

Online Machine Learning

Ensemble Methods

Antonio Carta antonio.carta@unipi.it

- Basics: what is an ensemble and why we need them in OML
- Offline Ensembling Methods
- Online Ensembling Methods

General Concepts

In 1907, <u>Sir Francis Galton</u> asked 787 villagers to guess the weight of an ox. None of them got the right answer, but when Galton averaged their guesses, he arrived at a near perfect estimate

- A set of models
- Combined together
- With a mechanisms to compute the output

Questions:

- How to train each model (e.g. what data to use)
- How to compute the output

Many techniques we see today are offline methods. Why are we studying them?

- Ensembles are a popular technique in OML
- In the presence of drifts, models will be retrained, forgetting old concepts
- In the presence of **recurrent concepts**, this is a problem
- We can fix it by having a separate model for each concept
- Then, we can **select the correct model** at each step (easier said than done)

http://www.r2d3.us/visual-intro-to-machine-learning-part-2/

Bias-Variance Tradeoff

• Bias:

- Simple model → ignores relevant information, error due to bias is high
- **Complex models** \rightarrow error due to bias decreases (low bias)

Variance:

- Simple model \rightarrow less error due to variance
- Complex model → error due to variance increases.
- Tradeoff: The ideal model finds the optimal bias-variance tradeoff

"An ensemble can be described as a **composition** of multiple **weak learners** to form one with (expected) higher predictive performance (strong learner), such that a weak learner is loosely defined as a learner that performs slightly better than random guessing"

Freund and Schapire, 1997

Weak Learners and Ensembling

ALING NI ATIG

- Weak learners have highbias/low-variance
- An **ensemble** of weak learners improves the performance
- How do we choose and train the weak learner?
- **KEY IDEA**: The bias is decreased if the errors are decorrelated. We have to ensure the weak learners are different.

- Diversity: induce diversity among learners
- Combination: combine the predictions
- Adaptation (for OML): adapt to evolving data

Advantages:

- High Predictive performance
- Flexibility

Disadvantages:

Computational resources

- Ensembles work best when the base models are different and have decorrelated errors
- horizontal partitioning: training classifiers in different chunks of data
- vertical partitioning: training with different subsets of features

- Flat: base models trained on input data, decision fusion via simple combination
- Meta-learner: the combination function is a model itself (meta-learned)
- Hierarchical: structured organization of the base learners
- **Network**: base models are nodes in a graph. The graph structure informs the combination scheme

Gomes, H. M., Barddal, J. P., Enembreck, F., & Bifet, A. (2017). A survey on ensemble learning for data stream classification. ACM, 50(2), 1-36.

- Majority vote: every classifier has the same weight
- Weighted majority: gives a different weight to each classifier
- Classifier selection: uses a dynamic criterion to select the best classifier for the current sample

Gomes, H. M., Barddal, J. P., Enembreck, F., & Bifet, A. (2017). A survey on ensemble learning for data stream classification. ACM, 50(2), 1-36.

- How many base models?
- Fixed: the number of base learners cannot grow
- Dynamic: add classifiers on the fly
 - We still need to limit the memory growth somehow

Offline Ensembles

IDEA: Increase diversity by training on different subsets of the data

Bootstrap: sample with replacement

• An example of horizontal partitioning

Training:

- Sample m iid datasets of dimension n from the original data (with replacement)
- Train m models independently, one for each bootstrapped set Inference: Combine outputs (average or majority voting)
 Properties:
- Bagging reduces the variance
- Base models should have high variance to encourage diversity

Original Training Set

С

А

в

Possible Bootstrapped Sets

Е

Bagging

Image source: By Sirakorn - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=85888768

- Popular example of bagging
- Train m decision trees, each one on their own bootstrapped dataset
- Weak learners:
 - Limit the tree depth
 - Vertical partitioning: train each decision tree on a subset of features

• aka meta-learner combination scheme

- Train base models
- Fit a meta-learner to combine the outputs
 - Often a very simple model, such as a linear combination of the outputs
 - Example: $y_{ensemble} = \sum_{i} \alpha_{i} y_{base}^{i}$
- Advantages: Can learn the combination scheme

Online Ensembles

How do we split the stream if we want to train (and evaluate) an ensemble? We need to ensure diversity and robust training and evaluation.

K-fold distributed cross-validation:

each sample is used for testing in one classifier selected randomly, and used for training on all the others

- Adaptation of offline cross-validation
- Good use of the data (only one 1/k samples are unused)
- high redundancy

K-fold distributed split-validation:

each sample is used for training in one classifier selected randomly, and for testing in all the other classifiers

- Models trained on disjoint data
- Under utilization of data. Each model uses 1/k data for training

K-fold distributed bootstrap-validation:

each sample is used for training in approximately 2/3 of the classifiers, with a separate weight in each classifier, and for testing in all the classifiers (we will see online boostrap in the following slides)

IDEA: train an ensemble of offline methods. Adapt the ensemble by removing the oldest models.

- Process the stream in chunks
- Whenever a new chunk is ready, train a new model to add to the ensemble
 - Remove the oldest one to keep a fixed number of models in the ensemble
- LIMITATION: We have to fix the window size

- Weighting Scheme: each classifier is weighted by the expected accuracy on the future data
 - Weight $w_i = err_i err_r$
 - err_i error of classifier i
 - err_r error of random classifier
 - Ideally, estimated using a separate test set with recent data
 - Realistically estimated using the last chunk of data from the stream
- Ensemble output: $f(x) = sign(\sum_i w_i C_i(x))$

Online Bagging

- **IDEA**: We want to use bootstrap (remember: sampling with replacement). How can we do it online?
- **OFFLINE**: draw *n* random i.i.d. samples uniformly with replacement
- **ONLINE**: we give a discrete weight to the current sample in the stream
 - Equivalent to the number of copies of the current example that we would get in the offline setting
 - What distribution should we use?

Possible Bootstrapped Sets

Online Bagging – Binomial Distribution

- n = number of examples in a bootstrapped set
- k = number of replicas for a specific example
- The number of replicas in a bootstrapped set follows a binomial distribution:
 - We perform n independent experiments where:
 - With probability $p = \frac{1}{n}$ we pick the current example
 - With probability 1 p we pick another example

$$P(K = k) = \binom{n}{k} p^k (1 - p)^{n-k} = \binom{n}{k} \frac{1}{n}^k \left(1 - \frac{1}{n}\right)^{n-k}$$

Original Training Set

Possible Bootstrapped Sets

Online Bagging – Binomial vs Poisson

- For large n, the binomial can be approximated with a Poisson distribution
- Online Bagging: draw weights according to a Poisson with $\lambda = 1$

$$\operatorname{Poi}(x|\lambda) = e^{-\lambda} \ \frac{\lambda^x}{x!}$$

Original Training Set

A B C D E

Possible Bootstrapped Sets

Online Bagging – Pseudocode

ALL MADE DICCUMIATION

ONLINE BAGGING(Stream, M)

Input: a stream of pairs (x, y), parameter M = ensemble size Output: a stream of predictions \hat{y} for each x

- 1 initialize base models h_m for all $m \in \{1, 2, \dots, M\}$
- 2 for each example (x, y) in *Stream*
- 3 **do** predict $\hat{y} \leftarrow \arg \max_{y \in Y} \sum_{t=1}^{T} I(h_t(x) = y)$
- 4 for m = 1, 2, ..., M
- 5 **do** $w \leftarrow Poisson(1)$
 - update h_m with example (x, y) and weight w

Figure 7.2

6

Online Bagging for M models. The indicator function I(condition) returns 1 if the condition is true, and 0 otherwise.

IDEA: Bagging in the presence of Concept Drift

• ADWIN Bagging:

- Bagging ensemble
- ADWIN for concept drift detection

• Keep m CD detectors (ADWIN), one for each base model

• REMEMBER: ADWIN looks at the stream of errors and consider a CD whenever the error decreases too much between the old and new window (according to a statistical test)

• When a CD detector finds a CD:

- Remove the worst classifier (*«replace the loser»* strategy)
- Train a new one

Leveraging Bagging

- Adding more randomness can improve the performance
- We can also change λ in a Poisson distribution to control the weights
 - Higher λ increases the mean and results in a flatter distribution
- Alternative distributions: Gamma $\Gamma(k, \theta)$
- Example: Leveraging Bagging
 - Samples from Poisson with $\lambda \geq 1$

Ref: MOA book (Ch. 7.4)

Image: Di Skbkekas - Opera propria, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=9447142

Image: By Gamma_distribution_pdf.png: MarkSweep and Cburnettderivative work: Autopilot (talk) - Gamma_distribution_pdf.png, CC BY-SA 3.0, 👘 🍹

https://commons.wikimedia.org/w/index.php?curid=10734916

- Sample from **Poisson** with $\lambda \geq 1$
- ADWIN Bagging with replace the loser strategy
- Error-correcting output codes:
 - In multi-class problems map set of classes into two sets {0, 1}
 - Converts a multi-class problem into a binary classification problem
 - Each base model uses a different code
 - Increases diversity because each model is learning a different function

- Ensemble of trees in a single tree structure
- Option Nodes represent an ensemble of subtrees

• INFERENCE:

- Each subtree is evaluated in parallel
- Output from the leaves are aggregated (e.g. weighted voting)

• TRAINING:

- If the splitting criterion for different attributes is similar and we have enough data (according to the Hoeffding bound), we split the tree into **several options**
- Less instability
- We can split earlier
- REMINDER: in the VFDT, if attributes are close enough, we pick only the best.

Hoeffding Option Tree

B. Pfahringer et al. "New Options for Hoeffding Trees." In AI 2007: Advances in Artificial Intelligence, LNCS Springer, 2007.

Adaptation of Random Forest for online learning

- Adaptive Random Forest (ARF) uses local subspace randomization: random subsets of features are set for each leaf to be considered for future node splits
- SRP uses global subspace randomization: each base model is trained on a randomly selected subset of features
- ARP and SRP are available in river

- **Recurrent Concepts**: in presence of concept drifts, previous concepts can reoccur
 - Seasonal trends (daily/weekly/yearly)
 - We don't want to learn from scratch every time
- **IDEA**: keep two sets of classifiers:
 - Library of available classifiers, currently inactive (past concepts)
 - Current ensemble of active models (current concepts)
 - We need a policy to move the models from one set to the other
 - in general, estimating the accuracy of a model on the current data requires much less samples than what we need for training

IDEA: keep a model for each concept, identify drifts, reuse models

DDM for CD Detection

- REMINDER: DDM uses the errors to detect CD, assuming errors decrease over time for stationary data
- Train current model c_a and store training samples in buffer b_a

At WARNING level

- Start training a new model
- Train new classifier c_n and c_a (old classifier) and store samples in b_n

• IF DRIFT is confirmed

• Compare b_n with all the stored buffers to check if it is a new/old concept

	Alg	orithm 1. RCD algorithm		
-	Inp	ut : (<i>m</i>) Max buffer size, (α) Significance value, (<i>e</i>)		
	Ē	Ensemble size		
	Data : (c_a) Actual classifier, (b_a) Actual buffer, (c_n) New classifier, (S) Data stream, (b_n) New buffer			
	Res	sult: C: Classifiers list, B: Buffers list		
In it as we as the solution of the offer	1 b	egin		
Init current model and buffer	2	$C \leftarrow \{\text{Create}(c_a)\};$		
	3	$B \leftarrow \{\operatorname{Create}(D_a)\};$		
	4	$ a_{1}a_{2}a_{1}a_{2}a_{2}a_{2}a_{2}a_{2}a_{2}a_{2}a_{2$		
WADNING: propore a pow model	5	$le bel \leftarrow DDM(c_a, S);$		
warning. prepare a new model	6 7	switch level bt do		
	/	case WARNING		
	ð 0	$\mathbf{n} c_n = nun \text{ bi then}$		
	9 10	$C_{\text{reate}}(h)$		
	10	$create(D_n),$		
	12	Save $\overline{\mathbf{R}}$ IFO $(h_{r} \leq m)$.		
	13	$Train(C_{r}, S)$		
DRIFT: check if current concept is	14	case DRIFT		
already known	15	if StatTest (C, B, b_{r} , α) then		
	16	$(c_a, b_a) \leftarrow \text{Stored} (C, B, b_a)$:		
	17	end		
	18	else		
	19	SaveFIFO (C, c_n, e) ;		
	20	SaveFIFO (B, b_n, m) ;		
	21	$c_a \leftarrow c_n;$		
	22	$b_a \leftarrow b_n;$		
	23	$c_n = b_n = \emptyset;$		
	24	otherwise		
	25	if $c_n \neq null$ then		
	26	$c_n = b_n = \emptyset;$		
	27	end		
	28	SaveFIFO (b_a, s, m) ;		
	29	end		
	30	end		
	31	Train (C_a, S) ;		
	32	end		
	33 e	ena		

"RCD: A recurring concept drift framework» Pattern Recognition Letters

Conclusion

- Ensembles are one of the easiest and most reliable methods to improve the performance of an ML method
 - As long as you can guarantee diversity

In the online world:

- Train ensembles on windows (AWE)
- In nonstationary streams: each ensemble learns different concepts
- Bagging -> online bagging

- Streaming Data Analytics Course Emanuele Della Valle and Alessio Bernardo @ POLIMI
- MOA Book

- Lab with river
 - Concept drift
 - Online classification
 - Ensembles