

Online Machine Learning

Time Series Analysis and Forecasting

Antonio Carta

antonio.carta@unipi.it

change of scenario: we have the entire time series at once and we want to detect, model, or remove the non-stationarity.

- definition of stationarity
- modeling and removing trends and seasonality
- TS forecasting

ALING N. ALING ALI

Today, we talk only about time series

- Offline setting: we have already collected the entire time series
- Example: financial data, weather forecasting, ...
- how do we model nonstationarity in the offline setting?

Problems:

- Time Series Analysis: explaining the past, understanding seasonality, finding patterns, ...
- Time Series Forecasting: predicting future values

Stochastic Processes and Stationarity

- definition: a stochastic process is a collection of random variables indexed by some set (time in TSA)
- notation: $\{X_t\}_{t \in T}$

We need some structure/property to be able to model time series.

given

- $\{X_t\}_{t \in T}$ stochastic process
- $F_X(x_{t_1+\tau}, ..., x_{t_n+\tau})$ its cumulative distribution function

Def. Strong stationarity:

$$\begin{split} F_X \big(x_{t_1 + \tau}, \dots, x_{t_n + \tau} \big) &= F_X \big(x_{t_1}, \dots, x_{t_n} \big) \quad \text{ for all } \tau, t_1, \dots, t_n \in \\ \mathbb{R} \text{ and for all } n \in \mathbb{N}_{>0} \end{split}$$

intuitively: the probability distribution does not depend on time.

- m(t) = expected value at time t
- $K(t_1, t_2)$ = covariance between values at t_1 and t_2 **Properties**:
- Mean is constant (time-independent)
- Covariance only depend on the lag t1 t2
- Finite second moment

$$egin{aligned} &m_X(t)=m_X(t+ au) & ext{ for all } au,t\in\mathbb{R}\ &K_{XX}(t_1,t_2)=K_{XX}(t_1-t_2,0) & ext{ for all } t_1,t_2\in\mathbb{R}\ & ext{ E}[|X_t|^2]<\infty & ext{ for all } t\in\mathbb{R} \end{aligned}$$

- Many forecasting models assume stationarity
 - We need our TS to be stationary
 - If they are not, we want to make them stationary via preprocessing
- stationarity \rightarrow predictable

- a time series with constant mean and variance and no seasonality is stationary
- example: white noise

Non-constant mean (trend):

Example - Non-constant Variance

Non-constant Variance:

Example - Seasonality

With Seasonality

often, nonstationary time series have all of these components mixed together:

- non-constant mean
- non-constant variance
- seasonality

Testing for Non-stationarity

Sometimes, nonstationarity is obvious

- plot the time series: do you see any trends/seasonality?
- compare mean and variance for different chunks of the time series

More principled approach: statistical tests

- examples on the notebook
- Unit Root Tests
 - ADF Test
 - KPSS Test

Decomposition and Detrending

IDEA: we want a stationary TS. Can we remove the nonstationarity?

- we can model the different forms of nonstationarity (mean, variance, seasonality)
- remove nonstationarity from the raw TS via preprocessing

TS components: trend x seasonal x residual

- trend: persistent and long-term change
- seasonal: periodic fluctuations
- residual: stationary component

RAW TS = $T \odot S \odot R \leftarrow$ what operator can we use to combine the different components?

Additive and Multiplicative Models

• given:

- m_t trend component
- s_t seasonal component
- Y_t residual component
- additive model: $X_t = m_t + s_t + Y_t$
- multiplicative model: $X_t = m_t s_t Y_t$
- additive model assumes the seasonal is approximately constant over time
- multiplicative model is better when the seasonal component changes over time according to the general trend

- example on notebook using statsmodels
- comparison between additive and multiplicative model

IDEA: let's ignore the seasonal component

We want to model the trend only

- Trend elimination via differencing
- Trend estimation

Trend Elimination - Differencing

- simple method to remove trends
- the value of the new TS are the difference between consecutive methods
- new TS: $Y_t = x_t x_{t-1}$
- question: what kind of trends are we removing with this method?

Difference Removes Linear Trend

- differencing removes linear trend
- consequence: if you have a polinomial trends (degree n) you need to difference n times

Trend Estimation

- you have a trend model (e.g. linear or polinomial trend)
- fit the model to your data
- remove the trend

Example with linear trend:

- x_t original TS, Y_t detrended TS, \overline{x}_t trend component
- trend model: $\overline{x}_t = at + b$
 - *a*, *b* parameters
 - $x_t = Y_t + \overline{x}_t$
- fit *a*, *b*
- remove the trend: $Y_t = x_t \overline{x}_t$

Seasonality Removal - Seasonal Differencing

- we assume the seasonal component has a fixed and known period \boldsymbol{d}
- **example**: the periodic behavior due to the calendar (weekly/daily...) has a known period

Seasonal Differencing:

- remove the trend
- apply differencing with period d: $Y_t = x_t x_{t-d}$

Trend with (Centered) Moving Average

- **Moving average**: estimate average at time *t* using the last *q* elements
- **Centered MA**: estimate average at time *t* using a windows centered around *t*

Centered moving average:

Even:

 $\widehat{m_t} = \left(0.5x_{t-q} + x_{t-q+1} + \dots + x_{t+q-1} + 0.5x_{t+q}\right)/d$ Odd: $\widehat{m_t} = \left(x_{t-q} + x_{t-q+1} + \dots + x_{t+q-1} + x_{t+q}\right)/d$

First and last q elements are ignored

For a known period *d*

- Detrend the TS
- Divide the TS in windows of length \boldsymbol{d}
- Compute w_k , k = 1, ..., d as the average of all the windows in position k

•
$$\widehat{s_k} = w_k - 1/d \sum_{j=1}^d w_j$$
, $k = 1, \dots, d <-$ subtract the average

Forecasting

Forecasting

Problem:

- given a time series x_1, \ldots, x_t , predict x_{t+k}
- one-step k = t + 1, but it can be multi-step.

what do you want to predict?

- trend
- seasonal component
- residual: short-term variations

two approaches:

- first, preprocess to make the TS stationary, then train the forecasting model
- train the forecasting model directly

- mean absolute error $MAE = \sum_{i} \frac{|Y_i \widehat{Y}_i|}{n}$
- mean absolute percent error MAPE $= \frac{100}{n} \sum_{i=1}^{n} \frac{|Y_i \hat{Y}_i|}{Y_i}$

• mean squared error MSE =
$$\sum_{i=1}^{n} \frac{(Y_i - \widehat{Y}_i)^2}{n}$$

• root MSE RMSE = \sqrt{MSE}

Simple Baselines

- average: $\hat{y}_{t+1} = \frac{1}{N} \sum_{i} y_{i}$
- window-based: $\hat{y}_{t+1} = \frac{1}{k} \sum_{i=0}^{k-1} y_{t-i}$.
- last value: $\hat{y}_{t+1} = y_t$

Exponential Smoothing

exponential smoothing methods are weighted averages of past observations, with the weights decaying exponentially as the observations get older

- generates reliable forecasts quickly
- we will see methods that don't need a preliminary TS decomposition

forecasting data with no clear trend or seasonal pattern

SES Equation $\hat{y}_{T+1|T} = \alpha y_T + (1 - \alpha) \hat{y}_{T|T-1}$

Component form

- Forecast equation $\hat{y}_{t+h|t} = \ell_t$
- Smoothing equation $\ell_t = \alpha y_t + (1 \alpha)\ell_{t-1}$

parameters: α and l_0

Forecast equation $\hat{y}_{t+h|t} = \ell_t + hb_t$

Level equation
$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$$

Trend equation
$$b_t = \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) b_{t-1}$$

level, b_t trend, α level smoothing, β^* trend smoothing

- Holt's method assumes a trend constant goes on indefinitely
 - tends to overestimate the real trend
 - solution: trend dampening

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + (\phi + \phi^2 + \dots + \phi^h) b_t \\ \ell_t &= \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) \phi b_{t-1} \end{split}$$

- parameter $\phi \in [0,1]$ controls dampening factor
- $\phi = 1 \rightarrow$ Holt's method

Damped Trends

With Seasonality - Holt-Winters Method

- add seasonal component s_t with smoothing factor γ
- m = seasonality period
- two methods:
 - additive: assuming roughly constant seasonal variations
 - multiplicative: seasonal variations are proportional to the level

Holt-Winters Additive model

$$\begin{split} \widehat{y}_{t+h|t} &= \ell_t + hb_t + s_{t+h-m(k+1)} \\ \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m}, \end{split}$$

where
$$k = floor(\frac{h-1}{m})$$

Holt-Winters - Multiplicative model

$$\begin{split} \widehat{y}_{t+h|t} &= (\ell_t + hb_t)s_{t+h-m(k+1)} \\ \ell_t &= \alpha \frac{y_t}{s_{t-m}} + (1-\alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)b_{t-1} \\ s_t &= \gamma \frac{y_t}{(\ell_{t-1} + b_{t-1})} + (1-\gamma)s_{t-m}. \end{split}$$

with a damped trend and multiplicative seasonality (additive is also possible):

$$\begin{split} \widehat{y}_{t+h|t} &= \left[\ell_t + \left(\phi + \phi^2 + \dots + \phi^h \right) b_t \right] s_{t+h-m(k+1)} \\ \ell_t &= \alpha (y_t / s_{t-m}) + (1 - \alpha) (\ell_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) \phi b_{t-1} \\ s_t &= \gamma \frac{y_t}{(\ell_{t-1} + \phi b_{t-1})} + (1 - \gamma) s_{t-m}. \end{split}$$

Taxonomy

Trend Component	Seasonal Component		
	Ν	Α	Μ
	(None)	(Additive)	(Multiplicative)
N (None)	(N,N)	(N,A)	(N,M)
A (Additive)	(A,N)	(A,A)	(A,M)
A_d (Additive damped)	(A_d,N)	(A_d, A)	(A_d, M)

Table 8.5: A two-way classification of exponential smoothing methods.

Some of these methods we have already seen using other names:

Short hand	Method
(N,N)	Simple exponential smoothing
(A,N)	Holt's linear method
(A_d, N)	Additive damped trend method
(A,A)	Additive Holt-Winters' method
(A,M)	Multiplicative Holt-Winters' method
(A_d, M)	Holt-Winters' damped method

Figure from https://otexts.com/fpp3/taxonomy.

full equations for all the 9 methods in the reference

Conclusion

- even in the offline setting you still need to be aware of nonstationarity
- for TS analysis: trends and seasonality are fundamental properties of TS
- in **forecasting** probems: you can model it and remove it to improve the performance of your model

References:

- notebooks and slides from the TSA module of "Streaming Data Analytics" course https://github.com/emanueledellavalle/streamingdata-analytics by Emanuele Della Valle and Giacomo Ziffer
 - Slower pace than this lecture and notebooks that you can use to play with the models
- Online Book: Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos <u>free html version</u>
 - Chapter 3: TS Decomposition
- Time Series Analysis and Its Applications: With R Examples (Springer Texts in Statistics) 4th ed. 2017 Edition

We start the Knowledge Transfer and Adaptation module

- Deep neural networks
- Trained on multiple tasks
- Main question: how to **generalize between different tasks** effectively (and efficiently)