
Antonio Carta

antonio.carta@unipi.it

Online Machine Learning
Online Classification Models

Outline

• Basics: what you can and can’t do in an online method

• Online Methods: Naive Bayes, SGD

• From offline to online methods:
• kNN -> online kNN

• Decision Tree -> Hoeffding Tree

2

What is an Online Classification Method

• Streaming Classification Models
• Models that take as input an infinite stream

• We can’t save the input data

• We have latency and computational constraints

• Out-of-Core Methods
• Models that are too expensive to be trained on the entire dataset in one

step

• Only computation constraints

• We don’t have drifts here, the data is static (e.g. we can shuffle it)

3

Out-of-core Methods

Source: scikit-learn docs 4

Training Online – Amount of Data

• We cannot keep the entire stream in memory
• We cannot shuffle the data (except in out-of-core)

• We can keep a small buffer but we cannot retrain from scratch
at each step (latency)

• We can update the model using small mini-batches

algorithms need to be able to take the previous model and a
small batch of samples as input and return a new model

• 𝐀: 𝜃𝑡−1, 𝐷 → 𝜃𝑡

5

Pretraining and Warm Start

• Many online algorithms are susceptible to larger changes in the
first phases of training
• Others suffer from bad initializations

• We may have an initial model, pretrained on some static data

• We can use it as init for the online model

• Called «Warm start», «finetuning», depending on the field

• This is The Way in the Deep Learning world

6

Online Computations

• Some statistics can be easily computed online
• But we need to change the algorithm

• Approximations:
• Can we give correctness bound?

• Estimate from a buffer:
• How much do we wait for data before doing the initial estimate?

• Sketching algorithms:
• Compute approximated statistics over the entire stream
• Typically with guarantees over memory/time/error
• We have seen exponential sketching with ADWIN

7

Online Methods
Naive Bayes and Stochastic Gradient Descent

8

Naive Bayes

• Bayesian method

• Classification with Naive Bayes:
argmax𝑖𝑝 𝑥, 𝑦𝑖

• Conditional independence
assumptions: the input features are
statistically independent between
themselves given the target

• 𝑝 𝐱, 𝑦𝑘 =
𝑝 𝑥1 𝑦𝑘 𝑝 𝑥2 𝑦𝑘 … 𝑝 𝑥𝐷 𝑦𝑘 𝑝 𝑦𝑘 =
𝑝 𝑦𝑘 ς𝑖=1

𝐷 𝑝 𝑥𝑖 𝑦𝑘

9

Naive Bayes

• 𝑝 𝐱, 𝑦𝑘 = 𝑝 𝑦𝑘 ς𝑖=1
𝐷 𝑝 𝑥𝑖 𝑦𝑘

• TRAINING: estimate
conditional probabilities
𝑝 𝑥𝑖 𝑦𝑘 and priors 𝑝 𝑦𝑘

• PROBLEM: online estimate of
conditional probabilities

10

Naive Bayes – Prior

• 𝑝 𝐱, 𝑦𝑘 = 𝑝 𝑦𝑘 ς𝑖=1
𝐷 𝑝 𝑥𝑖 𝑦𝑘

• 𝑁 examples in the dataset
• In streams count how many

samples seen up to now

• 𝑁𝑘 samples of class 𝑘

• priors 𝑝 𝑦𝑘

• OFFLINE: 𝑁𝑘/𝑁

• ONLINE: 𝑁𝑘/𝑁
• Both quantities can be computed

online

11

Naive Bayes – Discrete Conditional Probabilities

• 𝑝 𝐱, 𝑦𝑘 = 𝑝 𝑦𝑘 ς𝑖=1
𝐷 𝑝 𝑥𝑖 𝑦𝑘

• 𝑁𝑘 samples of class 𝑘

• Conditional probability 𝑝 𝑥𝑖|𝑦𝑘
• It’s a table of counters
• For each possible value of 𝑥𝑖 counts its

occurrence in the training set

• OFFLINE: 𝑀𝑗,𝑘
𝑖 /𝑁𝑘

• ONLINE: 𝑀𝑗,𝑘
𝑖 /𝑁𝑘

• Both quantities can be computed online

12

Bayesian models are online methods

• Bayes theorem: 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑×𝑝𝑟𝑖𝑜𝑟

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

• Training for bayesian models = estimating posterior of the
parameters:

• 𝑝 𝜃 𝐷 =
𝑝 𝐷 𝜃 𝑝 𝜃

𝑝 𝐷

• Online training for bayesian models: the posterior becomes the
prior for the next step

• 𝑝 𝜃𝑡 𝐷 =
𝑝 𝐷𝑡 𝜃𝑡 𝑝 𝜃𝑡−1|𝐷𝑡−1

𝑝 𝐷𝑡

13

Bayesian models are online methods

• the posterior becomes the prior for the next step

𝑝 𝜃𝑡 𝐷 =
𝑝 𝐷𝑡 𝜃𝑡 𝑝 𝜃𝑡−1|𝐷𝑡−1

𝑝 𝐷𝑡

LIMITATIONS

• The posterior is often approximated so online may still have
large errors

• Any error is multiplicated, so it can have a large effect over time

• We are also ignoring robustness to drifts and computational
limitations

14

SGD – Stochastic Gradient Descent

• Classification model: 𝑦 = 𝑓𝜃 𝑥
• 𝑓 is a differentiable function

• 𝜃 are its parameters

• 𝑦 are probabilities for each class or
normalized to become probabilities

• Optimization Objective:
• Given a loss function 𝐿 𝜃, 𝑥

• Find a minimum 𝜃∗

• A local minimum is s.t. ∇𝐿 𝜃, 𝑥 = 0

15

SGD – Algorithm

• Gradient Descent:
• Iterate descent steps until convergence

• Descent step: 𝜃𝑖+1 = 𝜃𝑖 − 𝜆∇𝐿 𝜃𝑖 , 𝑥
• 𝜆 learning rate

• How do we choose 𝑥?

• Streaming: 𝑥 is the current element of
the stream 𝑥𝑡

• Out-of-core: we sample i.i.d.

16

SGD – Online vs Mini-batch

• Often we update with mini-batches instead
of single examples

• Noise tradeoff
• Smaller batch size -> more noise
• Noise can help escape local minima
• Too much noise can slow convergence

• Computational tradeoff
• With GPUs and manycore, parallelization over the

batch size is trivial
• Ideally, you want as many samples as you can fit

in memory and compute in parallel

• Latency tradeoff (streaming)
• If we want larger mini-batches we need to wait

more data
• This is more important for inference than training

17

SGD – Convergence and Advantages

• Only local convergence is guaranteed

• Fast method

• Simple to implement with current
libraries that perform
autodifferentiation

• (out-of-core) Scales to huge datasets

18

SGD – i.i.d. assumption

• SGD searches a local minimum for
𝐿 𝜃, 𝑥
• Assumes 𝑥 are iid

• In presence of drifts, it will soon adapt
to the new examples, «forgetting» the
previous ones
• We don’t even need a drift detector, SGD

will adapt quickly

• What if we don’t want to forget? (DCL
module)

19

Adapting Offline Methods
kNN -> online kNN

Decision Tree -> Hoeffding Tree

20

kNN – k Nearest Neighbors

• Non-parametric distance-based
classifier

• MODEL:
• Store samples from the dataset
• Compute distances between old examples

and new example
• The output is the average of the k closest

examples
• Possibly weighted by distance
• For classification use a majority voting

• Hyperparameters:
• k: how many neighbors to use
• Distance metric:

• 𝑑 𝑎, 𝑏 = σ𝑖=1
𝑚 𝑎𝑖 − 𝑏𝑖

2

• Needs a good distance metric

21

kNN – offline k Nearest Neighbors

TRAIN:

• save the entire dataset

INFERENCE:

• compute distances and find k
closest examples

• Use neighbors to compute output

PROBLEM: The algorithm is designed
for offline training: we cannot save
the entire stream

22

Online kNN

• SOLUTION: use a fixed sliding window

Bifet, A., Pfahringer, B., Read, J., & Holmes, G. Efficient data stream classification via probabilistic adaptive windows. 28th ACM
symposium on applied computing (2013).

23

kNN-ADWIN – kNN + Drift Detection

• If a concept drift occurs, with KNN there is the risk that the
instances saved into the window belong to the old concept

• Use ADWIN to automatically set the size of the sliding window
to save the instances

Bifet, A., Pfahringer, B., Read, J., & Holmes, G. Efficient data stream classification via probabilistic adaptive windows. 28th ACM
symposium on applied computing (2013).

24

Online kNN

• River implementation:
https://riverml.xyz/dev/api/neighbors/KNNClassifier/
• storing a buffer with the `window_size` most recent observations. A

brute-force search is used to find the `n_neighbors` nearest
observations in the buffer to make a prediction

• You need a good distance metric

25

https://riverml.xyz/dev/api/neighbors/KNNClassifier/

Decision Tree

• Fast and interpretable model

• MODEL:
• A tree that represent criteria to

split sample
• Each sample is assigned to one

of the leaves
• Internal nodes are split criteria
• A criteria decide which features

to use to perform the split and
how to split

• Classification: each leaf has a
corresponding class

Image: wikimedia 26

Decision Tree – Inference

INFERENCE

• Until the node is not a leaf
• Check the feature corresponding

to the current internal node

• Move to the child corresponding
to the value of the selected
feature

• Return class of the current
node (leaf)

Image: wikimedia 27

Decision Tree – Offline Training

TRAINING:

• Build the tree

• For each node:
• Decide if it needs to be split
• Decide which feature to use for

the split
• Decide how to do the split

• We need to define a split
criterion

Image: wikimedia 28

Decision Tree – Offline Training

Greedy recursive algorithm:

• Select only the examples
corresponding to the current node

• Find most discriminative attribute Xi
• Gini index
• Information Gain (H)

• Split (based on split criterion):
• Create a new node for each value of Xi
• Apply the algorithm recursive

• No split:
• The node is a leaf
• assigns majority class

Image: wikimedia 29

Decision Tree – Information Gain

Information Gain

• 𝐼𝐺 𝑇, 𝑎 = 𝐻 𝑇 − 𝐻 𝑇, 𝑎

• 𝐻 𝑇, 𝑎 is the conditional entropy

What is the problem here?

Image: wikimedia 30

Limitations of the Greedy Choice

• Offline: we can compute IG and
greedily split the node

• Online: we can compute the IG of
the past data
• We don’t know how much the IG will

change with future data
• If it changes too much, we need to

change the tree
• we don’t want to revise the split

criterion, so we need to wait for
enough data

• Q: How much data do we need
before deciding the split?

Image: wikimedia 31

Hoeffding Bound

• Hoeffding's inequality provides an upper bound on the probability that the sum of bounded
independent random variables deviates from its expected value by more than a certain amount

• Let 𝑋1, … , 𝑋𝑛be independent random variables such that 𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖 almost surely. Consider the
sum of these random variables 𝑆𝑛 = 𝑋1 + ⋯ + 𝑋𝑛

• The Hoeffding Theorem states that, for all 𝑡 > 0

32

Given enough samples, we can bound the change in the entropy!
Now we have a criterion to decide when we have enough samples to do the split.

Hoeffding Tree

• very fast decision tree algorithm for
streaming data
• Splits decisions based on Hoeffding bound
• wait for enough instances to arrive before

splitting
• with sufficiently large data (and 𝛿 → 0) provably

converges to the tree built by a batch learner

• Confidence interval for the entropy estimate

• Confidence interval 𝜖 =
𝑅2 ln 1/𝛿

2𝑛
• R = range of the random variable
• δ is the desired probability of the estimate not

being within 𝜖 of its expected value,
• n = number of examples collected at the node

Pedro Domingos and Geoff Hulten. Mining high-speed data streams. 2000 33

Hoeffding Tree – Online Update

• Every nodes keeps the statistics
necessary to compute the split criterion

• For discrete variables a table where:
• Each row is a triplet < 𝑥𝑖 , 𝑣𝑗 , 𝑐 >

• 𝑥𝑖 attribute

• 𝑣𝑗 attribute value

• 𝑐 counter

34

Hoeffding Tree – Algorithm

• For each new sample
• Find its corresponding leaf
• Update the table
• Split if the G estimate is close

enough (i.e. we have collected
enough samples at the node)

• The DT construction is
incremental

• Hoeffding bound ensure that
the greedy splits must not be
revisited

Algorithm from MOA book 35

VFDT - Very Fast Decision Tree

Practical implementation of Hoeffding Tree with a few changes

• Tie breaking: When two attributes have similar split gain _G_ , VFDT splits if
Hoeffding’s bound is lower than a certain threshold parameter 𝜏

• 𝐺 𝑏𝑒𝑠𝑡 − 𝐺 𝑠𝑒𝑐𝑜𝑛𝑑 𝑏𝑒𝑠𝑡 is small (< bound) and
𝑅2 ln 1/𝛿

2𝑛
< 𝜏 -> SPLIT

• The Hoeffding bound tells you that the G estimates are close to the real value and G are
similar

• you can split because the difference between the two is unlikely to change with more data

• Speed up: compute 𝐺 only every 𝑘 updates

• Memory improvement: deactivate least promising nodes:
• Least promising = low 𝑝𝑙 × 𝑒𝑙 product
• 𝑝𝑙 probability to reach leaf 𝑙
• 𝑒𝑙 error in node 𝑙

• Warm start: to mitigate that the performance can be poor at the beginning and
slow to converge

36

CVFDT – Concept-Adapting VFDT

• Objective: keep a DT model that is consistent with a sliding windows of w
samples

• It needs to add, remove, and forget instances

• CVFDTGROW: process an example updating counts of the nodes traversed
(same as VFDT)
• Unlike VFDT, you also need to keep and update the table for internal nodes

• CHECK SPLIT VALIDITY
• check whether the chosen splits are still valid

• IF OPTIMAL SPLIT ARE CHANGED: creates an alternate subtree

• Periodically, check whether the alternate branch is performing better than the original
branch tree

• TRUE -> replaces the original branch
• FALSE -> removes the alternate branch.

• We lose the theoretical guarantees of VFDT

• Lots of additional hyperparameters

37

HAT – Hoeffding Adaptive Tree

• Hoeffding Tree + ADWIN for concept drift detection

Differences with CVFDT:

• Create a new tree as soon as change is detected

• Switch to the new tree as soon as it becomes better than the old one

• CVFDT requires many hyperparameters related to the expected distance
between drifts

• HAT adapts to the scale of time change in the data, rather than relying on
the a priori guesses (thanks to ADWIN).

• River:
https://riverml.xyz/0.14.0/api/tree/HoeffdingAdaptiveTreeClassifier/

38

https://riverml.xyz/0.14.0/api/tree/HoeffdingAdaptiveTreeClassifier/

Model Selection – CASH Problem

• CASH problem: Combined Algorithm Selection and Hyperparameter.

• AutoML aims to automate the data mining pipeline:

• Data cleaning

• Feature engineering

• Algorithm selection

• Hyperparameters tuning

Different implementations with different search spaces and hyperparameter optimizations:

• Auto Weka 2.0

• Autosklearn

• TPOT

• GAMA

• H2O

39

CASH problem with OML

CASH solution does not consider the adaptation of parameters in
an evolving data stream with prequential evaluation

Actual applications to a streaming scenario:

• Train AutoML only the first portion of the data stream

• Retrain AutoML from scratch after a concept drift

• Computational expensive

• Large number of parallel trainings

40

EvoAutoML

• naturally adapts the population of algorithms and configurations.
• avoids expensive retraining.
• addresses the Online CASH problem by finding the joint algorithm

combination and hyperparameter setting that minimizes a
predefined loss over a stream of data.

Considers:
• Pipeline structure
• Algorithms
• Configuration space
• Predictions by majority voting

C. Kulbach, J. Montiel, M. Bahri, M. Heyden, & A. Bifet. Evolution-Based Online Automated Machine Learning. PAKDD, 2022 41

Take-home Messages

• OML methods have a restricted set of available operations
• Some are naturally online (NB, SGD)

• Some resort to approximated solutions (kNN, DT)

• You need to be aware of:
• First phase of learning -> pretrain if possible

• The limitations of the approximations (if any)

• Whether the method can deal with concept drift

42

References

• Streaming Data Analytics Course - Emanuele Della Valle and
Alessio Bernardo @ POLIMI

• MOA Book

43

	Slide 1: Online Machine Learning
	Slide 2: Outline
	Slide 3: What is an Online Classification Method
	Slide 4: Out-of-core Methods
	Slide 5: Training Online – Amount of Data
	Slide 6: Pretraining and Warm Start
	Slide 7: Online Computations
	Slide 8: Online Methods
	Slide 9: Naive Bayes
	Slide 10: Naive Bayes
	Slide 11: Naive Bayes – Prior
	Slide 12: Naive Bayes – Discrete Conditional Probabilities
	Slide 13: Bayesian models are online methods
	Slide 14: Bayesian models are online methods
	Slide 15: SGD – Stochastic Gradient Descent
	Slide 16: SGD – Algorithm
	Slide 17: SGD – Online vs Mini-batch
	Slide 18: SGD – Convergence and Advantages
	Slide 19: SGD – i.i.d. assumption
	Slide 20: Adapting Offline Methods
	Slide 21: kNN – k Nearest Neighbors
	Slide 22: kNN – offline k Nearest Neighbors
	Slide 23: Online kNN
	Slide 24: kNN-ADWIN – kNN + Drift Detection
	Slide 25: Online kNN
	Slide 26: Decision Tree
	Slide 27: Decision Tree – Inference
	Slide 28: Decision Tree – Offline Training
	Slide 29: Decision Tree – Offline Training
	Slide 30: Decision Tree – Information Gain
	Slide 31: Limitations of the Greedy Choice
	Slide 32: Hoeffding Bound
	Slide 33: Hoeffding Tree
	Slide 34: Hoeffding Tree – Online Update
	Slide 35: Hoeffding Tree – Algorithm
	Slide 36: VFDT - Very Fast Decision Tree
	Slide 37: CVFDT – Concept-Adapting VFDT
	Slide 38: HAT – Hoeffding Adaptive Tree
	Slide 39: Model Selection – CASH Problem
	Slide 40: CASH problem with OML
	Slide 41: EvoAutoML
	Slide 42: Take-home Messages
	Slide 43: References

