

Knowledge Transfer and Adaptation

Module Intro, Deep Learning Tips and Tricks

Antonio Carta

antonio.carta@unipi.it

- Intro to KTA module
- Deep learning tips and tricks
- Practical lab with PyTorch

Knowledge Transfer and Adaptation

- Deep learning tools for KTA
- Transfer learning and domain adaptation
- Multi-Task learning
- Self-supervised training and large-scale models
- Meta-learning, metric learning, few-shot learning
- PyTorch labs

- Deep Learning Book by Goodfellow et al.
 - <u>https://www.deeplearningbook.org/</u>
 - Mostly for preliminary knowledge
- CS330: course on Multi-Task and Meta-Learning by Chelsea Finn
 - <u>http://cs330.stanford.edu/</u>
 - Related topics with recordings on youtube
- Academic literature

How can we reuse the same Deep Neural Network for multiple tasks?

- Training a large model that can be reused
- Finetuning on downstream tasks
- Learning multiple tasks jointly, even with very small datasets

Deep Learning

Basic concepts and anatomy of vision models

Deep Learning – Intuition

ALING LINE LAND

- Classic ML models require manual preprocessing
- Sensory input (images, audio) and complex data (text, graphs)
 - require a lot of preprocessing to extract discriminative features
 - High dimensionality
 - Difficult to hardcode
 - Ideally we should learn it

Can we learn the feature extractor?

 This is the main problem solved by deep neural networks

Image: https://www.researchgate.net/figure/Scheme-of-the-AlexNet-network-used_fig1_320052364

Deep Learning

Intuition:

- Learning a deep neural network allows to automate feature extraction
- Stack multiple «layers» sequentially
 - Low layers capture low-level knowledge (e.g. texture)
 - High layers high-level knowledge (e.g. shapes, discriminative features)
 - Final layer should have simple and distinct clusters for each class (with supervised training)

Questions - When learning multiple tasks:

- Is it helpful to share layers?
- What happens if I train a network on a task and reuse it on a downstream task?
- How do I learn generic features that are helpful for a large class of tasks?

9

- Embeddings = latent representations
- Latent representations are the key novelty compared to «classic ML»
- Fundamental for transfer/sharing
- **IDEA**: we want embeddings that
 - Separate different, possibly unseen, classes
 - Are robust to domain drifts
 - Are robust to incremental training

- Algorithm: stochastic gradient descent. At each step:
 - (forward) Compute output for current input
 - Compute loss
 - (backward) Compute gradients
 - Descent step
- Forward pass: input->output
 - Computes the output
- Backward pass: output->input
 - Computes the gradients

DNN for image classification

CNN stack conv->BN->ReLU->pooling blocks

- Higher layers have a bigger receptive field
- Pooling subsamples and reduces number of features
- Typically number of channels increases for deeper layers

A popular example of computer vision model

- Convolutional network for image classification
- Convolutions
- BatchNorm
- pooling
- ReLU
- Residual connections
- Feedforward connections
- Softmax
- Crossentropy loss

Most networks have three parts:

- Convolutional blocks:
 - Conv->Relu->BatchNorm->Pooling
- FF layers
- Classifier

Convolution

- Basic processing block for images
 - Input: <C,W,H>
 - output: <C,W,H>
 - Parameters: padding, stride, kernel size
- Number of dimensions depends on domain
 - 1D for sequences such as text or audio
 - 3D for videos
- Increase number of channels for deeper layers
- **Reference**: for a reminder of the math see <u>https://github.com/vdumoulin/conv_arithmetic</u>

Problem: we know normalization is helpful. How can we normalize hidden representations?

- **Batch normalization** standardizes output of an hidden layer
- **Parameters**: γ and β are learned by backprop. μ and σ are running averages used during inference
- Training behavior:
 - Remove mean and std computed on the mini-batch
 - Scale and shift
 - Update mean and std running averages
- Inference behavior (it's different!):
 - Remove mean and std using running average
 - Scale and shift
 - Inference is deterministic and order-independent
- Many contrasting theories on why it's important. Not well understood theoretically yet.
- Question: What happens when we change task? What if we train on multiple tasks?

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Dropout

Regularization method for DNN

- INTUITION: regularize via
 - Noise
 - Approximate ensembling
- TRAINING: (for each layer)
 - Sample a random mask. Each unit is masked with probability \boldsymbol{p}
 - Mask units
- INFERENCE: (for each layer)
 - Scale weights by *p*
 - Use all the units (no masking)
- Inference is deterministic
 - In pytorch, remember to call `model.eval()`

ReLU – Rectified Linear Units

- Sigmoid and tanh saturate gradients
 - A good init limits but doesn't solve the issue

• ReLU

- It Has a better gradient flow
- It is cheap to compute

$$f(x)=x^+=\max(0,x)=egin{cases} x & ext{if } x>0,\ 0 & ext{otherwise.} \end{cases} \quad f'(x)=egin{cases} 1 & ext{if } x>0,\ 0 & ext{if } x<0. \end{cases}$$

Pooling is used for downsampling

- Aggregations: max, mean, ...
- **Reference**: for a reminder of the math see <u>https://github.com/vdumoulin/conv_arithmetic</u>

- During the backward pass, gradient flow through
- Problem: gradient flow in DNN is bad.
 - Remember the vanishing/exploding gradients?
- Residual connections improve the gradient flow by allowing to skip layers
- $h^{l} = h^{l-1} + f(h^{l-1})$

Classifier – Softmax and Crossentropy

- Logits: Output of the penultimate layer. Softmax input.
- Softmax: A smooth and differentiable argmax function
- Crossentropy: loss used for classification problems
- In practice, we don't compute the softmax explicitly
 - **Training**: Computing the crossentropy directly with the logits has better conditioning. We avoid the separate log and exponential operations
 - Inference: we only need to find the max logit. Softmax normalize units but doesn't change the ranking.
 - Always check the documentation to see if you need to use logits or softmax outputs (normalized probabilities)

softmax

crossentropy

$$\sigma(\mathbf{z})_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

$$H(P,Q) = -\sum_{x\in\mathcal{X}} p(x)\,\log q(x)\,,$$

Tips and Tricks

- Full hyperparameter optimization is often unfeasible
- Most hyperparameters are not important. Some are very important (learning rate).
- Interaction between hyperparameters
 - Example: changing the batch size change the number of iterations per epoch
- DNN Tuning guidelines by Google Research team: https://github.com/google-research/tuning_playbook
- As a general rule, start from the best model in the literature and improve on it.

- Model initialization helps to stabilize the first epochs of training
 - As a general rule, networks don't recover from bad initializations. We will see some results.
- Ignoring the weights initialization is a common error
 - Symptoms: training instability, network doesn't converge
- Always check your init:

https://pytorch.org/docs/stable/nn.init.html

- Best results in computer vision are often a combination of basic SGD+momentum with learning rate scheduling
- pytorch: <u>https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate</u>
- General rule:
 - Start with a higher Ir
 - Decrease slowly
- If you can, start from hyperparameters used for similar problems/datasets/architectures

- Training is often unstable
- Early stopping:
 - Periodically evaluate on a validation set
 - If valid-score does not improve for `patience` epochs, stop training

Model Checkpointing:

- Periodically evaluate on a validation set
- If valid-score improves, save a model checkpointing
- After training, load the best checkpoint and use it for inference

Tools you may need

- PyTorch library for computer vision architectures
- Pretrained models and state-of-the-art architectures
- Very comprehensive, even for recent models
- <u>https://github.com/huggingface/pytorch-image-models</u>
- Alternative: torchvision
 - Official pytorch repo
 - Less architectures

Computer Vision - Data augmentations

- Albumentations <u>https://github.com/albumentations-</u> team/albumentations
- Kornia https://github.com/kornia/kornia
- Faster dataloader: <u>https://github.com/libffcv/ffcv</u>

- Huggingface/timm:
 - https://huggingface.co/docs/timm/training_script
 - Huggingface also has libraries for NLP
- fastai https://github.com/fastai/fastai
- Pytorch lightning: https://www.pytorchlightning.ai/
 - Good support for distributed training and mixed precision
- Avalanche: <u>https://avalanche.continualai.org/</u>
 - We will use Avalanche for CL methods

• Logging tools:

- Many different companies: weights and biases, cometml, clearml...
- Suggested: tensorboard. Everything is local. Easily integrated everywhere.
- Hiplot for visualizing model selection results: <u>https://pypi.org/project/hiplot/</u>

Conclusion

- Deep learning notebook
- Dependency: Avalanche 0.5.0
 - pip install avalanche-lib==0.5.0
 - If you have problems install it in a new environment

- Deep learning model are designed to extract high-level features from low-level sensory inputs (e.g. high-dimensional images)
- learned latent representations can also be reused, opening up many new applications

Multi-Task learning

- Definition
- Design choices
- challenges