2

PAI LAB

Online Machine Learning

Online Classification Models

Antonio Carta

antonio.carta@unipi.it

 Basics: what you can and can't do in an online method
 Online Methods: Naive Bayes, SGD

* From offline to online methods:
* KNN -> online kNN
» Decision Tree -> Hoeffding Tree

What is an Online Classification Method

 Streaming Classification Models
* Models that take as input an infinite stream
« We can't save the input data
« We have latency and computational constraints

* Out-of-Core Methods

* Models that are too expensive to be trained on the entire dataset in one
step

« Only computation constraints
« We don’t have drifts here, the data is static (e.g. we can shuffle it)

Out-of-core Methods

classification scikit-learn
: algorithm cheat-sheet
Ensemble | ¢ g -
wo':g;nc ghbors. [more
~ data e
i regression

ws | category
es r! ,u
o you have
labeled wo | ﬁm "
: da‘ta’/ should be
important
=, pmbﬂlr('a NO
@ : qua p—
categories
' known NJ

ding
0T >
WORKING

dimensionality
reduction

Source: scikit-learn docs

Training Online — Amount of Data

« We cannot keep the entire stream in memory
« We cannot shuffle the data (except in out-of-core)

* We can keep a small buffer but we cannot retrain from scratch
at each step (latency)

» We can update the model using small mini-batches

algorithms need to be able to take the previous model and a
small batch of samples as input and return a new model
e A: Ht—l'D — Ht

Pretraining and Warm Start

« Many online algorithms are susceptible to larger changes in the
first phases of training

 Others suffer from bad initializations
« We may have an initial model, pretrained on some static data
* We can use it as init for the online model
» Called «Warm start», «finetuning», depending on the field
* Thisis The Way in the Deep Learning world

Online Computations

« Some statistics can be easily computed online
« But we need to change the algorithm

« Approximations:
« Can we give correctness bound?

 Estimate from a buffer:
 How much do we wait for data before doing the initial estimate?

 Sketching algorithms:
« Compute approximated statistics over the entire stream
 Typically with guarantees over memory/time/error
« We have seen exponential sketching with ADWIN

Online Methods

Naive Bayes and Stochastic Gradient Descent

Naive Bayes

 Bayesian method
« Classification with Naive Bayes: @

argmax;p(x, y;)
- Conditional independence
assumptions: the input features are
statistically independent between
themselves given the target X @ @

* p(X,yx) =
p(x1 |y)o(x2 | yi) . p(xp | Y)o (k) =

i) T2 p (i | yie)

/¢
A
N o R RS
) s A
dive bayesS ALSJE
)ﬁ
A 2 é)\

* p(x,v) = pi) T2 1 (X | v)

* TRAINING: estimate @
conditional probabilities / * \
p(x;lyx) and priors p(yy)

« PROBLEM: online estimate of * = @ @

conditional probabilities

10

Naive Bayes — Prior

« N examples in the dataset
* In streams count how many
samples seen up to now *
» N, samples of class k % @ @

* priors p(yx)
 OFFLINE: N,,/N

« ONLINE: N,,/N

« Both quantities can be computed
online

e p(X,yi) = i) [TZ1 p(x; | i) @

11

Naive Bayes — Discrete Conditional Probabilities

* p(X,yk) = p(Yi) H?=1 p(x; | Y)
* N, samples of class k

 Conditional probability p(x;|yi)
* |t's a table of counters

- For each possible value of x; counts its
occurrence in the training set

» OFFLINE: M}, /Ny,
* ONLINE: M} /Ny

« Both quantities can be computed online

12

Bayesian models are online methods

likelihood Xprior

 Bayes theorem: posterior = .
evidence

 Training for bayesian models = estimating posterior of the
parameters:
. _p(D|8)p®
p(0|D) = ="
 Online training for bayesian models: the posterior becomes the
prior for the next step

. _ p(D¢|0¢)p(6¢-1|D-1)
p(6¢|D) = ()

13

Bayesian models are online methods

* the posterior becomes the prior for the next step
p(De|0)p(0¢—11D¢—1)
p(0:|D) =

p(D;)

LIMITATIONS

* The posterior is often approximated so online may still have
large errors

 Any error is multiplicated, so it can have a large effect over time

» We are also ignoring robustness to drifts and computational
limitations

14

SGD - Stochastic Gradient Descent

» Classification model: y = f5(x)
* f is a differentiable function
* 0 are its parameters

* y are probabilities for each class or
normalized to become probabilities

« Optimization Objective:
« Given a loss function L(6, x)

* Find a minimum 6*
* Alocal minimumiss.t. VL(6,x) = 0

= ’ , il ,””il(z',z‘m = :’%" '33"0
»\\\\\‘“m Ui RS
\\\\\ ‘:\“‘\} W 0;"[””!:%”‘" 0 I /‘5‘ e

= @Q'///Illll 17

15

SGD - Algorithm

 Gradient Descent:
* |terate descent steps until convergence

 Descent step: 0;,, = 0; — AVL(6;, x X1 't: =
« 1 learning E)atelﬂ l) N \\‘\’ z::b ‘;ﬁ%"f“&”"%
\\\\‘Q’ OO “ ll g!!/llllll"'& i

a; '&"@'/ ,,

- ’0’0 Q‘\\
’0 D Q“\\

« How do we choose x? W U

» Streaming: x is the current element of
the stream x;

* Out-of-core: we sample i.i.d.

,/
TS 0*9 @\
R

16

SGD - Online vs Mini-batch

Often we update with mini-batches instead
of single examples
Noise tradeoff

 Smaller batch size -> more noige.

* Noise can help escape local minima
* Too much noise can slow convergence

Computational tradeoff
« With GPUs and manycore, parallelization over the

batch size is trivial
ou want as many samples as you can fit

* Ideally,y
in memory and compute’in parallel

Latency tradeoff (streaming)
* If we want larger mini-batches we need to wait

more data
 This is more important for inference than training
17

N \\ ’ i :
““\\\\\ III 0
l!,%m/ .:,,,

\\\\“

SGD - Convergence and Advantages

 Only local convergence is guaranteed
» Fast method

« Simple to implement with current
libraries that perform
autodifferentiation

« (out-of-core) Scales to huge datasets

18

SGD - i.i.d. assumption

e SGD searches a local minimum for

L (0’ x)) Low error for task B == EwC
. = Low error for task A = L2
 Assumes x are iid

Q—no penalty
* In presence of drifts, it will soon adapt =

to the new examples, «forgetting» the

previous ones

* We don't even need a drift detector, SGD
will adapt quickly

« What if we don’t want to forget? (DCL
module)

19

Adapting Offline Methods

KNN -> online kNN
Decision Tree -> Hoeffding Tree

20

kNN — k Nearest Neighbors

3-Class classification (k = 15, weights = 'uniform’)

v
=

h
)

» Non-parametric distance-based
classifier

 MODEL:

« Store samples from the dataset

« Compute distances between old examples
and new example

» The output is the average of the k closest "‘
examples

» Possibly weighted by distance ° ®

 For classification use a majority voting ® %

* Hyperparameters: o ®"
« k: how many neighbors to use -""3“\

» Distance metric: \

/

-
wn o
1

sepal width (cm)
NN W W
o wn o
1 1 1

=
w
I

=
o
|

New Instance’
* d(a,b) = \/Z?;1(ai — b;)? 3 ne?restneighbours
* Needs a good distance metric Predict @ as class label

21

kNN - offline k Nearest Neighbors

5.0 4

TRAIN:
« save the entire dataset
INFERENCE:

« compute distances and find k
closest examples

sepal width (cm)

10 -

 Use neighbors to compute output o0 o

.. e . ..
PROBLEM: The algorithm is designed ﬁ.é\
for offline training: we cannot save vewmstance!)
the entire stream 3 nearest neighbours 7

Predict @ as class label

22

» SOLUTION: use a fixed sliding window

O
® o9 e, O 4 0 °
®) @
. . . ,,,,, . ® .
O o @
@ ® ® ®
Timet, w=12 Time t+1

‘Forgot the oldest instance
Latest instance added *

Bifet, A., Pfahringer, B., Read, J., & Holmes, G. Efficient data stream classification via probabilistic adaptive windows. 28th ACM

symposium on applied computing (2013). 23

kNN-ADWIN — kNN + Drift Detection

* If a concept drift occurs, with KNN there is the risk that the
instances saved into the window belong to the old concept

« Use ADWIN to automatically set the size of the sliding window
to save the instances

@
© e O e o°
O ® ®
® O
e o °
o ® o
. . .\.
® \
Timet, w=12 Time t+1 /
Forgot the oldest instance

Latest instance added

Bifet, A., Pfahringer, B., Read, J., & Holmes, G. Efficient data stream classification via probabilistic adaptive windows. 28th ACM

symposium on applied computing (2013). 24

* River implementation:
https://riverml.xyz/dev/api/neighbors/KNNClassifier/

« storing a buffer with the 'window_size" most recent observations. A
brute-force search is used to find the ‘'n_neighbors™ nearest
observations in the buffer to make a prediction

* You need a good distance metric

25

https://riverml.xyz/dev/api/neighbors/KNNClassifier/

Decision Tree

 Fast and interpretable model
 MODEL.:

A tree that represent criteria to

split sample

« Each sample is assigned to one

of the leaves

* Internal nodes are split criteria

* A criteria decide which features
to use to perform the split and

how to split

» Classification: each leaf has a

corresponding class

Image: wikimedia

Survival of passengers on the Titanic

gender

TG

‘male female
~ \\

age survived
0.73; 36%
//\\\
9.5<age age <=9.5

died
017; 61%

3 <=sibsp sibsp<3
N R

died survived
0.02; 2% 089. 2%

26

Decision Tree — Inference

INFERENCE Survival of passengers on the Titanic
« Until the node is not a leaf /g\
» Check the feature corresponding A T
to the current internal node e sunves
* Move to the child corresponding e s B ¢ -
to the value of the selected e i .
feature 0_1;3?3%1% sibsp
N,
 Return class of the current ae=sbsp o
node (leaf) S g

Image: wikimedia 27

Decision Tree — Offline Training

TRAINING:
e Build the tree
* For each node:

» Decide if it needs to be split

e Decide which feature to use for

the split
» Decide how to do the split

* We need to define a split
criterion

Image: wikimedia

Survival of passengers on the Titanic

gender
/\
‘male female
.--":‘// \\
age survived
0.73; 36%
/\
95 < age age <=95
died :
017 61% Shep
/\\
3 <=sibsp sibsp<3
%
died survived
0.02; 2% 089 2%

28

Decision Tree — Offline Training

Greedy recursive algorithm:

 Select only the examples
corresponding to the current node

« Find most discriminative attribute Xi
* Gini index
* Information Gain (H)

« Split (based on split criterion):
» Create a new node for each value of Xi
« Apply the algorithm recursive

* No split:
* The node is a leaf
 assigns majority class

Image: wikimedia

Survival of passengers on the Titanic

gender

TG

‘male female

B

~

survived

age ;
0.73; 36%

//\\

95<age age<=95

S

sibsp

/\\
3 <=sibsp sibsp<3

v e

died survived
0.02; 2% 089. 2%

died
017; 61%

29

Decision Tree - Information Gain

Information Gain
« IG(T,a) = H(T) — H(T, @)
* H(T, a) is the conditional entropy

H(T, A) = >, H (5a) [Sal /1S

What is the problem here?

Image: wikimedia

Survival of passengers on the Titanic

Limitations of the Greedy Choice

e Offline: we can compute IG and

greedily split the node

* Online: we can compute the IG of

the past data

« We don’t know how much the IG will

change with future data

 If it changes too much, we need to

change the tree

- we don't want to revise the split
criterion, so we need to wait for

enough data

* Q: How much data do we need

before deciding the split?

Image: wikimedia

information gain entropy (parent) sum of entropies (children)
IG(T.a) = H(T) - H(T | a)

Survival of passengers on the Titanic

gender

TG

‘male female

age survived
0.73; 36%
B
95<age age<=95

died

0.17; 61% &g

//\\
3<=sibsp sibsp<«3

Y B

died survived
0.02; 2% 0.89. 2%

31

Hoeffding Bound

. !—Ioeffdilgjg's inequality provides an upper bound on the robabilitg that the sum of bounded
independent random’variables deviates from its expected value by more than a certain amount

* LetX,,..., X, be independent random variables such that a; < X; < b; almost surely. Consider the
sum of these random variables S,, = X; + -+ X,

« The Hoeffding Theorem states that, forallt > 0

22
P(S,—E[S,] >t)<exp | — - 5
i—1 (bt' — {11-]

| 2t2
P(|SH_E[S?’1]| Et)ggexp o n 9
1 (bi —a;)

1=

Given enough samples, we can bound the change in the entropy!
Now we have a criterion to decide when we have enough samples to do the split.

32

Hoeffding Tree

¢ Very faSt deC|S|On tree algorlthm for Survival of passengers on the Titanic
stréaming data
« Splits decisions based on Hoeffding bound s
. . . TG
 wait for enough instances to arrive before mae” emae
splitting » e
« with sufficiently large data (and § — 0? provably e =
converges to the tree built by a batch learner ss<ale ae<gs
- Confidence interval for the entropy estimate |..7%.
R2 In 1/6 3<= sibgp/\sﬁ)spezs

e Confidence interval € = s L
Zn died survived

R =range of the random variable oz 7% 085, 2%

0 is the desired P,robability of the estimate not
being within € of its expected value,

* n = number of examples collected at the node

Pedro Domingos and Geoff Hulten. Mining high-speed data streams. 2000 33

Hoeffding Tree — Online Update

° Every nOdeS keeps 'the S'ta't|S't|CS Survival of passengers on the Titanic
necessary to compute the split criterion
. . NG
e For discrete variables a table where: AR
 Each row is a triplet < x;, vj, ¢ > a—
* x; attribute =
» v; attribute value —— /p\pp
e ¢ counter “ —

34

Hoeffding Tree — Algorithm

* For each new sample
 Find its corresponding leaf
« Update the table

 Split if the G estimate is close
enough (i.e. we have collected
enough samples at the node)

« The DT construction is
incremental

» Hoeffding bound ensure that
the greedy splits must not be
revisited

HOEFFDINGTREE(Stream,d)

Input: a stream of labeled examples, confidence parameter o

| let HT be a tree with a single leaf (root)
2 init counts 72 j; at root

3 for each example (x.y) in Stream

4 do HTGrOW((z,y). HT.d)

HTGRrROW((x,y), HT,?)

then
split leaf on best attribute
for each branch
do start new leaf and initialize counts

| sort (z,y) to leaf [using HT

2 update counts n; ;. at leaf /

3 if examples seen so far at [are not all of the same class

R then

5 compute G for each attribute

6 if G(best attribute) - G(second best) > |/ #5112
.

8

9

10

Algorithm from MOA book 35

VFDT - Very Fast Decision Tree

Practical implementation of Hoeffding Tree with a few changes

* Tie breakingt:) When two attributes have similar split gain _G_, VFDT splits if
Hoeffding's

ound is lower than a certain threshold parameter t
* G(best) — G (second best) is small (< bound) and /Rz 12n /0 < 7> SPLIT

n
. T.he.IHoeffding bound tells you that the G estimates are close to the real value and G are
simiiar
 you can split because the difference between the two is unlikely to change with more data

« Speed up: compute G only every k updates

 Memory improvement: deactivate least promising nodes:
» Least promising = low p; X e; product
 p; probability to reach leaf
* ¢; error in node [

« Warm start: to mitigate that the performance can be poor at the beginning and
slow to converge

36

CVFDT - Concept-Adapting VFDT

« Objective: keep a DT model that is consistent with a sliding windows of w
samples

* It needs to add, remove, and forget instances
- CVFDTGROW: _Brocess an example updating counts of the nodes traversed

(same as VFD
» Unlike VFDT, you also need to keep and update the table for internal nodes

« CHECK SPLIT VALIDITY

» check whether the chosen splits are still valid
« |IF OPTIMAL SPLIT ARE CHANGED: creates an alternate subtree

 Periodically, check whether the alternate branch is performing better than the original
branch treé

« TRUE -> replaces the original branch
« FALSE ->removes the alternate branch.

« We lose the theoretical guarantees of VFDT
* Lots of additional hyperparameters

37

HAT - Hoeffding Adaptive Tree

« Hoeffding Tree + ADWIN for concept drift detection

Differences with CVFDT:
» Create a new tree as soon as change is detected
* Switch to the new tree as soon as it becomes better than the old one

« CVFDT requires many hyperparameters related to the expected distance
between drifts

« HAT adapts to the scale of time change in the data, rather than relying on
the a priori guesses (thanks to ADWII\%.

* River:
https://riverml.xyz/0.14.0/api/tree/HoeffdingAdaptiveTreeClassifier/

38

https://riverml.xyz/0.14.0/api/tree/HoeffdingAdaptiveTreeClassifier/

Model Selection — CASH Problem

« CASH problem: Combined Algorithm Selection and Hyperparameter.
« AutoML aims to automate the data mining pipeline:

« Data cleaning

* Feature engineering

 Algorithm selection

« Hyperparameters tuning

Different implementations with different search spaces and hyperparameter optimizations:
« Auto Weka 2.0

 Autosklearn

« TPOT

« GAMA

« H20

39

CASH problem with OML

CASH solution does not consider the adaptation of parameters in
an evolving data stream with prequential evaluation

Actual applications to a streaming scenario:

 Train AutoML only the first portion of the data stream
 Retrain AutoML from scratch after a concept drift

« Computational expensive

 Large number of parallel trainings

40

EvoAutoML

* naturally adapts the population of algorithms and configurations.
* avoids expensive retraining.

» addresses the Online CASH problem by finding the joint algorithm
combination and hyperparameter setting that minimizes a
predefined loss ovér a stream of data.

Considers:

* Pipeline structure
 Algorithms

 Configuration space

* Predictions by majority voting

C. Kulbach, J. Montiel, M. Bahri, M. Heyden, & A. Bifet. Evolution-Based Online Automated Machine Learning. PAKDD, 2022 41

Take-home Messages

 OML methods have a restricted set of available operations
« Some are naturally online (NB, SGD)
« Some resort to approximated solutions (kNN, DT)

* You need to be aware of:
* First phase of learning -> pretrain if possible
 The limitations of the approximations (if any)
« Whether the method can deal with concept drift

42

References

« Streaming Data Analytics Course - Emanuele Della Valle and
Alessio Bernardo @ POLIMI

« MOA Book

43

	Slide 1: Online Machine Learning
	Slide 2: Outline
	Slide 3: What is an Online Classification Method
	Slide 4: Out-of-core Methods
	Slide 5: Training Online – Amount of Data
	Slide 6: Pretraining and Warm Start
	Slide 7: Online Computations
	Slide 8: Online Methods
	Slide 9: Naive Bayes
	Slide 10: Naive Bayes
	Slide 11: Naive Bayes – Prior
	Slide 12: Naive Bayes – Discrete Conditional Probabilities
	Slide 13: Bayesian models are online methods
	Slide 14: Bayesian models are online methods
	Slide 15: SGD – Stochastic Gradient Descent
	Slide 16: SGD – Algorithm
	Slide 17: SGD – Online vs Mini-batch
	Slide 18: SGD – Convergence and Advantages
	Slide 19: SGD – i.i.d. assumption
	Slide 20: Adapting Offline Methods
	Slide 21: kNN – k Nearest Neighbors
	Slide 22: kNN – offline k Nearest Neighbors
	Slide 23: Online kNN
	Slide 24: kNN-ADWIN – kNN + Drift Detection
	Slide 25: Online kNN
	Slide 26: Decision Tree
	Slide 27: Decision Tree – Inference
	Slide 28: Decision Tree – Offline Training
	Slide 29: Decision Tree – Offline Training
	Slide 30: Decision Tree – Information Gain
	Slide 31: Limitations of the Greedy Choice
	Slide 32: Hoeffding Bound
	Slide 33: Hoeffding Tree
	Slide 34: Hoeffding Tree – Online Update
	Slide 35: Hoeffding Tree – Algorithm
	Slide 36: VFDT - Very Fast Decision Tree
	Slide 37: CVFDT – Concept-Adapting VFDT
	Slide 38: HAT – Hoeffding Adaptive Tree
	Slide 39: Model Selection – CASH Problem
	Slide 40: CASH problem with OML
	Slide 41: EvoAutoML
	Slide 42: Take-home Messages
	Slide 43: References

