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Plan for Today

• Intro to KTA module

• Deep learning tips and tricks

• Practical lab with PyTorch
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Module Outline

Knowledge Transfer and Adaptation

• Deep learning tools for KTA

• Transfer learning and domain adaptation

• Multi-Task learning

• Self-supervised training and large-scale models

• Meta-learning, metric learning, few-shot learning

• PyTorch labs
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Resources

• Deep Learning Book by Goodfellow et al.
• https://www.deeplearningbook.org/

• Mostly for preliminary knowledge

• CS330: course on Multi-Task and Meta-Learning by Chelsea 
Finn
• http://cs330.stanford.edu/

• Related topics with recordings on youtube

• Academic literature
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Module Objectives

How can we reuse the same Deep Neural Network for multiple 
tasks?

• Training a large model that can be reused

• Finetuning on downstream tasks

• Learning multiple tasks jointly, even with very small datasets
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Deep Learning
Basic concepts and anatomy of vision models
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Deep Learning – Intuition

• Classic ML models require manual 
preprocessing

• Sensory input (images, audio) and 
complex data (text, graphs) 
• require a lot of preprocessing to 

extract discriminative features
• High dimensionality
• Difficult to hardcode
• Ideally we should learn it

• Can we learn the feature extractor?
• This is the main problem solved by 

deep neural networks
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Deep Learning

Intuition:

• Learning a deep neural network allows to automate 
feature extraction

• Stack multiple «layers» sequentially
• Low layers capture low-level knowledge (e.g. texture)
• High layers high-level knowledge (e.g. shapes, 

discriminative features)
• Final layer should have simple and distinct clusters for 

each class (with supervised training)

Questions - When learning multiple tasks:

• Is it helpful to share layers?

• What happens if I train a network on a task and 
reuse it on a downstream task?

• How do I learn generic features that are helpful for 
a large class of tasks?

Image: https://www.researchgate.net/figure/Scheme-of-the-AlexNet-network-used_fig1_320052364 8



Embeddings

• Embeddings = latent 
representations

• Latent representations are 
the key novelty compared to 
«classic ML»

• Fundamental for 
transfer/sharing

• IDEA: we want embeddings 
that 
• Separate different, possibly 

unseen, classes
• Are robust to domain drifts
• Are robust to incremental 

training

Source: Visualizing Data using t-SNE 9

https://jmlr.org/papers/v9/vandermaaten08a.html


Learning a DNN

• Algorithm: stochastic gradient 
descent. At each step:
• (forward) Compute output for 

current input
• Compute loss
• (backward) Compute gradients
• Descent step

• Forward pass: input->output
• Computes the output

• Backward pass: output->input
• Computes the gradients
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DNN for image classification

Image source: wikimedia 11

• CNN stack conv->BN->ReLU->pooling blocks
• Higher layers have a bigger receptive field 
• Pooling subsamples and reduces number of features
• Typically number of channels increases for deeper layers



ResNet

A popular example of computer vision model
• Convolutional network for image classification
• Convolutions
• BatchNorm
• pooling
• ReLU
• Residual connections
• Feedforward connections
• Softmax
• Crossentropy loss
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CNN -> FNN -> classifier

Most networks have three 
parts:

• Convolutional blocks: 
• Conv->Relu->BatchNorm->Pooling

• FF layers

• Classifier
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Convolutional
blocks

Feedforward
blocks



Image source: https://www.geeksforgeeks.org/residual-
networks-resnet-deep-learning/
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Convolution

• Basic processing block for images
• Input: <C,W,H>

• output: <C,W,H>

• Parameters: padding, stride, kernel size

• Number of dimensions depends on domain 
• 1D for sequences such as text or audio

• 3D for videos

• Increase number of channels for deeper layers

• Reference: for a reminder of the math see 
https://github.com/vdumoulin/conv_arithmetic

Image source: wikimedia 15

https://github.com/vdumoulin/conv_arithmetic


Batch Normalization

Problem: we know normalization is helpful. How can we 
normalize hidden representations?

• Batch normalization standardizes output of an hidden 
layer

• Parameters: 𝛾 and 𝛽 are learned by backprop. 𝜇 and 𝜎 
are running averages used during inference

• Training behavior:
• Remove mean and std computed on the mini-batch
• Scale and shift
• Update mean and std running averages

• Inference behavior (it’s different!):
• Remove mean and std using running average
• Scale and shift
• Inference is deterministic and order-independent

• Many contrasting theories on why it’s important. Not 
well understood theoretically yet.

• Question: What happens when we change task? What if 
we train on multiple tasks?

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. Sergey Ioffe, Christian Szegedy 16



Dropout

Regularization method for DNN

• INTUITION: regularize via
• Noise
• Approximate ensembling

• TRAINING: (for each layer)
• Sample a random mask. Each unit is masked 

with probability 𝑝
• Mask units

• INFERENCE: (for each layer)
• Scale weights by 𝑝
• Use all the units (no masking)

• Inference is deterministic
• In pytorch, remember to call `model.eval()`

Image source: https://stats.stackexchange.com/questions/201569/what-is-the-difference-between-dropout-and-drop-connect/201578#201578 17



ReLU – Rectified Linear Units

• Sigmoid and tanh saturate gradients
• A good init limits but doesn’t solve the issue

• ReLU
• It Has a better gradient flow

• It is cheap to compute
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Pooling

• Pooling is used for downsampling

• Aggregations: max, mean, …

• Reference: for a reminder of the 
math see
https://github.com/vdumoulin/co
nv_arithmetic

Image source: wikimedia 19

Example with max pooling

https://github.com/vdumoulin/conv_arithmetic
https://github.com/vdumoulin/conv_arithmetic


Residual Connection

• During the backward pass, gradient 
flow through

• Problem: gradient flow in DNN is bad.
• Remember the vanishing/exploding 

gradients?

• Residual connections improve the 
gradient flow by allowing to skip layers

• ℎ𝑙 = ℎ𝑙−1 + 𝑓(ℎ𝑙−1)

Image source: wikimedia 20



Classifier – Softmax and Crossentropy

• Logits: Output of the penultimate layer. Softmax input.

• Softmax: A smooth and differentiable argmax function

• Crossentropy: loss used for classification problems

• In practice, we don’t compute the softmax explicitly
• Training: Computing the crossentropy directly with the logits has better conditioning. We avoid the 

separate log and exponential operations
• Inference: we only need to find the max logit. Softmax normalize units but doesn’t change the 

ranking.
• Always check the documentation to see if you need to use logits or softmax outputs (normalized 

probabilities)
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softmax crossentropy



Tips and Tricks
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Hyperparameter Optimization

• Full hyperparameter optimization is often unfeasible

• Most hyperparameters are not important. Some are very 
important (learning rate).

• Interaction between hyperparameters
• Example: changing the batch size change the number of iterations per 

epoch

• DNN Tuning guidelines by Google Research team: 
https://github.com/google-research/tuning_playbook

• As a general rule, start from the best model in the literature and 
improve on it.
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https://github.com/google-research/tuning_playbook


Model Initialization

• Model initialization helps to stabilize the first epochs of 
training
• As a general rule, networks don’t recover from bad initializations. We 

will see some results.

• Ignoring the weights initialization is a common error
• Symptoms: training instability, network doesn’t converge

• Always check your init: 
https://pytorch.org/docs/stable/nn.init.html
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https://pytorch.org/docs/stable/nn.init.html


Learning Rate Scheduling

• Best results in computer vision are often a combination of basic 
SGD+momentum with learning rate scheduling

• pytorch: https://pytorch.org/docs/stable/optim.html#how-to-
adjust-learning-rate

• General rule:
• Start with a higher lr

• Decrease slowly

• If you can, start from hyperparameters used for similar 
problems/datasets/architectures
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https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate


Early Stopping + Model checkpointing

• Training is often unstable

• Early stopping: 
• Periodically evaluate on a validation set

• If valid-score does not improve for `patience` epochs, stop training

• Model Checkpointing:
• Periodically evaluate on a validation set

• If valid-score improves, save a model checkpointing

• After training, load the best checkpoint and use it for inference
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Tools you may need
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timm

• PyTorch library for computer vision architectures

• Pretrained models and state-of-the-art architectures

• Very comprehensive, even for recent models

• https://github.com/huggingface/pytorch-image-models

• Alternative: torchvision
• Official pytorch repo

• Less architectures
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https://github.com/huggingface/pytorch-image-models


Computer Vision - Data augmentations 

• Albumentations - https://github.com/albumentations-
team/albumentations

• Kornia - https://github.com/kornia/kornia

• Faster dataloader: https://github.com/libffcv/ffcv

Image: https://github.com/libffcv/ffcv 29

https://github.com/albumentations-team/albumentations
https://github.com/albumentations-team/albumentations
https://github.com/kornia/kornia
https://github.com/libffcv/ffcv


Training frameworks

• Huggingface/timm: 
https://huggingface.co/docs/timm/training_script
• Huggingface also has libraries for NLP

• fastai - https://github.com/fastai/fastai

• Pytorch lightning: https://www.pytorchlightning.ai/
• Good support for distributed training and mixed precision

• Avalanche: https://avalanche.continualai.org/
• We will use Avalanche for CL methods
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https://huggingface.co/docs/timm/training_script
https://github.com/fastai/fastai
https://www.pytorchlightning.ai/
https://avalanche.continualai.org/


Logging and Visualization

• Logging tools: 
• Many different companies: weights and biases, cometml, clearml…

• Suggested: tensorboard. Everything is local. Easily integrated 
everywhere.

• Hiplot for visualizing model selection results: 
https://pypi.org/project/hiplot/
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https://pypi.org/project/hiplot/


Conclusion
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Notebook

• Deep learning notebook

• Dependency: Avalanche 0.5.0
• pip install avalanche-lib==0.5.0

• If you have problems install it in a new environment
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Take-Home Messages

• Deep learning model are designed to extract high-level features 
from low-level sensory inputs (e.g. high-dimensional images)

• learned latent representations can also be reused, opening up 
many new applications
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Next-Lecture

Multi-Task learning

• Definition

• Design choices

• challenges
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