
Antonio Carta

antonio.carta@unipi.it

Knowledge Transfer and 
Adaptation

Module Intro, Deep Learning Tips and Tricks



Plan for Today

• Intro to KTA module

• Deep learning tips and tricks

• Practical lab with PyTorch

2



Module Outline

Knowledge Transfer and Adaptation

• Deep learning tools for KTA

• Transfer learning and domain adaptation

• Multi-Task learning

• Self-supervised training and large-scale models

• Meta-learning, metric learning, few-shot learning

• PyTorch labs

3



Resources

• Deep Learning Book by Goodfellow et al.
• https://www.deeplearningbook.org/

• Mostly for preliminary knowledge

• CS330: course on Multi-Task and Meta-Learning by Chelsea 
Finn
• http://cs330.stanford.edu/

• Related topics with recordings on youtube

• Academic literature

4

https://www.deeplearningbook.org/
http://cs330.stanford.edu/


Module Objectives

How can we reuse the same Deep Neural Network for multiple 
tasks?

• Training a large model that can be reused

• Finetuning on downstream tasks

• Learning multiple tasks jointly, even with very small datasets

5



Deep Learning
Basic concepts and anatomy of vision models

6



Deep Learning – Intuition

• Classic ML models require manual 
preprocessing

• Sensory input (images, audio) and 
complex data (text, graphs) 
• require a lot of preprocessing to 

extract discriminative features
• High dimensionality
• Difficult to hardcode
• Ideally we should learn it

• Can we learn the feature extractor?
• This is the main problem solved by 

deep neural networks

7



Deep Learning

Intuition:

• Learning a deep neural network allows to automate 
feature extraction

• Stack multiple «layers» sequentially
• Low layers capture low-level knowledge (e.g. texture)
• High layers high-level knowledge (e.g. shapes, 

discriminative features)
• Final layer should have simple and distinct clusters for 

each class (with supervised training)

Questions - When learning multiple tasks:

• Is it helpful to share layers?

• What happens if I train a network on a task and 
reuse it on a downstream task?

• How do I learn generic features that are helpful for 
a large class of tasks?

Image: https://www.researchgate.net/figure/Scheme-of-the-AlexNet-network-used_fig1_320052364 8



Embeddings

• Embeddings = latent 
representations

• Latent representations are 
the key novelty compared to 
«classic ML»

• Fundamental for 
transfer/sharing

• IDEA: we want embeddings 
that 
• Separate different, possibly 

unseen, classes
• Are robust to domain drifts
• Are robust to incremental 

training

Source: Visualizing Data using t-SNE 9

https://jmlr.org/papers/v9/vandermaaten08a.html


Learning a DNN

• Algorithm: stochastic gradient 
descent. At each step:
• (forward) Compute output for 

current input
• Compute loss
• (backward) Compute gradients
• Descent step

• Forward pass: input->output
• Computes the output

• Backward pass: output->input
• Computes the gradients

10

Loss landscape



DNN for image classification

Image source: wikimedia 11

• CNN stack conv->BN->ReLU->pooling blocks
• Higher layers have a bigger receptive field 
• Pooling subsamples and reduces number of features
• Typically number of channels increases for deeper layers



ResNet

A popular example of computer vision model
• Convolutional network for image classification
• Convolutions
• BatchNorm
• pooling
• ReLU
• Residual connections
• Feedforward connections
• Softmax
• Crossentropy loss

12



CNN -> FNN -> classifier

Most networks have three 
parts:

• Convolutional blocks: 
• Conv->Relu->BatchNorm->Pooling

• FF layers

• Classifier

13

Convolutional
blocks

Feedforward
blocks



Image source: https://www.geeksforgeeks.org/residual-
networks-resnet-deep-learning/

14



Convolution

• Basic processing block for images
• Input: <C,W,H>

• output: <C,W,H>

• Parameters: padding, stride, kernel size

• Number of dimensions depends on domain 
• 1D for sequences such as text or audio

• 3D for videos

• Increase number of channels for deeper layers

• Reference: for a reminder of the math see 
https://github.com/vdumoulin/conv_arithmetic

Image source: wikimedia 15

https://github.com/vdumoulin/conv_arithmetic


Batch Normalization

Problem: we know normalization is helpful. How can we 
normalize hidden representations?

• Batch normalization standardizes output of an hidden 
layer

• Parameters: 𝛾 and 𝛽 are learned by backprop. 𝜇 and 𝜎 
are running averages used during inference

• Training behavior:
• Remove mean and std computed on the mini-batch
• Scale and shift
• Update mean and std running averages

• Inference behavior (it’s different!):
• Remove mean and std using running average
• Scale and shift
• Inference is deterministic and order-independent

• Many contrasting theories on why it’s important. Not 
well understood theoretically yet.

• Question: What happens when we change task? What if 
we train on multiple tasks?

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. Sergey Ioffe, Christian Szegedy 16



Dropout

Regularization method for DNN

• INTUITION: regularize via
• Noise
• Approximate ensembling

• TRAINING: (for each layer)
• Sample a random mask. Each unit is masked 

with probability 𝑝
• Mask units

• INFERENCE: (for each layer)
• Scale weights by 𝑝
• Use all the units (no masking)

• Inference is deterministic
• In pytorch, remember to call `model.eval()`

Image source: https://stats.stackexchange.com/questions/201569/what-is-the-difference-between-dropout-and-drop-connect/201578#201578 17



ReLU – Rectified Linear Units

• Sigmoid and tanh saturate gradients
• A good init limits but doesn’t solve the issue

• ReLU
• It Has a better gradient flow

• It is cheap to compute

18



Pooling

• Pooling is used for downsampling

• Aggregations: max, mean, …

• Reference: for a reminder of the 
math see
https://github.com/vdumoulin/co
nv_arithmetic

Image source: wikimedia 19

Example with max pooling

https://github.com/vdumoulin/conv_arithmetic
https://github.com/vdumoulin/conv_arithmetic


Residual Connection

• During the backward pass, gradient 
flow through

• Problem: gradient flow in DNN is bad.
• Remember the vanishing/exploding 

gradients?

• Residual connections improve the 
gradient flow by allowing to skip layers

• ℎ𝑙 = ℎ𝑙−1 + 𝑓(ℎ𝑙−1)

Image source: wikimedia 20



Classifier – Softmax and Crossentropy

• Logits: Output of the penultimate layer. Softmax input.

• Softmax: A smooth and differentiable argmax function

• Crossentropy: loss used for classification problems

• In practice, we don’t compute the softmax explicitly
• Training: Computing the crossentropy directly with the logits has better conditioning. We avoid the 

separate log and exponential operations
• Inference: we only need to find the max logit. Softmax normalize units but doesn’t change the 

ranking.
• Always check the documentation to see if you need to use logits or softmax outputs (normalized 

probabilities)

21

softmax crossentropy



Tips and Tricks

22



Hyperparameter Optimization

• Full hyperparameter optimization is often unfeasible

• Most hyperparameters are not important. Some are very 
important (learning rate).

• Interaction between hyperparameters
• Example: changing the batch size change the number of iterations per 

epoch

• DNN Tuning guidelines by Google Research team: 
https://github.com/google-research/tuning_playbook

• As a general rule, start from the best model in the literature and 
improve on it.

23

https://github.com/google-research/tuning_playbook


Model Initialization

• Model initialization helps to stabilize the first epochs of 
training
• As a general rule, networks don’t recover from bad initializations. We 

will see some results.

• Ignoring the weights initialization is a common error
• Symptoms: training instability, network doesn’t converge

• Always check your init: 
https://pytorch.org/docs/stable/nn.init.html

24

https://pytorch.org/docs/stable/nn.init.html


Learning Rate Scheduling

• Best results in computer vision are often a combination of basic 
SGD+momentum with learning rate scheduling

• pytorch: https://pytorch.org/docs/stable/optim.html#how-to-
adjust-learning-rate

• General rule:
• Start with a higher lr

• Decrease slowly

• If you can, start from hyperparameters used for similar 
problems/datasets/architectures

25

https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate


Early Stopping + Model checkpointing

• Training is often unstable

• Early stopping: 
• Periodically evaluate on a validation set

• If valid-score does not improve for `patience` epochs, stop training

• Model Checkpointing:
• Periodically evaluate on a validation set

• If valid-score improves, save a model checkpointing

• After training, load the best checkpoint and use it for inference

26



Tools you may need

27



timm

• PyTorch library for computer vision architectures

• Pretrained models and state-of-the-art architectures

• Very comprehensive, even for recent models

• https://github.com/huggingface/pytorch-image-models

• Alternative: torchvision
• Official pytorch repo

• Less architectures

28

https://github.com/huggingface/pytorch-image-models


Computer Vision - Data augmentations 

• Albumentations - https://github.com/albumentations-
team/albumentations

• Kornia - https://github.com/kornia/kornia

• Faster dataloader: https://github.com/libffcv/ffcv

Image: https://github.com/libffcv/ffcv 29

https://github.com/albumentations-team/albumentations
https://github.com/albumentations-team/albumentations
https://github.com/kornia/kornia
https://github.com/libffcv/ffcv


Training frameworks

• Huggingface/timm: 
https://huggingface.co/docs/timm/training_script
• Huggingface also has libraries for NLP

• fastai - https://github.com/fastai/fastai

• Pytorch lightning: https://www.pytorchlightning.ai/
• Good support for distributed training and mixed precision

• Avalanche: https://avalanche.continualai.org/
• We will use Avalanche for CL methods

30

https://huggingface.co/docs/timm/training_script
https://github.com/fastai/fastai
https://www.pytorchlightning.ai/
https://avalanche.continualai.org/


Logging and Visualization

• Logging tools: 
• Many different companies: weights and biases, cometml, clearml…

• Suggested: tensorboard. Everything is local. Easily integrated 
everywhere.

• Hiplot for visualizing model selection results: 
https://pypi.org/project/hiplot/

31

https://pypi.org/project/hiplot/


Conclusion

32



Notebook

• Deep learning notebook

• Dependency: Avalanche 0.5.0
• pip install avalanche-lib==0.5.0

• If you have problems install it in a new environment

33



Take-Home Messages

• Deep learning model are designed to extract high-level features 
from low-level sensory inputs (e.g. high-dimensional images)

• learned latent representations can also be reused, opening up 
many new applications

34



Next-Lecture

Multi-Task learning

• Definition

• Design choices

• challenges

35


	Slide 1: Knowledge Transfer and Adaptation
	Slide 2: Plan for Today
	Slide 3: Module Outline
	Slide 4: Resources
	Slide 5: Module Objectives
	Slide 6: Deep Learning
	Slide 7: Deep Learning – Intuition
	Slide 8: Deep Learning
	Slide 9: Embeddings
	Slide 10: Learning a DNN
	Slide 11: DNN for image classification
	Slide 12: ResNet
	Slide 13: CNN -> FNN -> classifier
	Slide 14
	Slide 15: Convolution
	Slide 16: Batch Normalization
	Slide 17: Dropout
	Slide 18: ReLU – Rectified Linear Units
	Slide 19: Pooling
	Slide 20: Residual Connection
	Slide 21: Classifier – Softmax and Crossentropy
	Slide 22: Tips and Tricks
	Slide 23: Hyperparameter Optimization
	Slide 24: Model Initialization
	Slide 25: Learning Rate Scheduling
	Slide 26: Early Stopping + Model checkpointing
	Slide 27: Tools you may need
	Slide 28: timm
	Slide 29: Computer Vision - Data augmentations 
	Slide 30: Training frameworks
	Slide 31: Logging and Visualization
	Slide 32: Conclusion
	Slide 33: Notebook
	Slide 34: Take-Home Messages
	Slide 35: Next-Lecture

