∈ ∆+ : ū − η ≤ u ≤ ū + η, v̄ − η ≤ v ≤
v̄ + η}. On the other hand, Qη(q̄) contains at least the r cornerpoints
σδn(pj1), . . . , σδn(pjr ) of Dgm(φδn), since limn→∞ σδn(pji ) = q̄ for
1 ≤ i ≤ r. Therefore, m ≥ r, and (∗) is proved.

In particular, q̄ is a cornerpoint in Dgm(φδ̄). In order to conclude
that δ̄ ∈ A, it is now sufficient to consider the multiset map σδ̄ : X →
Dgm(φδ̄) taking pj to p̄j for every pj ∈ X. Property (∗) guarantees
that σδ̄ is injective. So we have proved that sup A ∈ A, i.e. sup A =

max A. We end the proof by showing that max A = ε. In fact, if δ̄ < ε,
by using Proposition 35 once again, it is not difficult to show that
there exists η > 0, with δ̄ + η < ε, and an injective multiset map
σδ̄,δ̄+η from the multiset { p̄1, . . . , p̄k} to the multiset Dgm(φδ̄+η) such
that d( p̄i

j, σδ̄,δ̄+η( p̄i
j)) ≤ η for 1 ≤ j ≤ k, where p̄i

j denotes the i-th copy
of p̄j in the multiset σδ̄(X). Hence σδ̄,δ̄+η ◦ σδ̄ : X → Dgm(φδ̄+η) is
an injective multiset map and, by the triangle inequality, d(pj, σδ̄,δ̄+η ◦
σδ̄(pj)) ≤ δ̄ + η for 1 ≤ j ≤ k, implying that δ̄ + η ∈ A. This would
contradict the fact that δ̄ = sup A. Therefore, ε = max A, and hence
ε ∈ A.

The following result extends to the points at infinity Proposi-
tion 38. We omit the proof, which is quite analogous to the proof of
Proposition 38.
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Proposition 39. If ∥φ − ψ∥∞ ≤ ε, then for any finite multiset of cor-
nerlines X′ ⊆ Dgm(φ), there exists an injective multiset map σ : X′ →
Dgm(ψ) such that d(x, σ(x)) ≤ ε for every x ∈ X′.

Now we can prove that it is possible to injectively match all the
points of Dgm(φ) with points of Dgm(ψ), making a maximum dis-
placement not greater than ∥φ − ψ∥∞.

Proposition 40. If ∥φ − ψ∥∞ ≤ ε, then there exists an injective multiset
map τ : Dgm(φ) → Dgm(ψ) such that d(x, τ(x)) ≤ ε for every
x ∈ Dgm(φ).

Proof. Set X1 := {p ∈ Dgm(φ) : d(p, ∆) > ε} and X2 := {p ∈
Dgm(φ) : d(p, ∆) ≤ ε}. The cardinality of X1 is finite, according
to Proposition 30 and Proposition 31. Therefore, Proposition 38 and
Proposition 39 guarantee the existence of an injective multiset map
τ1 from the multiset X1 to Dgm(ψ), such that d(x, τ(x)) ≤ ε and
τ(x) ̸= ∆ for every x ∈ X1.

We can now consider an injective multiset map τ2 from the multi-
set X2 to the multiset containing just the point ∆ with infinite multi-
plicity.

The map τ that coincides with τ1 on X1 and with τ2 on X2 is the
wanted injective multiset map τ.

We now recall the following well-known result 8. 8 K. Kuratowski and A. Mostowski.
Set theory. PWN—Polish Scientific
Publishers, Warsaw; North-Holland
Publishing Co., Amsterdam, 1968.
Translated from the Polish by M.
Maczyński

Theorem 10 (Cantor-Bernstein Theorem). Let A and B be two sets. If
two injections f : A → B and g : B → A exist, then there is a bijection
h : A → B. Furthermore, we can assume that the equality h(a) = b implies
that either f (a) = b or g(b) = a (or both).

Figure 28: The classical construction
used to prove the Cantor-Bernstein
Theorem. Each arrow denotes a local
bijection.

We are now ready to prove a key result in TDA.

Theorem 11 (Matching Distance Stability Theorem). 9 9 David Cohen-Steiner, Herbert Edels-
brunner, and John Harer. Stability of
persistence diagrams. Discrete Comput.
Geom., 37(1):103–120, 2007. ISSN 0179-
5376. doi: 10.1007/s00454-006-1276-5.
URL http://dx.doi.org/10.1007/

s00454-006-1276-5

dmatch(Dgm(φ), Dgm(ψ)) ≤ ∥φ − ψ∥∞.

http://dx.doi.org/10.1007/s00454-006-1276-5
http://dx.doi.org/10.1007/s00454-006-1276-5
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Proof. Proposition 40 implies that there exist an injective multiset
map τ : Dgm(φ) → Dgm(ψ) such that d(x, τ(x)) ≤ ε for every
x ∈ Dgm(φ), and an injective multiset map τ′ : Dgm(ψ) → Dgm(φ)

such that d(y, τ′(y)) ≤ ε for every y ∈ Dgm(ψ). Then the claim
follows from the Cantor-Bernstein Theorem, by setting A equal to a
realization of Dgm(φ) and B equal to a realization of Dgm(ψ).

Corollary 4. Assume φ, ψ : Vert K → R and G is a group of isomorphisms
from K to K. Then

dmatch(Dgm(φ), Dgm(ψ)) ≤ dG(φ, ψ).

Proof. From Proposition 29 and Theorem 11 it follows that

dmatch(Dgm(φ), Dgm(ψ)) = dmatch(Dgm(φ), Dgm(ψ ◦ g))

≤ ∥φ − ψ ◦ g∥∞

for every g ∈ G. This implies the wanted inequality.

Definition 56. If σ̄ is a matching from Dgm(φ) to Dgm(ψ) and the
equality maxp∈Dgm(φ) d(p, σ̄(p)) = dmatch(Dgm(φ), Dgm(ψ)) holds,
then we say that σ̄ is an optimal matching.

We observe that for each pair (Dgm(φ), Dgm(ψ)) of persistence
diagrams at least an optimal matching σ̄ : Dgm(φ) → Dgm(ψ) exists.

Exercise 19. Find a simplicial complex K and two continuous functions
φ, ψ : Vert K → R such that

0 = dmatch(Dgm(φ), Dgm(ψ)) < dG(φ, ψ).





Non-expansive equivariant operators

Until now, we focused on data, ignoring the role of observers. How-
ever, it is well-known that different observers can have different re-
actions in the presence of the same data, and this suggests that we
should study the pairs (data, observer) rather than just the data.

If data analysis were not dependent on the chosen observer, then
physicians’ diagnoses would always be identical, scientists would
always see the same causes for each phenomenon, and all people
would agree in judging who the heroes and villains in a movie or a
political event are.

In this chapter we will refer to the epistemological setting de-
scribed by the following assumptions.

1. Data are represented as functions defined on topological spaces,
since only data that are stable with respect to a certain criterion
(e.g., with respect to some kind of measurement) can be consid-
ered for applications, and stability requires a topological structure.

2. Data cannot be studied in a direct and absolute way. They are
only knowable through acts of transformation made by an agent
that observes the data. From the point of view of data analysis,
only the pair (data, observer) matters. In general terms, observers
are not necessarily endowed with purposes or goals: they are just
ways and methods to transform data. Acts of measurement are a
particular class of acts of transformation, that can or not be at the
service of a global goal quantified by a loss or a reward function.

3. Observers are described by the way they transform data while
respecting some kind of invariance. In other words, any observer
can be seen as a group equivariant operator acting on a function
space.

4. Data similarity depends on the output of the considered observer.

In other words, in this chapter we will assume that the analysis
of data is replaced by the analysis of the pair (data, observer). Since
an observer can be seen as a group equivariant operator, from the
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mathematical viewpoint our purpose consists in presenting a good
topological theory of suitable operators of this kind, representing
observers. For more details, we refer the interested reader to 10. 10 P. Frosini. Towards an observer-

oriented theory of shape comparison:
Position paper. In Proceedings of the
Eurographics 2016 Workshop on 3D Object
Retrieval, 3DOR ’16, page 5–8, Goslar,
DEU, 2016. Eurographics Association.
ISBN 9783038680048

Data representation. Let K be a simplicial complex. In our mathemat-
ical model, each space of data is represented as a function space, that
is, as a set Φ of real-valued functions φ : Vert K → R. We assume that
Φ is endowed with the distance

DΦ(φ1, φ2) := ∥φ1 − φ2∥∞ . (3)

We can think of K as the space where one makes measurements, and
of Φ as the set of admissible measurements.

The set Vert K is endowed with the pseudo-metric DVert K which
distinguishes points only if they are seen as different by some mea-
surement:

DVert K(v1, v2) = sup
φ∈Φ

|φ(v1)− φ(v2)| (4)

for every v1, v2 ∈ Vert K. We recall that a pseudo-metric is just a
distance d without the property that d(a, b) = 0 implies a = b.

We will assume that the metric space Φ is large enough to imply
that DVert K is a distance.

Transformations on data and equivariance. We assume that data can be
transformed through Φ-preserving isomorphisms. The set of these
isomorphisms will be denoted by the symbol IsoΦ(K). This set is a
group with respect to the composition of maps.

Proposition 41. If g ∈ IsoΦ(K), then g is an isometry (and hence a
bijective maps) with respect to DVert K.

Proof. Let us fix two arbitrary vertexes v, v′ in X. Obviously, the map
Rg : Φ → Φ taking each function φ to φ ◦ g is surjective, since

φ = Rg

(
Rg−1(φ)

)
. Hence Rg(Φ) = Φ. Therefore, g preserves the

distance DVert K:

DVert K(g(x), g(x′)) = sup
φ∈Φ

|φ(g(v))− φ(g(v′))|

= sup
φ∈Φ

|(φ ◦ g)(v)− (φ ◦ g)(v′)| (5)

= sup
φ∈Rg(Φ)

|φ(v)− φ(v′)| (6)

= sup
φ∈Φ

|φ(v)− φ(v′)| = DVert K(v, v′).

Since g is bijective, it follows that g is an isometry w.r.t. DVert K.
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Let us now consider a subgroup G of the group IsoΦ(K). G repre-
sents the set of transformations on data for which we require equiv-
ariance to be respected. We already know that G is endowed with the
pseudo-metric defined by setting

DG(g1, g2) := sup
φ∈Φ

DΦ(φ ◦ g1, φ ◦ g2) (7)

for every g1, g2 ∈ G. DG measures the distance between two iso-
morphisms as the difference of their actions on the set Φ of possible
measurements.

Proposition 42. DG is a metric, provided that DVert K is a metric.

Exercise 20. Prove Proposition 42.

As we know, the pair (Φ, G) is called a perception pair. The group
G of transformations can be either learned, or fixed as part of prior
knowledge.

Group Equivariant Non-Expansive Operators. If two perception pairs
(Φ, G), (Ψ, H) are given, together with a map F : Φ → Ψ and a
homomorphism T : G → H such that F(φ ◦ g) = F(φ) ◦ T(g) for
every φ ∈ Φ, g ∈ G, the pair (F, T) is said to be a group equivariant
operator (GEO) from (Φ, G) to (Ψ, H).

We observe that the functions in Φ and the functions in Ψ are
defined on domains that are generally different from each other, and
the equivariance groups G, H can be different from each other as
well.

Definition 57. If (F, T) is a group equivariant operator from (Φ, G) to
(Ψ, H) and F is non-expansive (i.e., DΨ (F(φ1), F(φ2)) ≤ DΦ (φ1, φ2)

for every φ1, φ2 ∈ Φ), then (F, T) is called a Group Equivariant Non-
Expansive Operator (GENEO).

Example 5. Let K be the set of all vertexes and edges of a regular hexagon,
with the natural incidence relation, Φ be the set of all functions from Vert K
to [0, 1], and G be the group of all rotations that take the hexagon to itself.
Analogously, let L be the set of all vertexes and edges of a regular triangle,
with the natural incidence relation, Ψ be the set of all functions from Vert L
to [0, 1], and H be the group of all rotations that take the triangle to itself.
Let v0, . . . , v5 be the vertexes of the hexagon and w0, w1, w2 be the vertexes
of the triangle. Now, let us consider the map F : Φ → Ψ taking each
function φ ∈ Φ to the function ψ ∈ Ψ defined by setting ψ(wi) =
φ(vi)+φ(vi+3)

2 , where the sum i + 3 is intended modulo 6. Let T : G → H
be the homomorphism taking each rotation of α degrees to the rotation of
2α degrees. We can easily check that (F, T) is a GENEO from (Φ, G) to
(Ψ, H).
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The following statement makes clear how GENEOs act on the
natural pseudo-distances.

Proposition 43. If (F, T) is a GENEO from (Φ, G) to (Ψ, H), then F is a
contraction with respect to the natural pseudo-distances dG, dH .

Proof. Since F is a GENEO, it follows that

dH(F(φ1), F(φ2)) = min
h∈H

DΨ (F(φ1), F(φ2) ◦ h)

≤ min
g∈G

DΨ (F(φ1), F(φ2) ◦ T(g)) (8)

= min
g∈G

DΨ (F(φ1), F(φ2 ◦ g))

≤ min
g∈G

DΦ (φ1, φ2 ◦ g) = dG(φ1, φ2).

Compactness and convexity of the space of GENEOs. We can prove
that if the function spaces are compact and convex, then the space
of GENEOs is compact and convex too. The compactness guaran-
tees that the space of GENEOs can be approximated by a finite set.
The convexity implies that new GENEOs can be obtained by convex
combinations of pre-existing GENEOs.

If F all := GENEO ((Φ, G), (Ψ, H)) is the set of all GENEOs /F, T)
from (Φ, G) to (Ψ, H), then the following theorem holds:

Theorem 12. If Φ and Ψ are compact with respect to DΦ and DΨ, respec-
tively, then F all is compact with respect to the metric

DGENEO (F1, F2) := sup
φ∈Φ

DΨ (F1(φ), F2(φ)) . (9)

Proof. We know that (F all, DGENEO) is a metric space. Therefore it
will suffice to prove that F all is sequentially compact. In order to
do this, let us assume that a sequence (Fi) in F all is given. Given
that Φ is a compact (and hence separable) metric space, we can find
a countable and dense subset Φ∗ = {φj}j∈N of Φ. By means of a
diagonalization process, we can extract a subsequence (F′

i ) from (Fi),
such that for every fixed index j the sequence (F′

i (φj)) converges to
a function in Ψ with respect to DΨ. Now, let us consider the function
F̄ : Φ∗ → Ψ defined by setting F̄(φj) := limi→∞ F′

i (φj) for each
φj ∈ Φ∗.

We extend F̄ to Φ as follows. For every φ ∈ Φ we choose a se-
quence (φjr ) in Φ∗, converging to φ ∈ Φ, and set F̄(φ) := limr→∞ F̄(φjr ).
We claim that such a limit exists in Ψ and does not depend on the se-
quence that we have chosen, converging to φ ∈ Φ. In order to prove
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that the previous limit exists, we observe that F̄ : Φ∗ → Ψ is non-
expansive. We have indeed that for every a, b ∈ N

DΨ (F̄(φa), F̄(φb)) = DΨ

(
lim
i→∞

F′
i (φa), lim

i→∞
F′

i (φb)

)
= lim

i→∞
DΨ

(
F′

i (φa), F′
i (φb)

)
≤ lim

i→∞
DΦ (φa, φb) = DΦ (φa, φb) ,

because each F′
i is non-expansive.

Since the sequence (φjr ) converges to φ ∈ Φ, it follows that
(F̄(φjr )) is a Cauchy sequence with respect to DΨ. The compactness
of Ψ implies that (F̄(φjr )) converges in Ψ.
If another sequence (φkr ) in given in Φ∗, converging to φ ∈ Φ, then
DΨ

(
F̄(φjr ), F̄(φkr )

)
≤ DΦ

(
φjr , φkr

)
for every index r ∈ N.

Since both (φjr ) and (φkr ) converge to φ, then it follows that
limr→∞ F̄(φjr ) = limr→∞ F̄(φkr ). Therefore the definition of F̄(φ)

does not depend on the chosen sequence (φjr ), converging to φ.
Now we have to prove that F̄ ∈ F all, i.e., that F̄ verifies the

properties defining this set of operators. We have already seen that
F̄ : Φ → Ψ.

For every φ, φ′ we can consider two sequences (φjr ), (φkr ) in Φ∗,
converging to φ and φ′, respectively. Due to the fact that the opera-
tors F′

i are non-expansive, we have that

DΨ
(

F̄(φ), F̄(φ′)
)
= DΨ

(
lim
r→∞

F̄(φjr ), lim
r→∞

F̄(φkr )
)

= DΨ

(
lim
r→∞

lim
i→∞

F′
i (φjr ), lim

r→∞
lim
i→∞

F′
i (φkr )

)
= lim

r→∞
lim
i→∞

DΨ
(

F′
i (φjr ), F′

i (φkr )
)

≤ lim
r→∞

lim
i→∞

DΦ
(

φjr , φkr

)
= lim

r→∞
DΦ

(
φjr , φkr

)
= DΦ

(
φ, φ′) .

Therefore, F̄ : Φ → Ψ is non-expansive. As a consequence, it is also
continuous.

We can now prove that the sequence (F′
i ) converges to F̄ with

respect to DGENEO. Let us consider an arbitrarily small ε > 0.
Since Φ is compact and Φ∗ is dense in Φ, we can find a finite sub-
set {φj1 , . . . , φjn} of Φ∗ such that for every φ ∈ Φ, there exists an
index r ∈ {1, . . . , n}, for which DΦ

(
φ, φjr

)
< ε.

Since the sequence (F′
i ) converges pointwise to F̄ on the set Φ∗, an

index ı̄ exists, such that DΨ
(

F̄(φjr ), F′
i (φjr )

)
< ε for any i ≥ ı̄ and

any r ∈ {1, . . . , n}. Therefore, for every φ ∈ Φ we can find an index
r ∈ {1, . . . , n} such that DΦ

(
φ, φjr

)
< ε and the following inequalities
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hold for every index i ≥ ı̄, because of the non-expansivity of F̄ and
F′

i :

DΨ
(

F̄(φ), F′
i (φ)

)
≤ DΨ

(
F̄(φ), F̄(φjr )

)
+ DΨ

(
F̄(φjr ), F′

i (φjr )
)
+ DΨ

(
F′

i (φjr ), F′
i (φ)

)
≤ DΦ

(
φ, φjr

)
+ DΨ

(
F̄(φjr ), F′

i (φjr )
)
+ DΦ

(
φjr , φ

)
< 3ε.

We observe that ı̄ does not depend on φ, but only on ε and on the
set {φj1 , . . . , φjn}. It follows that DΨ

(
F̄(φ), F′

i (φ)
)
< 3ε for every

φ ∈ Φ and every i ≥ ı̄.
Hence, supφ∈Φ DΨ

(
F̄(φ), F′

i (φ)
)
≤ 3ε for every i ≥ ı̄. Therefore,

the sequence (F′
i ) converges to F̄ with respect to DGENEO.

The last thing to show is that F̄ is group equivariant. Let us con-
sider a φ ∈ Φ, and a g ∈ G. We have that

F̄(φ ◦ g) = lim
i→∞

F′
i (φ ◦ g)

= lim
i→∞

(
F′

i (φ) ◦ T(g)
)

=

(
lim
i→∞

F′
i (φ)

)
◦ T(g)

= F̄(φ) ◦ T(g).

This proves that F̄ is group equivariant, and hence a GEO. In conclu-
sion, F̄ is a GENEO. From the fact that the sequence F′

i converges to F̄
with respect to DGENEO, it follows that (F all, DGENEO) is sequentially
compact.

Exercise 21. Prove that the statement of Theorem 12 does not hold for
group equivariant operators, by giving a counterexample where Φ, Ψ, X, Y,
G and H are compact, but the space of GEOs is not compact with respect to
the metric DGEO (F1, F2) := supφ∈Φ DΨ (F1(φ), F2(φ)).

Let us now assume that (F1, T), (F2, T), . . . , (Fn, T) ∈ F all. If
(a1, a2, . . . , an) ∈ Rn with ∑n

i=1 |ai| ≤ 1 and Ψ is convex, then we
set

FΣ(φ) :=
n

∑
i=1

aiFi(φ) (10)

The following theorem holds.

Proposition 44. If FΣ(Φ) ⊆ Ψ, then (FΣ, T) is a GENEO from (Φ, G) to
(Ψ, H).

Proof. First we prove that (FΣ, T) is a GEO. Since every (Fi, T) is a
GEO we have that:

FΣ(φ ◦ g) =
n

∑
i=1

aiFi(φ ◦ g)
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=
n

∑
i=1

ai(Fi(φ) ◦ T(g))

=

(
n

∑
i=1

aiFi(φ)

)
◦ T(g)

= FΣ(φ) ◦ T(g).

Since every Fi is non-expansive, FΣ is non-expansive:

DΨ (FΣ(φ1), FΣ(φ2)) =

∥∥∥∥∥ n

∑
i=1

aiFi(φ1)−
n

∑
i=1

aiFi(φ2)

∥∥∥∥∥
∞

=

∥∥∥∥∥ n

∑
i=1

ai(Fi(φ1)− Fi(φ2))

∥∥∥∥∥
∞

≤
n

∑
i=1

|ai| ∥(Fi(φ1)− Fi(φ2))∥∞

≤
n

∑
i=1

|ai| ∥φ1 − φ2∥∞ ≤ DΦ (φ1, φ2) .

Therefore (FΣ, T) is a GENEO.

Theorem 13. If Ψ is convex, then the set of all maps F such that (F, T) is a
GENEO from (Φ, G) to (Ψ, H) is convex.

Proof. It is sufficient to apply Proposition 44 for n = 2, by setting
a1 = t, a2 = 1 − t for 0 ≤ t ≤ 1, and observing that the convexity of Ψ
implies FΣ(Φ) ⊆ Ψ.

In our model, the observers are represented by GEO and GENEOs.
Indeed, each observer can be seen as a black or white box that re-
ceives and transforms data. If a nonempty subset F of GENEO ((Φ, G), (Ψ, H))

is fixed, a simple pseudo-distance DF ,Φ(φ1, φ2) to compare two ad-
missible functions φ1, φ2 ∈ Φ can be defined by setting DF ,Φ(φ1, φ2) :=
supF∈F ∥F(φ1) − F(φ2)∥∞. This definition expresses our assump-
tion that data comparison strongly depends on the choice of the
observers. However, we note that the computation of DF ,Φ(φ1, φ2)

for every pair (φ1, φ2) of admissible functions is computationally
expensive. In the next section, we will see how persistent homology
allows us to replace DF ,Φ with a pseudo-metric DF ,k

match that is com-
putationally more efficient, stable and, above all, strongly invariant
with respect to the action of G.

Pseudo-metrics induced by persistent homology. Let us consider a subset
F ̸= ∅ of F all. To compare data under the action of F , one could
simply define the pseudo-metric DF ,Φ by setting, for φ1, φ2 ∈ Φ,

DF ,Φ(φ1, φ2) := sup
F∈F

∥F(φ1)− F(φ2)∥∞. (11)
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Though, the computation of DF ,Φ(φ1, φ2) for every pair (φ1, φ2) of
admissible functions is computationally expensive. Persistent ho-
mology allows us to replace DF ,Φ with a pseudo-metric DF ,k

match com-
putationally more efficient, stable and, above all, strongly invariant
with respect to the action of G. We recall that a pseudo-metric d̂ on
Φ is strongly G-invariant if it is invariant under the action of G with
respect to each variable, i.e., if

d̂(φ1, φ2) = d̂(φ1 ◦ g, φ2) = d̂(φ1, φ2 ◦ g) = d̂(φ1 ◦ g, φ2 ◦ g)

for every φ1, φ2 ∈ Φ and every g ∈ G.
For any fixed degree k, we define the pseudo-metric DF ,k

match on Φ:

DF ,k
match(φ1, φ2) := sup

F∈F
dmatch(Dgm(F(φ1)), Dgm(F(φ2))) (12)

for every φ1, φ2 ∈ Φ. Observe that this pseudo-metric is an optimal
lower bound for the metric defined in (11). Then:

Proposition 45. DF ,k
match is a strongly G-invariant pseudo-metric on Φ.

Proof. The Matching Distance Stability Theorem 11 and the non-
expansivity of every F ∈ F imply that

dmatch(Dgm(F(φ1)), Dgm(F(φ2))) ≤ DΨ (F(φ1), F(φ2))

≤ DΦ (φ1, φ2) .

Therefore DF ,k
match is a pseudo-metric, since it is the supremum of

a family of pseudo-metrics that are bounded at each pair (φ1, φ2).
Moreover, for every φ1, φ2 ∈ Φ and every g ∈ G

DF ,k
match(φ1, φ2 ◦ g) := sup

F∈F
dmatch(Dgm(F(φ1)), Dgm(F(φ2 ◦ g)))

= sup
F∈F

dmatch(Dgm(F(φ1)), Dgm(F(φ2) ◦ T(g)))

= sup
F∈F

dmatch(Dgm(F(φ1)), Dgm(F(φ2))

= DF ,k
match(φ1, φ2)

because of the equality F(φ ◦ g) = F(φ) ◦ T(g) for every φ ∈ Φ
and every g ∈ G and the invariance of persistent homology under
the action of the homeomorphisms. Since the function DF ,k

match is
symmetric, this is sufficient to guarantee that DF ,k

match is strongly G-
invariant.

Exercise 22. In the proof of Proposition 45 we have used the statement that
the supremum of a family of bounded pseudo-metrics is still a pseudo-metric.
Prove this statement.
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The pseudo-distance DF ,k
match is stable with respect to both the

pseudo-metric dG and the metric DΦ. This fact guarantees that
DF ,k

match can be used in the presence of noise as it is stated in the fol-
lowing result.

Theorem 14. If F is a non-empty subset of F all, then

DF ,k
match ≤ dG ≤ DΦ. (13)

Proof. For every F ∈ DF ,k
match, every g ∈ G and every φ1, φ2 ∈ Φ, we

have that

dmatch(Dgm(F(φ1)), Dgm(F(φ2)))

= dmatch(Dgm(F(φ1)), Dgm(F(φ2) ◦ T(g)))

= dmatch(Dgm(F(φ1)), Dgm(F(φ2 ◦ g)))

≤ DΨ (F(φ1), F(φ2 ◦ g)) ≤ DΦ (φ1, φ2 ◦ g) .

The first equality follows from the invariance of persistent homology
under the action of IsoΦ(K) (Proposition 29), and the second equality
follows from the fact that (F, T) is a group equivariant operator. The
first inequality follows from the Matching Distance Stability Theo-
rem 11, while the second inequality follows from the non-expansivity
of F. It follows that, if F ⊆ F all, then for every g ∈ G and every
φ1, φ2 ∈ Φ

DF ,k
match(φ1, φ2) ≤ DΦ (φ1, φ2 ◦ g) . (14)

Hence, the inequality DF ,k
match ≤ dG follows, while dG ≤ DΦ is a trivial

consequence of the definition of dG.

We stress that the definitions of the natural pseudo-distance dG

and the pseudo-distance DF ,k
match come from different theoretical con-

cepts. The former is based on a variational approach involving the
set of all homeomorphisms in G, while the latter refers only to a com-
parison of persistent homologies depending on a family of group
equivariant non-expansive operators. Thus, the next result may ap-
pear unexpected. Indeed, the role of the group G is not explicitly
expressed in the definition of DF ,k

match, but implicitly encoded in the
GENEOs that are equivariant with respect to G. Moreover, the in-
formation contained in each single persistence diagram used in the
definition of DF ,k

match is generally much smaller than the one expressed
by the natural pseudo-distance dG.

Theorem 15. Let us assume that F all := GENEO ((Φ, G), (Φ, G)), T
is the identity from G to G, every function in Φ is non-negative, the k-th
Betti number of X does not vanish, and Φ contains each constant function
c for which a function φ ∈ Φ exists such that 0 ≤ c ≤ ∥φ∥∞. Then
DFall,k

match = dG.



88 a basic and concise introduction to topological data analysis

Proof. For every φ′ ∈ Φ let us consider the operator Fφ′ : Φ →
Φ defined by setting Fφ′(φ) equal to the constant function taking
everywhere the value dG(φ, φ′) for every φ ∈ Φ (i.e., Fφ′(φ)(x) =

dG(φ, φ′) for any x ∈ X). Our assumptions guarantee that such a
constant function belongs to Φ.

We observe that

1. Fφ′ is a group equivariant operator associated with T, because the
strong invariance of the natural pseudo-distance dG with respect to
the group G implies that if φ ∈ Φ and g ∈ G, then Fφ′(φ ◦ g)(x) =
dG(φ ◦ g, φ′) = dG(φ, φ′) = Fφ′(φ)(g(x)) = (Fφ′(φ) ◦ g)(x) =

(Fφ′(φ) ◦ T(g))(x), for every x ∈ X.

2. Fφ′ is non-expansive on Φ, because for every φ1, φ2 ∈ Φ

DΨ

(
Fφ′(φ1), Fφ′(φ2)

)
= |dG(φ1, φ′)− dG(φ2, φ′)|

≤ dG(φ1, φ2) ≤ DΦ (φ1, φ2) .

Therefore, Fφ′ is a GENEO.
For every φ1, φ2, φ′ ∈ Φ we have that

dmatch(Dgm(Fφ′(φ1)), Dgm(Fφ′(φ2))) = |dG(φ1, φ′)− dG(φ2, φ′)|.

Indeed, Dgm(Fφ′(φ1)) \ {∆} contains only the point (dG(φ1, φ′), ∞),
while Dgm(Fφ′(φ2)) \ {∆} contains only the point (dG(φ2, φ′), ∞).
Both the points have the same multiplicity, which equals the (non-
null) k-th Betti number of X.

Setting φ′ = φ2, we have that

dmatch(Dgm(Fφ2(φ1)), Dgm(Fφ2(φ2))) = dG(φ1, φ2).

As a consequence, we have that

DFall,k
match(φ1, φ2) ≥ dG(φ1, φ2). (15)

By applying Theorem 14, we get

DFall,k
match(φ1, φ2) = dG(φ1, φ2)

for every φ1, φ2.

We observe that if Φ is bounded, the assumption that every func-
tion in Φ is non-negative is not quite restrictive. Indeed, we can
obtain it by adding a suitable constant value to every admissible
function.

Here we show how DF ,k
match can be approximated arbitrarily well

with a finite subset of operators.
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Proposition 46. Let F be a non-empty subset of F all := GENEO ((Φ, G), (Ψ, H)).
For every ε > 0, a finite subset F ′ of F exists, such that

|DF ′ ,k
match(φ1, φ2)−DF ,k

match(φ1, φ2)| ≤ ε

for every φ1, φ2 ∈ Φ.

Proof. Let us consider the closure F of F in F all. Let us also consider
the covering U of F obtained by taking all the open balls of radius ε

2
centered at points of F , with respect to DGENEO. Theorem 12 guar-
antees that F all is compact, hence also F is compact. Therefore we
can extract a finite covering {B1, . . . , Bm} of F from U . We can set F ′

equal to the set of centers of the balls B1, . . . , Bm.
Now, for every F ∈ F , a F′ ∈ F ′ exists such that DGENEO(F, F′) <

ε
2 . The definition of DGENEO implies that DΨ(F(φ), F′(φ)) < ε

2 for
every φ ∈ Φ. From the Matching Distance Stability Theorem 11 it
follows that

dmatch(Dgm(F(φ1)), Dgm(F′(φ1)) <
ε

2

and
dmatch(Dgm(F(φ2)), Dgm(F′(φ2)) <

ε

2
for every φ1, φ2 ∈ Φ.

Therefore,∣∣dmatch(Dgm(F(φ1)), Dgm(F(φ2))− dmatch(Dgm(F′(φ1)), Dgm(F′(φ2))
∣∣

< ε.

As a consequence, DF ,k
match(φ1, φ2) ≤ DF ′ ,k

match(φ1, φ2) + ε.

Since F ′ ⊆ F , we know that DF ′ ,k
match(φ1, φ2) ≤ DF ,k

match(φ1, φ2).
From these two inequalities, the proof of our statement follows.

Proposition 46 states that the approximation of DF ,k
match(φ1, φ2) can

be reduced to the computation of DF ′ ,k
match(φ1, φ2), i.e. the maximum

of a finite set of bottleneck distances between persistence diagrams,
which are well-known to be computable by means of efficient algo-
rithms.

Finally, we observe that we can use persistent homology to define
a computable and stable pseudo-metric between GENEOs. If F1, F2 ∈
F all := GENEO ((Φ, G), (Ψ, H)), for every fixed k ∈ N, we can set

∆GENEO (F1, F2) := sup
φ∈Φ

dmatch(Dgm(F1(φ)), Dgm(F2(φ))) (16)

for which it holds ∆GENEO ≤ DGENEO.
As a final remark, we observe that the approach based on GE-

NEOs and persistent homology can be used also when we wish to
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have equivariance with respect to a set instead of a group of home-
omorphisms. Indeed, whereas the definition of the natural pseudo-
distance dG requires that G has the structure of a group, the defini-
tion of DF ,k

match does not need this assumption.

Exercise 23. Assume that F1 ∈ GENEO ((Φ1, G1), (Φ2, G2)) with respect
to a homomorphism T1 : G1 → G2, and F2 ∈ GENEO ((Φ2, G2), (Φ3, G3))

with respect to a homomorphism T2 : G2 → G3. Prove that F2 ◦ F1 ∈
GENEO ((Φ1, G1), (Φ3, G3)) with respect to T2 ◦ T1.

Exercise 24. Assume that F1, F2 ∈ GENEO ((Φ, G), (Ψ, H)) with
respect to a homomorphism T : G → H. Prove that max(F1, F2) ∈
GENEO ((Φ, G), (Ψ, H)) w.r.t. T, provided that max(F1, F2)(Φ) ⊆ Ψ.

Exercise 25. Assume that F1, F2 ∈ GENEO ((Φ, G), (Ψ, H)) with
respect to a homomorphism T : G → H. Prove that min(F1, F2) ∈
GENEO ((Φ, G), (Ψ, H)) w.r.t. T, provided that min(F1, F2)(Φ) ⊆ Ψ.

Exercise 26. Assume that F1, . . . , Fn ∈ GENEO ((Φ, G), (Ψ, H)) with
respect to a homomorphism T : G → H, and L is a 1-Lipschitz map
from Rn to R, where Rn is endowed with the max-norm. Consider the map
L∗(F1, . . . , Fn) : Φ → C0(X, R) defined as

L∗(F1, . . . , Fn)(φ) := [L(F1(φ), . . . , Fn(φ))],

where [L(F1(φ), . . . , Fn(φ))] is defined by setting

[L(F1(φ), . . . , Fn(φ))](x) := L(F1(φ)(x), . . . , Fn(φ)(x)).

Prove that L∗(F1, . . . , Fn) ∈ GENEO ((Φ, G), (Ψ, H)) with respect to T,
provided that L∗(F1, . . . , Fn)(Φ) ⊆ Φ.

Exercise 27. Assume that F1 ∈ GENEO ((Φ1, G1), (Ψ1, H1)) with respect
to a homomorphism T1 : G1 → H1, and F2 ∈ GENEO ((Φ2, G2), (Ψ2, H2))

with respect to a homomorphism T2 : G2 → H2. Prove that F1 ⊗ F2 ∈
GENEO ((Φ1 ⊗ Φ2, G1 ⊗ G2), (Ψ1 ⊗ Ψ2, H1 ⊗ H2)) with respect to the
homomorphism T1 ⊗ T2 : G1 ⊗ G2 → H1 ⊗ H2.

Links between GENEOs and TDA

In this section we will list several links that exist between the theory
of GENEOs and TDA.

The operator taking φ to Dgm(φ) is a GENEO. In some sense, the
operator taking each continuous function to a suitable representation
of its persistence diagram can be seen as a GENEO. To show this, let
us consider a space Φ of continuous functions φ : X → R whose
persistence diagrams are generic (in the sense that each point in
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Dgm(φ) has multiplicity equal to 1) and contain at least one point at
infinity. Let us endow P := {Dgm(φ) : φ ∈ Φ} with the Hausdorff
distance dH associated with the usual pseudo-distance d on the set ∆̄∗

(see Definition 54). We observe that each persistence diagram D ∈ P

can be identified with the function ψD : ∆̄∗ → R that takes each p ∈
∆̄∗ to its distance d(p, D) from D. Moreover, if Dgm(φ1), Dgm(φ2) ∈
P, then dH(Dgm(φ1), Dgm(φ2)) ≤ ∥φ1 − φ2∥∞.

Let us now assume that

• G is the group of all self-homeomorphisms of X;

• Ψ is the set of all continuous functions from ∆̄∗ to R;

• H is the trivial group containing only the identity id : ∆̄∗ → ∆̄∗;

• T : G → H is the trivial homomorphism.

It is easy to prove that the operator taking each function φ ∈ Φ to
ψDgm(φ) is a GENEO from Φ to Ψ associated with T.

GENEOs restrict the invariance of TDA. In this Chapter, we have seen
that DF ,k

match is a stable and strongly invariant pseudo-distance with
respect to G. It allows to restrict the invariance group of persistent
homology from HomeoΦ(X) to G. This is of use in applications.

GENEOs interact with biparameter Persistent Homology. In the Sec-
tion “??”, we have seen that the definition of the matching distance
between two bifiltrations φ, ψ : X → R2 of the topological space
X can be seen as the supremum of the classical bottleneck distance
between the persistence diagrams associated with the filtrations
Fa,b(φ), Fa,b(ψ) : X → R, where the operator Fa,b is defined by setting
Fa,b(φ) = φ∗

(a,b). It is interesting to observe that the operator Fa,b is
a GENEO for any value of a and b (provided that we consider the
natural extension of the concept of GENEO to operators acting on
vector-valued functions).

GENEOs can be compared by means of TDA. As we have seen in this
Chapter, Persistent Homology can indeed be used to define the com-
putable and stable pseudo-metric ∆GENEO.

Remark 11. Persistent Homology also gives a shortcut to compare elements
of each equivariance group G, by the pseudo-distance

∆G(g1, g2) := sup
φ∈Φ

dmatch (Dgmk(φ ◦ g1), Dgmk(φ ◦ g2)) .





Applications of Topological Data Analysis

In this chapter, we briefly illustrate two applications of TDA.

An application of persistence diagrams (from the book 11) 11

Multilocus sequence typing analysis. Within a single bacterial species
there can be many genetically distinct strains. Different strains can
have important functional differences. For example, some strains may
be more virulent than others and some may be more susceptible to
the immune responses generated by vaccines. Multilocus sequence
typing (MLST) is a method for detecting particular bacterial strains
that does not require whole-genome sequencing. It relies on the fact
that strains can be identified from certain representative genomic loci
selected from regions within housekeeping genes. Typically the size
of each locus is about 500 base pairs. Curated MLST data from labo-
ratories around the world is available in large online databases. Often
there are thousands of strains identified within a single pathogenic
species (over 10,000 in the case of Neisseria spp.). MLST data can be
used to study horizontal exchange of genomic material in bacteria.
Because different species have different loci, one can only examine
horizontal exchange within species. Furthermore, because all of the
selected loci exist within a few housekeeping genes, our analysis
does not provide information about events involving genes other
than these housekeepers. The data used here comes from PubMLST
12. For each of twelve bacterial species, one can construct a pseu- 12

dogenome by concatenating the typed sequence at each locus. Using
the Hamming distance metric, one can calculate a pairwise distance
matrix between strains and compute persistent homology on the re-
sulting metric space. The persistence diagrams in degree 1 for the
twelve bacterial species are displayed in Figure 29 (Source: 13). For 13

the bulk of pathogens, there are three major scales of recombination:
one short-lived scale at intermediate distances, another longer-lived
scale at intermediate distances, and a third short-lived scale at longer
distances. Helicobacter pylori is a clear outlier, tending to recombine at
significantly lower scales than the other pathogens.
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Figure 29: On the left, the persistence
diagrams in degree 1 for the twelve
strains of pathogens selected for this
study MLST profile data. Observe
three scales of recombination. On the
right, the birth time distribution for
each strain. There is an earlier scale of
recombination present in Helicobacter
pylori not observed in the other species.

An application of GENEOs

Finding pockets via GENEOs. GENEOnet 14 is a shallow neural net- 14

work that exploits the rationale behind GENEOs to solve the problem
of protein pocket detection. The paradigm has been here declined for
the specific application here considered, but, with the right adjust-
ments, it could be extended and applied to many other situations.

The main reason for choosing this specific application is due to
some characteristics that make it very suitable to be treated with GE-
NEOs. First of all there is some important empirical knowledge that
is hard to embed in the usual machine learning techniques, but can
easily be exploited by a method based on GENEOs. For example it
is known that binding sites tend to be in the lipophilic areas of the
protein, otherwise they would continuously be filled with solvent,
having thus no chances to interact with any other ligand. Another
empirical rule says that if a pocket wants to host a binding site then it
should be able to accept and donate some hydrogen bonds otherwise
no ligand could find stable housing into that pocket. Secondly if we
rotate or translate a protein, its pockets will be as well transformed
in the same way, coherently with the entire protein. This clearly im-
plies that pocket detection is equivariant with respect to the group of
spatial isometries. We used these and some other pieces of informa-
tion to design a pool of GENEOs able to identify promising binding
sites. We first discretized the space surrounding the protein into vox-
els. Thus, GENEOnet falls in the group of grid-based computational
methods. Our choice for the GENEOs fell on convolutional operators
that process a set of “channels”, i.e., functions that reflect a reasoned
selection of geometric, physical, and chemical properties of a pro-
tein. The convolutional kernels of these operators have been designed
with a knowledge engineering process to exploit all the information
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about the problem. Therefore, the final pool of GENEOs is composed
by families of operators, each parametrized by a shape parameter.
These parameters directly influence the shape of the kernels of the
operators belonging to the corresponding family and thus the action
of each single operator. These families are then networked through
a convex combination that allows us to explore a larger region of
the space of GENEOs. Indeed these second-level operators depend
on all the shape parameters and the convex combination weights.
A last parameter is needed to transform the output of the method
pipeline into a binary function. This function assigns to each voxel of
the space surrounding the protein the value 1 if it belongs to a pocket
and 0 otherwise.

The parameters of the model are then identified during an opti-
mization step, that employs the Adam optimizer. Optimization is
aimed to maximize our accuracy function that expresses a weighted
ratio of correct recognition of voxels lying either inside pockets or
outside pockets. Since GENEOnet depends eventually on 17 un-
known parameters only, the optimization is performed using a small
training set of ligand-protein complexes, that proved to be suffi-
cient to obtain a quite good accuracy in pocket identification. As a
byproduct of our model we also obtained a druggability score for
each identified pocket. In this way it is possible to rank the pock-
ets on the same molecule by scoring them in decreasing order. As a
consequence, a set of models trained on different training sets of the
same (small) size have been compared on a validation set, and the
model providing the best accuracy in the pocket ranking has been
selected.

In Figure 30 an example of results of GENEOnet applied to the
protein 2QWE is shown. The picture shows a relevant aspect of GE-
NEOnet: the depicted protein is made up of four symmetrical units
so that the true pocket is replicated four times. GENEOnet correctly
outputs, among the others, four symmetrical pockets which get high
scores. This happens thanks to equivariance, because the results of
the model on identical units are the same, with position and orien-
tation coherently adjusted. Moreover this happens even if the model
has been trained mainly on single chain examples.

In Figure 31 the results of a comparison of GENEOnet with other
state-of-the-art methods are displayed. We see that GENEOnet has a
better performance than all the other methods considered in the com-
parison; in particular if we look at T3, that is the fraction of proteins
whose true pocket is identified within the three top-ranked predicted
ones, we see that GENEOnet achieves a result of 0.941 which means
that, with this data, we can expect that more than 90% of the times
we will find the right pocket considering just the three pockets with
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Figure 30: Model predictions for protein
2QWE. In Figure a) the global view of
the prediction is shown, where different
pockets are depicted in different colors
and are labelled with their scores. In
Figure b) the zoomed of the pocket
containing the ligand is shown.

the highest score. All the other methods, instead, have a value of T3

below 0.9.
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Figure 31: Results of comparison on
the test set. Figure a) shows a bar chart
of the Hj coefficients for the different
methods, reporting also the absolute
frequencies, while Figure b) shows
cumulative frequency curves.
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This is the first version of my lecture notes, and they could contain
many misprints and errors. Please report them to me at this email
address: patrizio.frosini@unipi.it.

PF

mailto:patrizio.frosini@unipi.it
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PL map (piecewise linear map), 20

proper cornerpoint, 63

proper face, 12

pseudo-metric, 53

rank invariant, 57

realization of a multiset, 62

reduced Betti number, 51

reduced homology group, 50

region for Γ, 16

right action, 54

simplicial map, 20

strongly G-invariant, 86

subcomplex, 13
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trivial cornerpoint, 63

vertex map, 20

vertex scheme, 13
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vertexes, 16
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