
Antonio Carta

antonio.carta@unipi.it

Online Machine Learning
Concept Drift Detection



Plan for Today’s Lecture

• What is concept drift

• How to model concept drift

• Types of concept drift

• Concept drift estimation

• Concept drift detection
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Concept Drift Example – COVID pandemic

• ML models are trained to 
predict the «normal» behavior

• What happens when the 
«normal» behavior changes?

Heaven, W. D. (2020). Our weird behavior during the pandemic is messing with AI models. MIT Technology Review) 3



What is Concept Drift (CD)?

Wha it is:

• A change in the real world

• Affects the input/output 
distribution

• Disrupt the model’s predictions

What it’s not:

• It’s not noise

• It’s not outliers

Figure: V. Lemaire et al. «A Survey on Supervised Classification on Data Streams” 4



Example – Weather Forecasts

Weather forecast

• chaotic nature of the atmosphere

• continuous and sudden weather 
changes (concept drifts)

• Weather forecast models must 
detect these changes and adapt 
to them, without be retrained 
from scratch

https://www.meteosvizzera.admin.ch/home/attualita/meteosvizzera-blog.subpage.html/it/data/blogs/2021/8/efi---extreme-forecast-index.html 5



Why do we care about CD?
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CD Nomenclature

• Sudden change distribution has remained 
unchanged for a long time, then changes in a few 
steps to a significantly different one. It is often called 
shift.  

• Gradual or incremental change occurs when, for a 
long time, the distribution experiences at each time 
step a tiny, barely noticeable change, but these 
accumulated changes become significant over time.  

• Change may be global or partial depending on 
whether it affects all of the item space or just a part 
of it. In ML terminology, partial change might affect 
only instances of certain forms, or only some of the 
instance attributes.  

• Recurrent concepts occur when distributions that 
have appeared in the past tend to reappear later. An 
example is seasonality, where summer distributions 
are similar among themselves and different from 
winter distributions. A different example is the 
distortions in city traffic and public transportation 
due to mass events or accidents, which happen at 
irregular, unpredictable times. 

Def: MOA Book, figure: Figure: V. Lemaire et al. «A Survey on Supervised Classification on Data Streams” 7



Examples
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Concept Drift vs Anomaly Detection

• Concept Drift question: ”Is yesterday’s model 
capable of explaining today’s data?”

• Anomaly detection question: ”Do these samples 
conform to the normal ones?”

• A Concept Drift is a change in the distribution that 
requires changing the model, while an anomaly is 
an example different the underlying distribution 
(outlier). 

Image: wikimedia 9



Example – Weather Forecasts

Weather forecast

• Sudden?

• Gradual or incremental?

• global or partial?

• Recurrent concepts?

https://www.meteosvizzera.admin.ch/home/attualita/meteosvizzera-blog.subpage.html/it/data/blogs/2021/8/efi---extreme-forecast-index.html 10



CD – A Probabilistic Definition 

• Given an input 𝑥1, 𝑥2, … , 𝑥𝑡 of class 𝑦 we can apply bayes 
theorem:

𝑝 𝑦 𝑥𝑡 =
𝑝 𝑦 𝑝 𝑥𝑡 𝑦

𝑝 𝑥𝑡

• 𝑝 𝑦  is the prior for the output class (concept)

• 𝑝 𝑥𝑡 𝑦  the conditional probability

• Why do we care?
• Different causes for changes in each term

• Different consequences (do we need to retrain our model?)
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P(y) changes
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P(x_t | y) changes
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P(y|x_t) changes
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Notice that there are two decision boundaries: 
• the «True» decision boundary, i.e. the optimal solution for the current distribution
• The «model» decision boundary, i.e. the currently learned model



Example: Weather and Climate Change

Example: consider the case of 
predicting extreme weather 
phenomena occurrences 
based on atmospheric 
pressure and temperature. 
Usually, extreme weather 
phenomena occur in the case 
of low atmospheric pressure 
and high temperature.
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Climate Change: p(y) changes

p(y) concept drift: in the XX century, the distribution of 
atmospheric pressure and temperature did not change, but the 
extreme weather phenomena were more frequent.
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P(x|y) changes

p(X|y) concept drift: in the first two decades of XXI century, the 
atmospheric pressure and air temperature conditions, in which these 
phenomena occur, also started to change, but not so drastically to 
move the decision boundary we use for predicting them.
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P(y|x) changes

p(y|X) concept drift: due to the on going climate change, these 
phenomena start occurring more frequently with higher atmospheric 
pressure and lower temperature. As a consequence, we have to 
update the decision boundary to keep an high predictive performance.
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Dataset Shift Nomenclature

NOTE: We do a small detour from our sequential world into the world 
of offline learning with separate train and test data (and distributions) 

• Notation:
• x covariates/input features

• y class/target variable

• p(y, x) joint distribution

• sometimes the x→ y relationship is referred with the generic term “concept

• The nomenclature is based on causal assumptions:
• x→y problems: class label is causally determined by input. Example: credit 

card fraud detection

• y→x problems: class label determines input. Example: medical diagnosis

Moreno-Torres, Jose G., Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V. Chawla, and Francisco Herrera. “A Unifying View on Dataset 
Shift in Classification.” Pattern Recognition 45, no. 1 (January 2012): 521–30. https://doi.org/10.1016/j.patcog.2011.06.019. 19

https://doi.org/10.1016/j.patcog.2011.06.019


Dataset Shift Nomenclature

KEEP IN MIND: we are talking about train/test distributions here, but in OML we will have past/present 
subsequences

Dataset Shift: 𝑝𝑡𝑟𝑎 𝑥, 𝑦 ≠ 𝑝𝑡𝑠𝑡 𝑥, 𝑦

• Informally: any change in the distribution is a shift

Covariate shift: happen in X→Y problems when 

• 𝑝𝑡𝑟𝑎 𝑦 𝑥 = 𝑝𝑡𝑠𝑡 𝑦 𝑥  and 𝑝𝑡𝑟𝑎 𝑥 ≠ 𝑝𝑡𝑠𝑡(𝑥)

• informally: the input distribution changes, the input->output relationship does not

Prior probability shift: happen in Y→X problems when

• 𝑝𝑡𝑟𝑎 𝑥 𝑦 = 𝑝𝑡𝑠𝑡 𝑥 𝑦  and 𝑝𝑡𝑟𝑎 𝑦 ≠ 𝑝𝑡𝑠𝑡 𝑦

• Informally: output->input relationship is the same but the probability of each class is changed

Concept shift:

• 𝑝𝑡𝑟𝑎 𝑦 𝑥 ≠ 𝑝𝑡𝑠𝑡 𝑦 𝑥  and 𝑝𝑡𝑟𝑎 𝑥 = 𝑝𝑡𝑠𝑡 𝑥  in X→Y problems. 

• 𝑝𝑡𝑟𝑎 𝑥 𝑦 ≠ 𝑝𝑡𝑠𝑡 𝑥 𝑦  and 𝑝𝑡𝑟𝑎 𝑦 = 𝑝𝑡𝑠𝑡 𝑦  in Y→X problems.

• Informally: the «concept» (i.e. the class) 

Moreno-Torres, Jose G., Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V. Chawla, and Francisco Herrera. “A Unifying View on Dataset Shift in 
Classification.” Pattern Recognition 45, no. 1 (January 2012): 521–30. https://doi.org/10.1016/j.patcog.2011.06.019.
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Causes of Shifts

• Sampling bias: 
• The world is fixed but we only see a part of it
• The «visible part» changes over time, causing a shift
• We will also call it virtual drift
• Examples: bias in polls, limited observability of environments, change of 

domain…

• Non-stationary environments:
• The world is continuously changing
• We will also call it real drift
• Examples: weather, financial markets, …

21

We will see different forms of dataset shifts in all the 
modules of this course. It’s important to be aware of the 
types of shifts and its underlying causes for each setting.



Real vs Virtual Drift

Gama, João, et al. A survey on concept drift adaptation. ACM computing surveys (CSUR) 46.4 (2014): 1-37. 22



Offline ML Objective

• Loss without drift (same as in the offline setting):

23



OML Objective with Drift and Prequential Eval

• Loss in the online «prequential» setting with drifts:

24



CD Detection and Estimation
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CD Algorithms

• Requirements: 
• fast detection of change
• robustness to noise and outliers
• low computational overhead

• Families:
• estimators-based: track stream statistics → algorithms update model’s 

statistics
• detector-based: detect CD → update model
• ensembling: dynamic population of models

• Limitations: all of these methods are for single-dimensional / 
low-dimensional data

26



Families

Figures: MOA book 27

ensembling: 
• dynamic population of models
• Policy to add new model
• Policy to select model

estimators-based: 
• track stream 

statistics 
• algorithms update 

model’s statistics

detector-based: 
• detect CD 
• update model



CD Estimation

• compute statistics needed by the model
• These will be some expected value 𝜃𝑡 = 𝐸𝑝𝑡 𝑥 𝑓 𝑥 (possibly drifting)

• We want to update the estimate of 𝜃𝑡

• How do we find outdated element and discard them from the 
computation? 
• store memory of samples (e.g. a window/buffer): 

• linear estimator over sliding window

• memoryless estimators: 
• EWMA - exponentially weighted moving average

• Kalman Filter 

• Autoregressive Models (AR, ARMA)

28



Window-based: Linear Estimator Over a Sliding Window

• IDEA: let’s use only a recent window to estimate 𝜃𝑡

𝜃𝑡 = 𝐸𝑝𝑡 𝑥 𝑓 𝑥 ≈
1

𝑘
෍

𝑖=1

𝑘

𝑓(𝑥𝑡−𝑖)

Properties:

• Approximate statistic with value computed in the window

• ignore older elements

• window size 𝑘 is a fixed param

29



Memoryless – EWMA 

• IDEA: memoryless estimator-based concept drift detection with 
exponential averaging

EWMA - exponentially weighted moving average
𝐴𝑡 = 𝛼𝑥𝑡 + 1 − 𝛼 𝐴𝑡−1, 𝐴1 = 𝑥1

• 𝛼 decay factor

Properties

• Does not need a window size

• 𝛼 controls the forgetting. It’s an exponential factor

30



CD Detection
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CD Detection Methods

IDEA: Provide an alarm when a change is detected

Methods:

• Statistical tests monitoring the input distribution:
• CUSUM 
• Page-Hinkley

• Monitoring the model’s accuracy:
• DDM - Drift Detection Method
• EDDM - Early Drift Detection Method
• ADWIN - ADaptive sliding WINdow

32



Evaluation

tradeoff between detection and false positives

• Detect too early and you get false positives, wasting time for retraining

• Detect too late and the model is going to make a lot of errors

Many metrics depend on minimum magnitude 𝜃 of the changes we want to detect. 

• Mean time between false alarms (MTFA): how often we get false alarms when there is no change. 
• The false alarm rate 𝐹𝐴𝑅 =

1

𝑀𝑇𝐹𝐴

• Mean time to detection (MTD(θ)): capacity of the system to detect and react to change when it 
occurs.  

• Missed detection rate (MDR(θ)): probability of not generating an alarm when there has been 
change.

• Average run length (ARL(θ)): generalizes MTFA and MTD, indicates how long we have to wait 
before detecting a change after it  occurs. 

• MTFA = ARL(0) 
• MTD(θ) = ARL(θ) for θ > 0

33



Evaluation

• Mean time between false 
alarms (MTFA): how often we 
get false alarms when there is 
no change. 
• The false alarm rate 𝐹𝐴𝑅 =

1

𝑀𝑇𝐹𝐴

• Mean time to detection 
(MTD(θ)): capacity of the 
system to detect and react to 
change when it occurs.  

• Missed detection rate 
(MDR(θ)): probability of not 
generating an alarm when 
there has been change.

34



Monitoring the Input Distribution

A class of CD detectors works by monitoring only the input 
distribution

• Advantage:
• Does not require supervised samples

• We can use simple statistical tests to detect changes

• Disadvantages:
• Difficult to design detectors for multivariate streams or where the 

underlying distribution is unknown

• It does not detect changes that do not affect the distribution of 
observations

35



CD Architecture Monitoring the Input Distribution

36



CUSUM Test

• give an alarm when the mean of the input data significantly deviates from its 
previous value

• CUSUM = cumulative sum control chart

• 𝑥𝑡input sequence

• 𝑧𝑡 = (𝑥𝑡 − 𝜇)/𝜎 standardized input

• 𝑔𝑡 = max 0, 𝑔𝑡−1 + 𝑧𝑡 − 𝑘  relative residual error

• mean and std 𝜇, 𝜎 are given a priori or estimated from the input sequence

CUSUM (k, h hyperparameters):

- 𝑔0 = 0

- 𝑔𝑡 = 𝑔𝑡−1 + 𝑧𝑡 − 𝑘

- 𝑔𝑡 > ℎ, declare change and reset 𝑔𝑡= 0, and μ and σ.

37



CUSUM Properties

Properties
• Doesn’t need a fixed window
• O(1) cost per element
• One-sided test: only detects 

changes in the positive direction 
(use min to detect negative 
changes)

Guidelines:
• set k to half the value of the 

change to be detected (in std)

• Set h to ln
1

𝛿
 , where 𝛿 is an 

acceptable False Alarm Rate

CUSUM (k, h hyperparameters):
- 𝑔0 = 0
- 𝑔𝑡 = 𝑔𝑡−1 + 𝑧𝑡 − 𝑘
- 𝑔𝑡 > ℎ, declare change and reset 

𝑔𝑡= 0, and μ and σ.
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Page-Hinkley

• Similar to CUSUM. Give an alarm when the mean of the input 
data significantly deviates from its previous value

• PAGE-HINKLEY

• 𝑔0 = 0

• 𝑔𝑡 = 𝑔𝑡−1 + 𝑧𝑡 − 𝑘

• 𝐺𝑡 = min 𝑔𝑡 , 𝐺𝑡−1

• If 𝑔𝑡 − 𝐺𝑡 > ℎ, declare change and reset 𝑔𝑡 = 0

39



Monitoring the Classification Error

• Monitoring the input distribution is simple but somewhat limited

• Instead, we can monitor the classification error

Advantages:

• Straightforward: if the accuracy is low, we know we need to 
retrain

• Simple: the classification error is a one-dimensional time series 
even if the input is very complex

Disadvantages:

• We can do it only if we have supervised signals to compute the 
error.

40



CD Architecture Monitoring Classification Error
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Warning and Drift Level

Gama, et. al, Learning with Drift Detection, SBIA 2004, Springer. 42

Warning level: change is detected but is not high enough to be considered a drift
Drift level: the change is big enough to be considered a drift
The difference between the two levels causes a latency between the start of the concept drift 
and the detection time



CD Detection with Prediction Error

Problem

• Given an input sequence 𝑋1, 𝑋2, … , 𝑋𝑡 we want to output an 
alarm at time 𝑡 if there is a distribution change.

• We may use the prediction error | ෠𝑋𝑡+1 − 𝑋𝑡+1|

Outputs

• An estimate of some parameters of the distributions (e.g. the 
mean of the recent inputs)

• An alarm that signals the distribution change

43



DDM – Drift Detection Method

• DDM is a drift detection based on 
model’s accuracy

IDEA:

• without drifts, error should decrease 
over time as more data is used

• If the errors increase, the we have a 
drift

• If we can model the distribution of 
errors over time, we can detect the 
drift by detecting unexpected values 
in the error distribution

Gama, et. al, Learning with Drift Detection, SBIA 2004, Springer. 44



DDM – Drift Detection Method

• DDM is a drift detection based on 
model’s accuracy

How to model the error distribution:

• Given 𝑝𝑡 error rate at time 𝑡
• This is the value we expect not to 

decrease!

• number of errors in a binomial 
distribution of 𝑡 examples has std 

𝑠𝑡 = 𝑝𝑡 1 − 𝑝𝑡 /𝑡

Gama, et. al, Learning with Drift Detection, SBIA 2004, Springer. 45



DDM – Drift Detection Method

• 𝑝𝑚𝑖𝑛= minimum error rate measured up to time t

• 𝑠𝑚𝑖𝑛 = minimum standard deviation measured at time t

Algorithm (DDM):

• If 𝑝𝑡 + 𝑠𝑡 ≥ 𝑝min + 2 ⋅ 𝑠min  → warning. 
• From now on, start storing examples in the buffer to prepare for retraining.

• If 𝑝𝑡 + 𝑠𝑡 ≥ 𝑝min + 3 ⋅ 𝑠min  → drift. 
• Discard the previous model
• Train a new model using the buffer collected from the warning time.
• Reset 𝑝𝑚𝑖𝑛 and 𝑠𝑚𝑖𝑛

Gama, et. al, Learning with Drift Detection, SBIA 2004, Springer. 46



DDM - Properties

1. Simple and general method

2. May be slow to changes since 𝑝𝑡 is computed over all the 
examples since the last drift

3. Memory occupation depends on the distance between warning and 
drift

• We can use EWMA to estimate errors
• Partially mitigates (2)

47



EDDM – Early DDM

• It considers the distance between two errors classification 
instead of considering only the number of errors.

• While the learning method is learning, it will improve the 
predictions and the distance between two errors will increase.

• When a drift occurs, the distance between two errors will 
decrease.

• Compute the average distance between 2 errors and its std, and 
look for outliers in the tails.

48



ADWIN

49

1 1 0 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1

Old Window New Window

Q: How do we keep a sum of error for each window?
Q: How can we compare multiple windows?
The trivial solution is O(W) in memory and time.

1=correct
0=error
Sum=number of errors
Drift=large difference in #errors

Sliding Window of Errors



ADWIN – ADaptive sliding WINdow

• IDEA: we want a method that compares multiple sliding windows of different lengths

ADWIN:

• Exponential Histograms for efficient computation of sums of sliding windows of different 
sizes

• Statistical test to detect differences in error distribution

• Apply the test to all the possible sliding windows

A. Bifet, R Gavalda: Learning from Time-Changing Data with Adaptive Windowing. SDM2007 50



Exponential Histograms

• Example of sketching algorithm: Computes an approximation of 
statistics over a stream using a fixed memory

• Group the stream into buckets. We have the sum for each bucket
• Last bucket may have errors
• We won’t see the algorithm in detail (it’s a pure algorithmic problem).

51

Exponential Sketch Original Sliding Window (values are different)



ADWIN Algorithm

ADWIN Statistical Test

• 𝛿 ∈ 0,1 confidence value, 

• A statistical test 𝑇 𝑊0, 𝑊1, 𝛿 that 
compares averages of two 
windows and decides whether they 
come from the same distribution.
• If 𝑊0and 𝑊1 were generated from the 

same distribution (no change), then 
with probability at least 1 − δ the test 
says “no change.”

• If W0 and W1 were generated from 
two different distributions whose 
average differs by more than some 
quantity 𝜖(𝑊0, 𝑊1, 𝛿) then with 
probability at least 1 − δ the test says 
“change.”

52

Algorithm
for each new element 

update the exponential histogram  
runs b-1 the statistical test $T$ using

𝑊0 oldest 𝑖 buckets of the exponential 
histogram
𝑊1 newest 𝑏 − 𝑖 buckets of the 
exponential histogram

drop old buckets when a change is detected 



Conclusion and Take-home Messages

• Concept drift is a fundamental problem in OML

• First, you need to identify the types of drifts in your domain

• Then, you have to deal with the drift:
• Estimate parameters that drift over time

• Detect drift and retrain

• Retraining can be expensive. Next lecture we see OML training 
methods
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• Streaming Data Analytics Course - Emanuele Della Valle and 
Alessio Bernardo @ POLIMI

• MOA Book
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Next Lecture

Online Classification Models

• Basics

• Naturally online methods: SGD, Naive Bayes

• From offline to online methods:
• kNN -> online kNN

• Decision Tree -> VFDT
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