

Online Learning

learning from nonstationary time series

Antonio Carta antonio.carta@unipi.it

Streams and Concept Drift

- Streaming data
- Prequential Evaluation
- Concept Drift
- Time series analysis

Online Learning Algorithms

- Online classification models
- Ensemble methods

Online Learning Module – Resources

- Streaming Data Analytics Course by Emanuele della Valle
 - Some slides of this module are based on this course
 - <u>http://emanueledellavalle.org/teaching/streaming-data-analytics-2022-</u>23/
 - <u>https://github.com/emanueledellavalle/streaming-data-analytics</u>
- Book: Machine Learning for Data Streams
 - HTML book: https://moa.cms.waikato.ac.nz/book-html/
- River SML library in python https://riverml.xyz/0.13.0/

- Definition of online learning and applications
- Batch vs streaming/online learning
- Online training and evaluation
- Requirements and motivation for online learning

What is Online Learning?

Data is generated continuously

- Stream of data received over time
- May be high frequency or high volume -> cannot be stored

Forecasting future behavior

- «Is my turbine about to break down?»
- «what will be the next trending topic on reddit?»
- «should buy or sell my bitcoin?»

May have stringent QoS requirements

• Latency of the answers

Data is changing over time

• Example: 2020 mobility data is completely different from 2019 due to covid lockdowns.

Even when you have a static dataset you may want to use online algorithms due to **memory/computation requirements**.

Principal Component Analysis:

- offline: QR decomposition
- Online: Incremental PCA

Linear models:

- offline: Ordinary Least Squares
- Online: Stochastic Gradient Descent

Out-of-Core Learning

Example: Time Series Forecasting

Weather forecasting

- Given current atmospheric pressure/temperature predict next state.
- Chaotic system: predictions far in the future are very difficult.
- If you had infinite precision you would only need present data.

Example: High-frequency Trading

- Latency requirements: the price is going to change if the prediction is too slow.
- Recent data is much more informative than past data

Batch vs Online Learning

Batch Learning

- i.i.d. sampling / Access to all the data
- No stringent computational constraints/latency of training
- Separate training/eval phase
- Train signature: $\theta = A(D)$

Online Learning

- Sequential access to data
- Computational constraints
- Interleaved training/eval
- Train signature: $\theta_t = A(x_t, \theta_{t-1})$

ML Workflow – Train-then-test

OML Workflow – interleaved train-and-test

In OML, we often have only one stream. How do we do the evaluation?

OML Training with Prequential Evaluation

model = GaussianNB()
PACC = PrequentialAccuracy()

for x, y in stream:

PREQUENTIAL EVAL

first, we predict on the new sample

in a real problem, at this point we don't know the

target y yet (e.g. in a forecasting problem)

```
y_p = model.predict_one(x)
```

```
# ONLINE LEARNING STEP
# at some point, y becomes available
# and we train the model on the new sample
model.learn_one(x, y)
```

we will also keep track of performance metrics over time
PACC.update(y, y_p)

Holdout vs Prequential Evaluation

- Holdout: evaluate current model on a separate test set at regular time intervals.
 - Requires a separate test set
 - In presence of nonstationarity the test set must be updated
 - Expensive: full evaluation at each step
- Prequential (predictive sequential): (interleaved-test-then-train) each sample in the (single) stream is used for testing before training.
 - Does not require a separate test set
 - More efficient than holdout
 - Aggregate prequential loss over time

• At time t

- The stream has a distribution $p_t(x, y)$, which may change over time
- We have a single example $\langle x_t, y_t \rangle \sim p_t(x, y)$
- We have a model trained on p_1,\ldots,p_{t-1} , but we predict data from the distribution p_t
- Therefore, there is a difference between the train and test distribution
 - We need to recognize distribution drifts
 - We may need to forget previous data if they are confilicting with the new distribution
 - We also need to update the model quickly when changes are detected

Prequential Evaluation – Forgetting

• Problems with aggregation of prequential loss over time:

- $PA_T = \frac{1}{T} \sum_{t=1}^T 1\{\hat{y}_t = y_t\}$
- During the first iterations, the model is underfitted
 - The model improves over time, but the prequential error «remembers» all the past errors
 - The prequential error overestimates the holdout error of the current model
- In the presence of nonstationary distributions
 - We want to evaluate the model on future data
 - But our loss is computed on old data (and old models)
- Solution: controlled forgetting of the past performance
 - Sliding Window: compute accuracy only on last k elements
 - $PA_T = \frac{1}{k} \sum_{t=T-k+1}^{T} 1\{\hat{y}_t = y_t\}$
 - Fading Factor: running average of the loss
 - $PA_T = \alpha PA_{T-1} + (1 \alpha) \ 1\{\hat{y}_t = y_t\}$

How do we split the stream if we want to train (and evaluate) an ensemble? We need to ensure diversity and robust training and evaluation.

K-fold distributed cross-validation:

each sample is used for testing in one classifier selected randomly, and used for training on all the others

- Adaptation of offline cross-validation
- Good use of the data (only one 1/k samples are unused)
- high redundancy

K-fold distributed split-validation:

each sample is used for training in one classifier selected randomly, and for testing in all the other classifiers

- Models trained on disjoint data
- Under utilization of data. Each model uses 1/k data for training

K-fold distributed bootstrap-validation:

each sample is used for training in approximately 2/3 of the classifiers, with a separate weight in each classifier, and for testing in all the classifiers (we will see online boostrap in the ensembling lecture)

Prequential Evaluation – Delayed

• We don't necessarily have the targets in real-time

- In forecasting problems (unsupervised) we always get them in the future
- In classification (supervised) problems labels may be **delayed** due to offline manual labeling

• Delayed Evaluation:

- Store samples without targets in a buffer
- Train the model as soon as the targets become available
- Prequential evaluation also works with sparse targets

Evaluation Metric – Kappa statistic

• In OML, data may be unbalanced

- Accuracy is not a good measure
- Trivial baselines (most common class) get high accuracy
- Kappa Statistic compares the accuracy p of a models against the random baseline accuracy $p_{\rm rand}$
 - **Random baseline** chooses a random class with the same proportion of classes predicted by the model under test
 - Relative improvement w.r.t. the baseline accuracy
 - K=1 perfect classifier
 - K=0 random classifier
 - Very fast to compute online compared to other measures used in imbalanced scenarios such as the AUROC

$$k = \frac{p - p_{rand}}{1 - p_{rand}}$$

Evaluation metric – Kappa-Temporal statistic

- If the proportion of classes predicted by the model is different from that of the stream, k is not a good estimate
 - The classifier may be underfitted
 - There has been a change in the <input,output> distribution
- The **persistent classifier** is a better baseline: predicts the next label is the same as the last seen label.
 - It captures simple correlations in the stream

$$k = \frac{p - p_{per}}{1 - p_{per}}$$

- In general, the data ordering will affect the model's performance. Few methods are order-independent
- Easy ordering with strong correlations:
- Adversarial ordering:
 - Adversarial environments can result in data designed to «break» the model
 - Example: in finance, other actors may exploit a previously profitable strategy
 - Some online methods are designed for optimal worst-case performance (we won't study the theory).

Benefits

- Efficient algorithms
- Model update
- Forget the past when it's not relevant

Challenges

- Concept Drift (nonstationarity)
- Imbalance
- Hyperparameter Tuning

ALING NJ ATIS

• Online ML requires a change of paradigm compared to offline

- Efficiency as a key focus
- iid assumption is broken
- Prequential evaluation

Next Lecture

Concept Drift

- Definition
- Estimation
- Detection

Notebook – Example of OML with River

- Notebook on moodle OML1-intro.ipynb
 - Dependencies: river, seaborn, scikit-learn