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Plan for Today

• what is finetuning

• how does it work: practical tips, transferability

• domain adaptation
• Reweighting

• Feature Alignment

• Domain Translation

2



https://twitter.com/miniapeur/status/1606689673396359168/photo/1 3



Problem Definition and 
Motivations
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Definition – Transfer Learning (TL)

• 𝑇𝑏 a task, such as image classification of plants 

• 𝐷𝑏 a dataset sampled from 𝑇𝑏 

• 𝜃𝑏 parameters of a DNN after training on 𝐷𝑏

Def – Transfer Learning: 

Solve target task 𝑇𝑏 after solving source task(s) 𝑇𝑎

by transferring knowledge learned from 𝑇𝑎

𝐷𝑎 is not available during TL 

OBSERVATION: you can solve Multi-Task Learning (MTL) with TL methods 
but not viceversa. Not having access to 𝐷𝑎 is a hard constraint.
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Typical Setting

• 𝐷𝑎 is very large

• 𝐷𝑏 may be small

• We don’t have 𝐷𝑎 (e.g. pretrained model from private company)

• We don’t care about solving 𝑇𝑎 and 𝑇𝑏 jointly

• Example: pretrain on ImageNet -> TL on specialized domain
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Pretrained Models

Where do you get the pre-trained parameters?  

• Pretrained models are available 
• e.g. ImageNet classification model

• often available online (e.g. Huggingface)

• Models trained on large language corpora for NLP

• Whatever large, diverse dataset you might have

• Often these models are trained on different tasks:
• See self-supervised lecture

• Example: masked language modeling 
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Multi-Task Learning vs Transfer Learning

MTL: we have all the data at the same time

• we have multiple tasks

• often the tasks have a similar size/complexity

TL: we have only 𝑻𝒃

• Only two tasks 𝑇𝑎, 𝑇𝑏

• usually 𝐷𝑏 ≪ 𝐷𝑎
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Finetuning and 
Transferability
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2D Toy Experiment

• how would you split the data with hyperplanes?

• Do you think your split generalizes to new domains? 

• can we even tell if our solution generalizes? 

“Direct Transfer of Learned Information Among Neural Networks” , L. Y. Pratt et al, AAAI 1991 10



Transfer Latent Features

• Better solution with DNN: reuse latent representations

• you may have to change the classification hyperplanes 
completely, but the latent features may still be helpful to solve 
related tasks

• ASSUMPTION: the tasks are related -> discriminative features 
learned for 𝑇𝑎 are helpful for 𝑇𝑏

• When does this assumption hold?
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Finetuning

• Finetuning: SGD on 𝐷𝑏 , starting from 𝜃𝑎

• SGD starts from pretrained model 𝜃𝑎

• 𝜃𝑏 finetuned model

• 𝐷𝑏 new data
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Design Choices

Optional popular choices:

• epochs: usually less iterations/epochs than training from 
scratch
• fast adaptation to similar tasks
• avoids overfitting small datasets

• learning rate: 𝛼 new learning rate, often smaller

• weight decay: may be set to 0

• freezing: small lr or freeze for early layers

• reinit: random reinit for last layers

• Warm Start: train only the last layer, then finetune everything
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Finetuning – Warm Start

• start from a pretrained model 𝜃𝑎

• freeze everything except the classifier

• randomly initialize the classifier

• finetune the classifier

• unfreeze all the parameters

• finetune everything

RATIONALE: the randomly initialized classifier may have large gradients, 
which result in large changes in the DNN. 

• Warm start helps to reduce “forgetting” of the representations

• not always the best choice
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How transferable are learned features?

• we know early layers learn Gabor filters. These are generally 
useful for a large family of tasks

• is it true also for deeper layers?

• INTUITION: low layer are general feature extractor, high layers 
are task-specific
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A Simple Transferability Experiment 

• Data: two ImageNet splits A and B

• self-transfer: network trained on A and finetuned on A

• transfer: network trained on A and finetuned on B

• training: share first k layers, others are randomly initialized. 
Shared layers are frozen or finetuned (+ symbol in the plots)

Yosinski et al. “How Transferable Are Features in Deep Neural Networks?” NIPS’14 16



Transferability in ImageNet

• Split Imagenet into 2 sets 
of 500 classes: A and B

• “Lock” different sets of 
layers/representations & 
randomly initialize upper 
remaining layers

• Alternatively: continue 
training/fine-tuning 
transferred layers

Yosinski et al. “How Transferable Are Features in Deep Neural Networks?” NIPS’14 17



Results

2. B-B: copied from B and frozen 
+ random rest trained on B

3. B-B+: copied features are 
allowed to adapt/fine-tune  

4. A-B: transfer from A to B with 
frozen layers  

5. A-B+: transferring + fine-
tuning from A to B

Yosinski et al. “How Transferable Are Features in Deep Neural Networks?” NIPS’14 18



Size of the Pretraining Dataset Matters
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Domain Matters

• if you change the domain too much transfer may not work 
anymore

• examples: for some problems, low-level features don’t matter. 
For others, they are critical
• satellite images

• head shots

• natural images

• x-ray medical images

“Meta-learning Convolutional Neural Architectures for Multi-target Concrete Defect Classification with the Concrete Defect Bridge 
Image Dataset”, Mundt et al, CVPR 2019

“Material Recognition in the Wild with the Materials in Context Database, CVPR 2015”
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DNN/CNN Texture Bias

ImageNet-trained CNNS are biased towards texture”, Geirhos et al, ICLR 2019 21



Clever Hans and Confounders

• Confounders and spurious correlations may also hurt TL 
performance

• Example: 
• what is the difference between house dogs and sled dogs? 

• DNN answer: the snow background

Unmasking Clever Hans Predictors”, Lapuschkin et al, Nature Communications 2019
“The Pitfalls of Simplicity Bias in Neural Networks”, Shah et al, NeurIPS 2020
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Domain Adaptation
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Task vs Domain

• task: 

• domain: 

in practice, given a task, a domain is a subset of the task. 
Example:

• image classification of animals

• domains: 
• different environments: jungle, savannah, … 

• different images: distant images, close images, high/low res, …

24



Terminology

• Source Domain: the data distribution on which the model is 
trained using labeled examples

• Target Domain: the data distribution on which a model pre-
trained on a different domain is used to perform a similar task

• Domain Translation: the problem of finding a meaningful 
correspondence between two domains

• Domain Shift: a change in the statistical distribution of data 
between different domains
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Domain Adaptation Problem

• Domain Adaptation is a transfer learning problem where we 
have with access to target domain data during training.

• Unsupervised Domain Adaptation: unlabeled target domain 
data

• Semi-supervised domain adaptation: unlabeled data and a 
small labeled subset

• Supervised domain adaptation: labeled target domain data
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Assumptions

• Source and target are different domains but closely related

• There exists a single hypothesis (model/DNN) with low error on 
both source and target data
• in transfer learning the source and target task can be much more 

different

• the shift from source to target is a form of virtual drift
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Domain Adaptation Methods

• Data reweighting: importance sampling

• Feature Alignment: DANN and Deep Domain Confusion

• Domain Translation: CycleGAN
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Domain Bias

• 𝑝𝑠 source distribution

• 𝑝𝑇 target distribution

• model trained on 𝑝𝑠 𝑥, 𝑦
ignores samples from 𝑝𝑇 𝑥, 𝑦

How can we mitigate this 
issue? we can use the 
(unlabeled) target data
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Sample Selection Bias

• REMEMBER: selection bias is 
a form of virtual drift!

• this is an imbalance problem

• IDEA: weigh more samples 
with low source probability 
(𝑝𝑆) and high target 
probability (𝑝𝑇)
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Source and Target Error

• Error on source:

• Error on target:

• Derivation:

• solution: minimize error on target domain by weighing source data by ൗ𝑝𝑇(𝑥,𝑦)
𝑝𝑠 𝑥,𝑦

• problem: we need a generative model for the joint distributions 𝑝𝑇 and 𝑝𝑠
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Importance Sampling (IS)

• 𝑝 𝑦 𝑥  is domain-independent -> we can ignore it

• 𝑝 𝑥 : Apply Bayes rule to the importance sampling coefficient

• 𝑝(𝑠𝑜𝑢𝑟𝑐𝑒 | 𝑥) is a binary domain classifier 

• 𝑝 𝑠𝑜𝑢𝑟𝑐𝑒 /𝑝 𝑡𝑎𝑟𝑔𝑒𝑡  is a constant term that we can remove 
without changing the optimal solution
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Importance Sampling Algorithm

training algorithm:

• train domain classifier 𝑝(𝑠𝑜𝑢𝑟𝑐𝑒 | 𝑥; 𝜃) to classify source/target

• reweight samples by 

• Minimize 𝑤𝑖𝐿 𝑥𝑖 , 𝑤𝑖 , 𝜃
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IS Assumption

• informally, the source domain contains the target domain

• approximately true if you go from a general domain (ImageNet) 
to a speficic one (birds classification)

• probably false if you switch from one specialized domain to 
another (birds→fish)
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Domain Adaptation Methods

• Data reweighting: importance sampling
• Simple reweighting schema

• We need a general source domain

• Feature Alignment: DANN and Deep Domain Confusion

• Domain Translation: CycleGAN
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Feature Alignment

• what if we can’t apply importance sampling?

• can we align the source features and target features?

• OBJECTIVE: reuse source classifier with the target data in the 
aligned feature space

example: MNIST (b/w single digit) → SVHN (RGB, multiple digits)
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Domain Invariance

• model is split into feature 
extractor 𝑓𝜃 𝑥  and classifier 
𝑐𝜃 ℎ

• we want source and target 
features that have the same 
distributions

• source features 𝑓𝜃𝑆
𝑥 , 𝑥 ∼ 𝑝𝑆 𝑥

• target features 𝑓𝜃𝑇
𝑥 , 𝑥 ∼ 𝑝𝑇 𝑥

• Domain Invariance: features 
should be invariant w.r.t. domain

Image source: E. Tzeng et al. 2014. “Deep Domain Confusion: Maximizing for Domain Invariance.” arXiv. http://arxiv.org/abs/1412.3474. 37

http://arxiv.org/abs/1412.3474


Fooling the Domain Classifier

• IDEA: if the features have the same 
distribution, a trained domain 
classifier should have a random 
accuracy

• Can we train the feature extractor to 
“fool” the domain classifier?

• domain classifier: 𝑐(𝑠𝑜𝑢𝑟𝑐𝑒 | 𝑓𝑇 𝑥 )

Image source: E. Tzeng et al. 2014. “Deep Domain Confusion: Maximizing for Domain Invariance.” arXiv. http://arxiv.org/abs/1412.3474. 38
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Deep Domain Confusion

• shared CNN feature extractor

• Domain adaptation layer

• domain confusion loss

• learns a representation that is both 
semantically meaningful and 
domain invariant

Image source: E. Tzeng et al. 2014. “Deep Domain Confusion: Maximizing for Domain Invariance.” arXiv. http://arxiv.org/abs/1412.3474.
39
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Deep Domain Confusion

• Domain confusion loss: Maximum 
Mean Discrepancy

Total loss:

• minimize classification loss 𝐿𝐶

• minimize domain-distance (MMD)

Image source: E. Tzeng et al. 2014. “Deep Domain Confusion: Maximizing for Domain Invariance.” arXiv. http://arxiv.org/abs/1412.3474.
40
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DANN – Domain-Adversarial Neural Network

again, Unsupervised domain adaptation

• (1) train classifier and feature extractor to classify source data
• learn discriminative features

• (2) train domain classifier to guess the domain

• (3) train feature extractor to “fool” the domain classifier
• GAN-like objective

• (2) + (3) ensure domain-invariance
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DANN

Three modules:

• 𝐺𝑓 DNN feature extractor 
(green) 

• 𝐺𝑦 DNN label predictor (blue)

• 𝐺𝑑 domain classifier (red)

• prediction loss 𝐿𝑦 and domain 
loss 𝐿𝑑
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DANN

• the domain classifier 𝐺𝑑 is trained to 
guess the domain

• the classifier 𝐺𝑦 is trained to classify the 
source data (target is unlabeled)

• the feature extractor is optimized to 
improve the classification and to fool the 
domain classifier

• −𝜆𝐿𝑑 is the gradient reversal

• The feature extractor and domain 
classifier optimize the same objective in 
opposite directions
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Domain Adaptation Methods

• Data reweighting: importance sampling
• Simple reweighting schema

• We need a general source domain

• Feature Alignment: DANN and Deep Domain Confusion
• Learn domain-invariant representations

• Minimize representation distance (DDC) or adversarial training (DANN)

• Domain Translation: CycleGAN
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Domain Translation

• it may be hard to align features

• learn a translation function: 𝐹: 𝑆 → 𝑇 or 𝐺: 𝑇 → 𝑆

solving domain adaptation given a translation function:

• translate source data to target domain

• train classifier using the translated source data

• use classifier on the target domain

Also works in the other direction

46



CycleGAN

Image source: https://junyanz.github.io/CycleGAN/
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CycleGAN – Translation Consistency

• IDEA: we want to learn a source →
target mapping 𝐺: 𝑋 → 𝑌 with GANs

• problem: the mapping is under-
constrained

• Solution: 
• learn the inverse mapping 𝐹: 𝑌 → 𝑋

• enforce cycle consistency s.t. 𝐹 𝐺 𝑥 ≈ 𝑥

J. Zhu et al.“Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks.” ICCV 2017 48



Cycle Consistency Loss

J. Zhu et al.“Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks.” ICCV 2017 49



GAN Loss

J. Zhu et al.“Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks.” ICCV 2017 50



GAN Loss

J. Zhu et al.“Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks.” ICCV 2017 51

Total loss: Two GAN loss (translation and inverse translation) + cycle consistency loss



Domain Adaptation Methods

• Data reweighting: importance sampling
• Simple reweighting schema

• We need a general source domain

• Feature Alignment: DANN and Deep Domain Confusion
• Learn domain-invariant representations

• Minimize representation distance (DANN) or adversarial training (DDC)

• Domain Translation: CycleGAN
• Cycle consistency allows to train source <-> target mappings
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Conclusion
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Take-Home Messages

• sometimes, we don’t really care about preserving the 
performance on the old task

• finetuning/domain adaptation allows to quickly learn new 
task/domains

• Knowing whether there will be forward transfer is never intuitive. 
Test your assumptions.
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References

• Slides should be enough

• CS 330 slides http://cs330.stanford.edu/

• You can check the papers in the footnotes for more info
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Next-Lecture

Multi-Task learning

• Definition

• Design choices

• challenges
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