2

PAI LAB

Finetuning and Domain
Adaptation

Antonio Carta

antonio.carta@unipi.it



Plan for Today

» what is finetuning
* how does it work: practical tips, transferability
« domain adaptation

« Reweighting

» Feature Alignment

 Domain Translation
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Problem Definition and
Motivations



Definition — Transfer Learning (TL)

T, atask, such as image classification of plants
* D, a dataset sampled from T},
0, parameters of a DNN after training on D,,

Def — Transfer Learning:
Solve target task T}, after solving source task(s) T,
by transferring knowledge learned from T,

D, is not available during TL

OBSERVATION: you can solve Multi-Task Learning (MTL) with TL methods
but not viceversa. Not having access to D, is a hard constraint.




Typical Setting

* D, is very large

* D, may be small

« We don't have D, (e.g. pretrained model from private company)
« We don't care about solving T, and T}, jointly

« Example: pretrain on ImageNet -> TL on specialized domain



Pretrained Models

Where do you get the pre-trained parameters?

 Pretrained models are available
 e.g. ImageNet classification model
« often available online (e.g. Huggingface)

» Models trained on large language corpora for NLP
« Whatever large, diverse dataset you might have

 Often these models are trained on different tasks:
 See self-supervised lecture
« Example: masked language modeling



Multi-Task Learning vs Transfer Learning

MTL: we have all the data at the same time
» we have multiple tasks
« often the tasks have a similar size/complexity

TL: we have only T,
* Only two tasks T, T;,
 usually D, «< D,




Finetuning and
Transferability




2D Toy Experiment

« how would you split the data with hyperplanes?
* Do you think your split generalizes to new domains?
» can we even tell if our solution generalizes?

‘Direct Transfer of Learned Information Among Neural Networks”, L. Y. Pratt et al, AAAI 1991 10



Transfer Latent Features

 Better solution with DNN: reuse latent representations

« you may have to change the classification hyperplanes
completely, but the latent features may still be helpful to solve
related tasks

« ASSUMPTION: the tasks are related -> discriminative features
learned for T, are helpful for T,

* When does this assumption hold?
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* Finetuning: SGD on D,, starting from 6,

< 60— aVel(6,D,)

« SGD starts from pretrained model 6,
* , finetuned model
* D, new data

12



Design Choices

Optional popular choices:

 epochs: usually less iterations/epochs than training from
scratch

 fast adaptation to similar tasks
* avoids overfitting small datasets

* learning rate: o« new learning rate, often smaller

» weight decay: may be set to O

* freezing: small Ir or freeze for early layers

» reinit: random reinit for last layers

« Warm Start: train only the last layer, then finetune everything

13



Finetuning — Warm Start

« start from a pretrained model 6,

* freeze everything except the classifier
« randomly initialize the classifier

* finetune the classifier

» unfreeze all the parameters

* finetune everything

RATIONALE: the randomly initialized classifier may have large gradients,
which result in large changes in the DNN.

« Warm start helps to reduce “forgetting” of the representations
 not always the best choice

14



How transferable are learned features?

« we know early layers learn Gabor filters. These are generally
useful for a large family of tasks

* is it true also for deeper layers?

* INTUITION: low layer are general feature extractor, high layers
are task-specific

15



A Simple Transferability Experiment

» Data: two ImageNet splits A and B
 self-transfer;: network trained on A and finetuned on A
e transfer: network trained on A and finetuned on B

* training: share first k layers, others are randomly initialized.
Shared layers are frozen or finetuned (+ symbol in the plots)

Yosinski et al. “‘How Transferable Are Features in Deep Neural Networks?” NIPS'14 16



Transferability in ImageNet
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2. B-B: copied from B and frozen
+ random rest trained on B

3. B-B+: copied features are
allowed to adapt/fine-tune

4. A-B: transfer from A to B with
frozen layers

5. A-B+: transferring + fine-
tuning from Ato B

Yosinski et al. “‘How Transferable Are Features in Deep Neural Networks?” NIPS'14

5: Transfer + fine-tuning improves generalization

3: Fine-tuning recovers co-adapted interactions

2: Performance drops
due to fragile
co-adaptation

drops due to
representation
specificity

Layer » at which network is chopped and retrained

18
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Size of the Pretraining Dataset Matters
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Figure 3: Vahidation error rates for supervised and semi-supervised ULMFIT vs. traiming from scratch
with different numbers of training examples on IMDb, TREC-6, and AG (from left to right).
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Domain Matters

* if you change the domain too much transfer may not work
anymore

« examples: for some problems, low-level features don’t matter.
For others, they are critical

satellite images

head shots

natural images

X-ray medical images

"Meta-learning Convolutional Neural Architectures for Multi-target Concrete Defect Classification with the Concrete Defect Bridge
Image Dataset’, Mundt et al, CVPR 2079 20
‘Material Recognition in the Wild with the Materials in Context Database, CVPR 2015"



DNN/CNN Texture Bias

(a) Texture image (b) Content image

814%  Indian elephant 71.1%  tabby cat 63.9%
10.3% indri 17.3% grey fox 26.4%
8.2% black swan 3.3% Siamese cat 9.6%

ImageNet-trained CNNS are biased towards texture’, Geirhos et al, ICLR 2019

(c) Texture-shape cue conflict

Indian elephant
indri
black swan

21



Clever Hans and Confounders

» Confounders and spurious correlations may also hurt TL
performance

* Example:
» what is the difference between house dogs and sled dogs?
 DNN answer: the snow background

Unmasking Clever Hans Predictors’, Lapuschkin et al, Nature Communications 2079

“The Pitfalls of Simplicity Bias in Neural Networks’, Shah et al, NeurlPS 2020 22



Domain Adaptation

23



e task: i = {p@( ), piy | x), Zi}
+ domain: d; = {pi(x),p(y | x), £}

in practice, given a task, a domain is a subset of the task.
Example:

 image classification of animals

« domains:
« different environments: jungle, savannabh, ...
« different images: distant images, close images, high/low res, ...

24



Terminology

* Source Domain: the data distribution on which the model is
trained using labeled examples

» Target Domain: the data distribution on which a model pre-
trained on a different domain is used to perform a similar task

« Domain Translation: the problem of finding a meaningful
correspondence between two domains

* Domain Shift: a change in the statistical distribution of data
between different domains

25



Domain Adaptation Problem

 Domain Adaptation is a transfer learning problem where we
have with access to target domain data during training.

* Unsupervised Domain Adaptation: unlabeled target domain
data

» Semi-supervised domain adaptation: unlabeled data and a
small labeled subset

 Supervised domain adaptation: labeled target domain data

26




« Source and target are different domains but closely related

 There exists a single hypothesis (model/DNN) with low error on
both source and target data

* in transfer learning the source and target task can be much more
different

* the shift from source to target is a form of virtual drift

27



Domain Adaptation Methods

 Data reweighting: importance sampling
 Feature Alignment: DANN and Deep Domain Confusion
* Domain Translation: CycleGAN

28
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* p, source distribution

 pr target distribution

 model trained on py(x,y)
ignores samples from p;(x, y)

How can we mitigate this
issue? we can use the
(unlabeled) target data
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Sample Selection Bias

 REMEMBER: selection bias is
a form of virtual drift! ta "%;T— Soulce
* this is an imbalance problem
 IDEA: weigh more samples
with low source probability
(ps) and high target . o T
probability (py) @ \ .-~ . . T
L\N/

R SN &(B_A,@/M
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Source and Target Error

Error on source: EPS(J%ZJ) £($z Y, 9)
Error on target: EpT(;B,y) C(LB, Y, 9)

= [pr(e.) PS(TY) 4 0)dady
ps(z,y)
= E..

pr(z,y)
I ‘E 2 2 9
P.‘.a{ sy} [Pﬁf(ﬂfg y) (:17 y )

solution: minimize error on target domain by weighing source data by pT(x'Y)/pS(
problem: we need a generative model for the joint distributions p; and p,

x,y)

31




Importance Sampling (IS)

* p(y|x) is domain-independent -> we can ignore it
* p(x): Apply Bayes rule to the importance sampling coefficient

_ p( target |x)p( source )

pr(z) _ p(z| target )
ps(x) p(z| source )

p( source |z)p( target )

* p(source | x) is a binary domain classifier

* p(source)/p(target) is a constant term that we can remove
without changing the optimal solution

32




Importance Sampling Algorithm

training algorithm:
» train domain classifier p(source | x; 8) to classify source/target
- reweight samples by q; — ~_PLsourcelzif))
g P Yy Wi = p(source|x;;0))
 Minimize Wl'L(Xi, Wi, 6)

33
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 informally, the source domain contains the target domain

« approximately true if you go from a general domain (ImageNet)
to a speficic one (birds classification)

 probably false if you switch from one specialized domain to
another (birds—fish)

34



Domain Adaptation Methods

 Data reweighting: importance sampling
« Simple reweighting schema
* We need a general source domain

* Feature Alignment. DANN and Deep Domain Confusion
* Domain Translation: CycleGAN

35



Feature Alignment

« what if we can't apply importance sampling?
« can we align the source features and target features?

« OBJECTIVE: reuse source classifier with the target data in the
aligned feature space

example: MNIST (b/w single digit) — SVHN (RGB, multiple digits)
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Domain Invariance

« model is split into feature
extractor fo(x) and classifier U e

cg(h)
» we want source and target

features that have the same
distributions

- source features fy . (x), x ~ ps(x)
- target features fy_(x),x ~ pr(x)

« Domain Inyariance: features | Target
should be invariant w.r.t. domain

Minimize classification
error

Maximize domain
confusion

Image source: E. Tzeng et al. 2014. “Deep Domain Confusion: Maximizing for Domain Invariance.” arXiv. http.//arxiv.org/abs/1412.3474. 37


http://arxiv.org/abs/1412.3474

Fooling the Domain Classifier

* IDEA: if the features have the same
distribution, a trained domain
classifier should have a random
accuracy

e Can we train the feature extractor to
“fool” the domain classifier?

« domain classifier: c(source | f7(x))

Source

Target

Image source: E. Tzeng et al. 2014. “Deep Domain Confusion: Maximizing for Domain Invariance.” arXiv. http.//arxiv.org/abs/1412.3474. 38


http://arxiv.org/abs/1412.3474

Deep Domain Confusion

e shared CNN feature extractor
« Domain adaptation layer
« domain confusion loss

* learns a representation that is both
semantically meaningful and
domain invariant

o

/

e —
Labeled Images

Image source: E. Tzeng et al. 2014. "‘Deep Domain Confusion: Maximizing for Domain Invariance.” arXiv. http.//arxiv.org/abs/1412.3474.
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http://arxiv.org/abs/1412.3474

Deep Domain Confusion

« Domain confusion loss: Maximum
Mean Discrepancy

MMD (Xs, X1) = || b e, # (@) — oy S, 6 (1)

Total loss: £ =£e(X1,y) + AxMMD? (X5, X7)
* minimize classification loss L,
* minimize domain-distance (MMD)

o

classification domain
loss loss
)L (s
|
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conv1 / --------------- \ conv1

e —
Labeled Images

Image source: E. Tzeng et al. 2074. "‘Deep Domain Confusion: Maximizing for Domain Invariance.” arXiv. http.//arxiv.org/abs/1412.3474.
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http://arxiv.org/abs/1412.3474

DANN - Domain-Adversarial Neural Network

again, Unsupervised domain adaptation

« (1) train classifier and feature extractor to classify source data
* learn discriminative features

* (2) train domain classifier to guess the domain

« (3) train feature extractor to “fool” the domain classifier
* GAN-like objective

* (2) + (3) ensure domain-invariance

41



Three modules:

* Gy DNN feature extractor
(green) > ®m$
* G, DNN label predictor (blue) /\

* G, domain classifier (red)

» prediction loss L,, and domain
loss L,
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» the domain classifier G is trained to

uess the domain 5L oL,
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 —AL, is the gradient reversal

» The feature extractor and domain
classifier optimize the same objective in
opposite directions
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Domain Adaptation Methods

 Data reweighting: importance sampling
« Simple reweighting schema
* We need a general source domain

* Feature Alignment. DANN and Deep Domain Confusion
» Learn domain-invariant representations
« Minimize representation distance (DDC) or adversarial training (DANN)

- Domain Translation: CycleGAN

45




Domain Translation

* it may be hard to align features
* learn a translation function: F:S > TorG:T - S

solving domain adaptation given a translation function:
» translate source data to target domain

» train classifier using the translated source data

» use classifier on the target domain

Also works in the other direction

46



CycleGAN

Monet = Photos . Zebras > Horses _ Summer _ Winter

7 A

Phtgraph Cezanne

Image source: https.//junyanz.github.io/CycleGAN,
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https://junyanz.github.io/CycleGAN/

CycleGAN - Translation Consistency

* IDEA: we want to learn a source —
target mapping G: X — Y with GANs

 problem: the mapping is under-
constrained

» Solution:
* learn the inverse mapping F:Y - X
- enforce cycle consistency s.t. F(G(x)) = x

Zebras T Horses
R e

TG 1
N

X Y é 1'." . . ‘A" Pk % . : “ !
~— : horse —» zebra

F

J. Zhu et al."Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks.” ICCV 2017 48




Cycle Consistency Loss

Leye(Gy F) = Eqropy. (o) | F(G(2)) — [1]
+ Eyopaua () L G(F(y)) — yll1]

G .
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J. Zhu et al."Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks.” ICCV 2017
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GAN Loss

LcAN (G , Dy, X, Y) — Eywpdata(y) [log DY(ZJ)}
+ Ezpoea (2) 10g (1 — Dy(G(2))]
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J. Zhu et al."Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks.” ICCV 2017
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GAN Loss

Total loss: Two GAN loss (translation and inverse translation) + cycle consistency loss

L (G: F:r DX; DY) :EGAN (G: DY? X:' Y)
+ Lean (F, Dx, Y, X)
Aeyo(G, F),

D D
G X G
7 . R 7\ -
F F
X vyl [x Y
> | 1 ‘c'ycle—ci)(gzlbtency
cycle—c?;:;lstency _\ .k ).\

J. Zhu et al."Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks.” ICCV 2017 51



Domain Adaptation Methods

 Data reweighting: importance sampling
« Simple reweighting schema
* We need a general source domain

* Feature Alignment. DANN and Deep Domain Confusion
» Learn domain-invariant representations
« Minimize representation distance (DANN) or adversarial training (DDC)

- Domain Translation: CycleGAN
» Cycle consistency allows to train source <-> target mappings

52



Conclusion

53



Take-Home Messages

« sometimes, we don't really care about preserving the
performance on the old task

- finetuning/domain adaptation allows to quickly learn new
task/domains

« Knowing whether there will be forward transfer is never intuitive.
Test your assumptions.

54
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» Slides should be enough
» CS 330 slides http://cs330.stanford.edu/

* You can check the papers in the footnotes for more info
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Next-Lecture

Multi-Task learning
* Definition
 Design choices

» challenges

56
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