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change of scenario: we have the entire time series at once and we
want to detect, model, or remove the non-stationarity.

» definition of stationarity
* modeling and removing trends and seasonality
TS forecasting



TS Analysis and Forecasting

Today, we talk only about time series

 Offline setting: we have already collected the entire time series
« Example: financial data, weather forecasting, ...

* how do we model nonstationarity in the offline setting?

Problems:

» Time Series Analysis: explaining the past, understanding
seasonality, finding patterns, ...

» Time Series Forecasting: predicting future values




Stochastic Processes and
Stationarity




Stochastic Process

» definition: a stochastic process is a collection of random
variables indexed by some set (time in TSA)

* notation: {X;}ser

We need some structure/property to be able to model time series.



Strong Stationarity

given
* {X;};er Stochastic process

* Fy (¢, +o 0 Xt +7) its cumulative distribution function

Def. Strong stationarity:

FX(xt . ...,xth) = FX(xtl, ...,xtn) forallt,tq, ..., t, €
R and for alln'€ \

intuitively: the probability distribution does not depend on time.



Weak Stationarity

* m(t) = expected value at time t

* K(t,t,) = covariance between values at t; and t,
Properties:

« Mean is constant (time-independent)
 Covariance only depend on the lag t1 — 12

* Finite second moment

mx(t) = mx(t+ 1) forall 7,t € R
Kxx(t1,t2) = Kxx(t; — tQ,O) forallt;,t, € R
E[|X,|*] < o0 forallt € R



Why do we care?

« Many forecasting models assume stationarity
« We need our TS to be stationary
* If they are not, we want to make them stationary via preprocessing

- stationarity — predictable



Example - White Noise

e a time series with constant mean and variance and no
seasonality is stationary

« example: white noise
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Example - Linear Trend
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Example - Non-constant Variance
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Example - Seasonality
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Nonstationarity - Putting it together

often, nonstationary time series have all of these components
mixed together:

* non-constant mean
* non-constant variance
« seasonality
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Testing for Non-stat
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Nonstationarity Tests - Ideas

Sometimes, nonstationarity is obvious
* plot the time series: do you see any trends/seasonality?

« compare mean and variance for different chunks of the time
series




Nonstationarity - Statistical Tests

More principled approach: statistical tests
« examples on the notebook

 Unit Root Tests
» ADF Test
« KPSS Test



Decomposition and
Detrending
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TS Decomposition

IDEA: we want a stationary TS. Can we remove the
nonstationarity?

« we can model the different forms of nonstationarity (mean,
variance, seasonality)

* remove nonstationarity from the raw TS via preprocessing

Raw TS Residual TS after decomposition
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TS Components

TS components: trend x seasonal x residual
* trend: persistent and long-term change
 seasonal: periodic fluctuations

» residual: stationary component

RAWTS =T (® S ®R < what operator can we use to combine
the different components?



Additive and Multiplicative Models

« given:
« m, trend component
* s, seasonal component
* Y, residual component
 additive model: X; =m; + s, + Y;
- multiplicative model: X; = m,s,Y;
« additive model assumes the seasonal is approximately constant over
time
« multiplicative model is better when the seasonal component changes
over time according to the general trend



« example on notebook using statsmodels
« comparison between additive and multiplicative model



Non-seasonal Decomposition

IDEA: let’'s ignore the seasonal component
We want to model the trend only

* Trend elimination via differencing
 Trend estimation



Trend Elimination - Differencing

« simple method to remove trends

« the value of the new TS are the difference between consecutive
methods

° New TS Yt —_ xt — xt_l
 question: what kind of trends are we removing with this method?

Raw T5 TS after differencing
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Difference Removes Linear Trend

» differencing removes linear trend

« consequence: if you have a polinomial trends (degree n) you need to
difference n times

Raw T5 TS after differencing
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Trend Estimation

« you have a trend model (e.g. linear or polinomial trend)
« fit the model to your data

* remove the trend

Example with linear trend:
* x, original TS, Y; detrended TS, x; trend component

« trend model: x; = at+b
* a,b parameters
o xt — Yt + Et

e fita,b
* remove the trend: Y; = x; — x;



Seasonality Removal -Seasonal Differencing

« we assume the seasonal component has a fixed and known
period d

« example: the periodic behavior due to the calendar
(weekly/daily...) has a known period

Seasonal Differencing:
* remove the trend
 apply differencing with period d: Y, = x; — x;_4




Trend with (Centered) Moving Average

- Moving average; estimate average at
time t using the last g elements

- Centered MA: estimate average at time t
using a windows centered around t

Centered moving average:

Even:
My = (0.5%,_g + Xp_gi1 + -+ Xppg—1 + 0.5%44)/d

Odd:

—~

me = (xt—q T Xt—qr1 T T Xpgg-1 T xt+q)/d

First and last g elements are ignored
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Seasonality with Moving Averages

For a known period d
* Detrend the TS
* Divide the TS in windows of length d

 Compute w,, k = 1, ...,d as the average of all the windows in
position k

* Sp =wy —1/d X9, w;,k =1,-,d < subtract the average
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Forecasting
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Problem:
 given a time series x4, ..., x;, predict x; .
« one-step k =t + 1, but it can be multi-step.

what do you want to predict?
 trend

« seasonal component
 residual: short-term variations

two approaches:
« first, preprocess to make the TS stationary, then train the forecasting model
« train the forecasting model directly



Y._?.
e mean absolute error MAE = Zi| ‘n ]
100 Y:-Y;
* mean absolute percent error MAPE = — ?=1| lY 1
[
~ \2
n (Yi—Yi)

mean squared error MSE = }./_;

root MSE RMSE = +MSE

n



Simple Baselines

- average: y, _Zlyl
- window-based: ¥, = Zl 0 Yt—i-

* lastvalue:y, . =y,



Exponential Smoothing
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Exponential Smoothing

exponential smoothing methods are weighted averages of past
observations, with the weights decaying exponentially as the
observations get older

 generates reliable forecasts quickly

« we will see methods that don't need a preliminary TS
decomposition



simple exponential smoothing (SES)

forecasting data with no clear trend or seasonal pattern

SES Equation
Yrpur =yrt (A=) ypr_y

Component form
» Forecast equation y, .. =%

« Smoothing equation ¥; = ay; + (1 — a)f;_4

parameters: a and [,




With Trends - Holt's Linear Trend Method

Forecast equation = £, + hb;

:/y\t+h|t
Level equation ¢, =ay,+ (1 —a)(f;—1 + b;_1)

Trend equation b, =p0"(Y;—¥_1) + (1 —L*)b;_4

level, b, trend, a level smoothing, f* trend smoothing



Damped trends

 Holt's method assumes a trend constant goes on indefinitely
* tends to overestimate the real trend
« solution: trend dampening

y\t+h|t =4+ (¢ +¢? 4+ ‘Ph)bt
2" =ay; + (1 —a)(fe—q1 + Pbi_1)
bt =B — L) + (1 = F)Ppbr_4

« parameter ¢ € [0,1] controls dampening factor
* ¢ =1 - Holt's method



Damped Trends

Australian population
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With Seasonality - Holt-Winters Method

 add seasonal component s; with smoothing factor y
* m = seasonality period

* two methods:

« additive: assuming roughly constant seasonal variations
« multiplicative: seasonal variations are proportional to the level




Holt-Winters Additive model

Yitnit =4t + hbt + Styn—mx+1)
e =alyr —Seem) T (A —a)(fr_q + br_q)
by =B (€ —fr—1) + (1 — B*)be_4
St =y —Ce-1 — be—1) + (1 —¥)St—m,

where k = floor(=)



Holt-Winters - Multiplicative model

?t+h|t — (ft + hbt)St+h—m(k+1)
ty =a >t + (1 —a)(f—1 + be_1)
St—m
b¢ =B "l —4e_1) + (1 = L")bs_4
Yy
St t + (1 —¥)St—m.

~ s + by



Dampened Holt-Winters

with a damped trend and multiplicative seasonality (additive is also
possible):

Veene = e+ (@4 %+ -+ d")be|sein—mpsn)
2" = a(y¢/St-m) + (1 —a)(£r—1 + pb_y)
bt =B (fy —€e—1) + (1 = B*)Ppbe_4

Yt
= +(1—v)s;_....
y(£t—1 + ¢bi_1) A =7)Sem

St



Taxonomy

Table 8.5: A two-way classification of exponential smoothing methods.

Trend Component Seasonal Component
N A M
(None) (Additive) (Multiplicative)
N (None) (N,N) (N,A) (N,M)
A (Additive) (A,N) (AA) (A,M)
A, (Additive damped) (Ag4,N) (Ag,A) (Ag,M)

Some of these methods we have already seen using other names:

Short hand Method

(N,N) Simple exponential smoothing

(A,N) Holt’s linear method

(Ag,N) Additive damped trend method

(AA) Additive Holt-Winters’ method
(A,M) Multiplicative Holt-Winters’ method
(Ag,M) Holt-Winters’ damped method

Figure from htips://otexts.com/fpp3/taxonomy.
full equations for all the 9 methods in the reference



https://otexts.com/fpp3/taxonomy

Conclusion

44



Take-home Messages

 even in the offline setting you still need to be aware of
nonstationarity

 for TS analysis: trends and seasonality are fundamental
properties of TS

* in forecasting probems: you can model it and remove it to
improve the performance of your model
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Hyndman and George Athanasopoulos free html version

« Chapter 3: TS Decomposition

 Time Series Analysis and Its Applications: With R Examples (Springer
Texts in Statistics) 4th ed. 2017 Edition



https://otexts.com/fpp3/

We start the Knowledge Transfer and Adaptation module
» Deep neural networks

 Trained on multiple tasks

* Main question: how to generalize between different tasks
effectively (and efficiently)
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