
Antonio Carta

antonio.carta@unipi.it

Finetuning and Domain
Adaptation

Plan for Today

• what is finetuning

• how does it work: practical tips, transferability

• domain adaptation
• Reweighting

• Feature Alignment

• Domain Translation

2

https://twitter.com/miniapeur/status/1606689673396359168/photo/1 3

Problem Definition and
Motivations

4

Definition – Transfer Learning (TL)

• 𝑇𝑏 a task, such as image classification of plants

• 𝐷𝑏 a dataset sampled from 𝑇𝑏

• 𝜃𝑏 parameters of a DNN after training on 𝐷𝑏

Def – Transfer Learning:

Solve target task 𝑇𝑏 after solving source task(s) 𝑇𝑎

by transferring knowledge learned from 𝑇𝑎

𝐷𝑎 is not available during TL

OBSERVATION: you can solve Multi-Task Learning (MTL) with TL methods
but not viceversa. Not having access to 𝐷𝑎 is a hard constraint.

5

Typical Setting

• 𝐷𝑎 is very large

• 𝐷𝑏 may be small

• We don’t have 𝐷𝑎 (e.g. pretrained model from private company)

• We don’t care about solving 𝑇𝑎 and 𝑇𝑏 jointly

• Example: pretrain on ImageNet -> TL on specialized domain

6

Pretrained Models

Where do you get the pre-trained parameters?

• Pretrained models are available
• e.g. ImageNet classification model

• often available online (e.g. Huggingface)

• Models trained on large language corpora for NLP

• Whatever large, diverse dataset you might have

• Often these models are trained on different tasks:
• See self-supervised lecture

• Example: masked language modeling

7

Multi-Task Learning vs Transfer Learning

MTL: we have all the data at the same time

• we have multiple tasks

• often the tasks have a similar size/complexity

TL: we have only 𝑻𝒃

• Only two tasks 𝑇𝑎, 𝑇𝑏

• usually 𝐷𝑏 ≪ 𝐷𝑎

8

Finetuning and
Transferability

9

2D Toy Experiment

• how would you split the data with hyperplanes?

• Do you think your split generalizes to new domains?

• can we even tell if our solution generalizes?

“Direct Transfer of Learned Information Among Neural Networks” , L. Y. Pratt et al, AAAI 1991 10

Transfer Latent Features

• Better solution with DNN: reuse latent representations

• you may have to change the classification hyperplanes
completely, but the latent features may still be helpful to solve
related tasks

• ASSUMPTION: the tasks are related -> discriminative features
learned for 𝑇𝑎 are helpful for 𝑇𝑏

• When does this assumption hold?

11

Finetuning

• Finetuning: SGD on 𝐷𝑏 , starting from 𝜃𝑎

• SGD starts from pretrained model 𝜃𝑎

• 𝜃𝑏 finetuned model

• 𝐷𝑏 new data

12

Design Choices

Optional popular choices:

• epochs: usually less iterations/epochs than training from
scratch
• fast adaptation to similar tasks
• avoids overfitting small datasets

• learning rate: 𝛼 new learning rate, often smaller

• weight decay: may be set to 0

• freezing: small lr or freeze for early layers

• reinit: random reinit for last layers

• Warm Start: train only the last layer, then finetune everything

13

Finetuning – Warm Start

• start from a pretrained model 𝜃𝑎

• freeze everything except the classifier

• randomly initialize the classifier

• finetune the classifier

• unfreeze all the parameters

• finetune everything

RATIONALE: the randomly initialized classifier may have large gradients,
which result in large changes in the DNN.

• Warm start helps to reduce “forgetting” of the representations

• not always the best choice

14

How transferable are learned features?

• we know early layers learn Gabor filters. These are generally
useful for a large family of tasks

• is it true also for deeper layers?

• INTUITION: low layer are general feature extractor, high layers
are task-specific

15

A Simple Transferability Experiment

• Data: two ImageNet splits A and B

• self-transfer: network trained on A and finetuned on A

• transfer: network trained on A and finetuned on B

• training: share first k layers, others are randomly initialized.
Shared layers are frozen or finetuned (+ symbol in the plots)

Yosinski et al. “How Transferable Are Features in Deep Neural Networks?” NIPS’14 16

Transferability in ImageNet

• Split Imagenet into 2 sets
of 500 classes: A and B

• “Lock” different sets of
layers/representations &
randomly initialize upper
remaining layers

• Alternatively: continue
training/fine-tuning
transferred layers

Yosinski et al. “How Transferable Are Features in Deep Neural Networks?” NIPS’14 17

Results

2. B-B: copied from B and frozen
+ random rest trained on B

3. B-B+: copied features are
allowed to adapt/fine-tune

4. A-B: transfer from A to B with
frozen layers

5. A-B+: transferring + fine-
tuning from A to B

Yosinski et al. “How Transferable Are Features in Deep Neural Networks?” NIPS’14 18

Size of the Pretraining Dataset Matters

19

Domain Matters

• if you change the domain too much transfer may not work
anymore

• examples: for some problems, low-level features don’t matter.
For others, they are critical
• satellite images

• head shots

• natural images

• x-ray medical images

“Meta-learning Convolutional Neural Architectures for Multi-target Concrete Defect Classification with the Concrete Defect Bridge
Image Dataset”, Mundt et al, CVPR 2019

“Material Recognition in the Wild with the Materials in Context Database, CVPR 2015”
20

DNN/CNN Texture Bias

ImageNet-trained CNNS are biased towards texture”, Geirhos et al, ICLR 2019 21

Clever Hans and Confounders

• Confounders and spurious correlations may also hurt TL
performance

• Example:
• what is the difference between house dogs and sled dogs?

• DNN answer: the snow background

Unmasking Clever Hans Predictors”, Lapuschkin et al, Nature Communications 2019
“The Pitfalls of Simplicity Bias in Neural Networks”, Shah et al, NeurIPS 2020

22

Domain Adaptation

23

Task vs Domain

• task:

• domain:

in practice, given a task, a domain is a subset of the task.
Example:

• image classification of animals

• domains:
• different environments: jungle, savannah, …

• different images: distant images, close images, high/low res, …

24

Terminology

• Source Domain: the data distribution on which the model is
trained using labeled examples

• Target Domain: the data distribution on which a model pre-
trained on a different domain is used to perform a similar task

• Domain Translation: the problem of finding a meaningful
correspondence between two domains

• Domain Shift: a change in the statistical distribution of data
between different domains

25

Domain Adaptation Problem

• Domain Adaptation is a transfer learning problem where we
have with access to target domain data during training.

• Unsupervised Domain Adaptation: unlabeled target domain
data

• Semi-supervised domain adaptation: unlabeled data and a
small labeled subset

• Supervised domain adaptation: labeled target domain data

26

Assumptions

• Source and target are different domains but closely related

• There exists a single hypothesis (model/DNN) with low error on
both source and target data
• in transfer learning the source and target task can be much more

different

• the shift from source to target is a form of virtual drift

27

Domain Adaptation Methods

• Data reweighting: importance sampling

• Feature Alignment: DANN and Deep Domain Confusion

• Domain Translation: CycleGAN

28

Domain Bias

• 𝑝𝑠 source distribution

• 𝑝𝑇 target distribution

• model trained on 𝑝𝑠 𝑥, 𝑦
ignores samples from 𝑝𝑇 𝑥, 𝑦

How can we mitigate this
issue? we can use the
(unlabeled) target data

29

Sample Selection Bias

• REMEMBER: selection bias is
a form of virtual drift!

• this is an imbalance problem

• IDEA: weigh more samples
with low source probability
(𝑝𝑆) and high target
probability (𝑝𝑇)

30

Source and Target Error

• Error on source:

• Error on target:

• Derivation:

• solution: minimize error on target domain by weighing source data by ൗ𝑝𝑇(𝑥,𝑦)
𝑝𝑠 𝑥,𝑦

• problem: we need a generative model for the joint distributions 𝑝𝑇 and 𝑝𝑠

31

Importance Sampling (IS)

• 𝑝 𝑦 𝑥 is domain-independent -> we can ignore it

• 𝑝 𝑥 : Apply Bayes rule to the importance sampling coefficient

• 𝑝(𝑠𝑜𝑢𝑟𝑐𝑒 | 𝑥) is a binary domain classifier

• 𝑝 𝑠𝑜𝑢𝑟𝑐𝑒 /𝑝 𝑡𝑎𝑟𝑔𝑒𝑡 is a constant term that we can remove
without changing the optimal solution

32

Importance Sampling Algorithm

training algorithm:

• train domain classifier 𝑝(𝑠𝑜𝑢𝑟𝑐𝑒 | 𝑥; 𝜃) to classify source/target

• reweight samples by

• Minimize 𝑤𝑖𝐿 𝑥𝑖 , 𝑤𝑖 , 𝜃

33

IS Assumption

• informally, the source domain contains the target domain

• approximately true if you go from a general domain (ImageNet)
to a speficic one (birds classification)

• probably false if you switch from one specialized domain to
another (birds→fish)

34

Domain Adaptation Methods

• Data reweighting: importance sampling
• Simple reweighting schema

• We need a general source domain

• Feature Alignment: DANN and Deep Domain Confusion

• Domain Translation: CycleGAN

35

Feature Alignment

• what if we can’t apply importance sampling?

• can we align the source features and target features?

• OBJECTIVE: reuse source classifier with the target data in the
aligned feature space

example: MNIST (b/w single digit) → SVHN (RGB, multiple digits)

36

Domain Invariance

• model is split into feature
extractor 𝑓𝜃 𝑥 and classifier
𝑐𝜃 ℎ

• we want source and target
features that have the same
distributions

• source features 𝑓𝜃𝑆
𝑥 , 𝑥 ∼ 𝑝𝑆 𝑥

• target features 𝑓𝜃𝑇
𝑥 , 𝑥 ∼ 𝑝𝑇 𝑥

• Domain Invariance: features
should be invariant w.r.t. domain

Image source: E. Tzeng et al. 2014. “Deep Domain Confusion: Maximizing for Domain Invariance.” arXiv. http://arxiv.org/abs/1412.3474. 37

http://arxiv.org/abs/1412.3474

Fooling the Domain Classifier

• IDEA: if the features have the same
distribution, a trained domain
classifier should have a random
accuracy

• Can we train the feature extractor to
“fool” the domain classifier?

• domain classifier: 𝑐(𝑠𝑜𝑢𝑟𝑐𝑒 | 𝑓𝑇 𝑥)

Image source: E. Tzeng et al. 2014. “Deep Domain Confusion: Maximizing for Domain Invariance.” arXiv. http://arxiv.org/abs/1412.3474. 38

http://arxiv.org/abs/1412.3474

Deep Domain Confusion

• shared CNN feature extractor

• Domain adaptation layer

• domain confusion loss

• learns a representation that is both
semantically meaningful and
domain invariant

Image source: E. Tzeng et al. 2014. “Deep Domain Confusion: Maximizing for Domain Invariance.” arXiv. http://arxiv.org/abs/1412.3474.
39

http://arxiv.org/abs/1412.3474

Deep Domain Confusion

• Domain confusion loss: Maximum
Mean Discrepancy

Total loss:

• minimize classification loss 𝐿𝐶

• minimize domain-distance (MMD)

Image source: E. Tzeng et al. 2014. “Deep Domain Confusion: Maximizing for Domain Invariance.” arXiv. http://arxiv.org/abs/1412.3474.
40

http://arxiv.org/abs/1412.3474

DANN – Domain-Adversarial Neural Network

again, Unsupervised domain adaptation

• (1) train classifier and feature extractor to classify source data
• learn discriminative features

• (2) train domain classifier to guess the domain

• (3) train feature extractor to “fool” the domain classifier
• GAN-like objective

• (2) + (3) ensure domain-invariance

41

DANN

Three modules:

• 𝐺𝑓 DNN feature extractor
(green)

• 𝐺𝑦 DNN label predictor (blue)

• 𝐺𝑑 domain classifier (red)

• prediction loss 𝐿𝑦 and domain
loss 𝐿𝑑

42

43

DANN

• the domain classifier 𝐺𝑑 is trained to
guess the domain

• the classifier 𝐺𝑦 is trained to classify the
source data (target is unlabeled)

• the feature extractor is optimized to
improve the classification and to fool the
domain classifier

• −𝜆𝐿𝑑 is the gradient reversal

• The feature extractor and domain
classifier optimize the same objective in
opposite directions

44

Domain Adaptation Methods

• Data reweighting: importance sampling
• Simple reweighting schema

• We need a general source domain

• Feature Alignment: DANN and Deep Domain Confusion
• Learn domain-invariant representations

• Minimize representation distance (DDC) or adversarial training (DANN)

• Domain Translation: CycleGAN

45

Domain Translation

• it may be hard to align features

• learn a translation function: 𝐹: 𝑆 → 𝑇 or 𝐺: 𝑇 → 𝑆

solving domain adaptation given a translation function:

• translate source data to target domain

• train classifier using the translated source data

• use classifier on the target domain

Also works in the other direction

46

CycleGAN

Image source: https://junyanz.github.io/CycleGAN/
47

https://junyanz.github.io/CycleGAN/

CycleGAN – Translation Consistency

• IDEA: we want to learn a source →
target mapping 𝐺: 𝑋 → 𝑌 with GANs

• problem: the mapping is under-
constrained

• Solution:
• learn the inverse mapping 𝐹: 𝑌 → 𝑋

• enforce cycle consistency s.t. 𝐹 𝐺 𝑥 ≈ 𝑥

J. Zhu et al.“Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks.” ICCV 2017 48

Cycle Consistency Loss

J. Zhu et al.“Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks.” ICCV 2017 49

GAN Loss

J. Zhu et al.“Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks.” ICCV 2017 50

GAN Loss

J. Zhu et al.“Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks.” ICCV 2017 51

Total loss: Two GAN loss (translation and inverse translation) + cycle consistency loss

Domain Adaptation Methods

• Data reweighting: importance sampling
• Simple reweighting schema

• We need a general source domain

• Feature Alignment: DANN and Deep Domain Confusion
• Learn domain-invariant representations

• Minimize representation distance (DANN) or adversarial training (DDC)

• Domain Translation: CycleGAN
• Cycle consistency allows to train source <-> target mappings

52

Conclusion

53

Take-Home Messages

• sometimes, we don’t really care about preserving the
performance on the old task

• finetuning/domain adaptation allows to quickly learn new
task/domains

• Knowing whether there will be forward transfer is never intuitive.
Test your assumptions.

54

References

• Slides should be enough

• CS 330 slides http://cs330.stanford.edu/

• You can check the papers in the footnotes for more info

55

http://cs330.stanford.edu/

Next-Lecture

Multi-Task learning

• Definition

• Design choices

• challenges

56

	Slide 1: Finetuning and Domain Adaptation
	Slide 2: Plan for Today
	Slide 3
	Slide 4: Problem Definition and Motivations
	Slide 5: Definition – Transfer Learning (TL)
	Slide 6: Typical Setting
	Slide 7: Pretrained Models
	Slide 8: Multi-Task Learning vs Transfer Learning
	Slide 9: Finetuning and Transferability
	Slide 10: 2D Toy Experiment
	Slide 11: Transfer Latent Features
	Slide 12: Finetuning
	Slide 13: Design Choices
	Slide 14: Finetuning – Warm Start
	Slide 15: How transferable are learned features?
	Slide 16: A Simple Transferability Experiment
	Slide 17: Transferability in ImageNet
	Slide 18: Results
	Slide 19: Size of the Pretraining Dataset Matters
	Slide 20: Domain Matters
	Slide 21: DNN/CNN Texture Bias
	Slide 22: Clever Hans and Confounders
	Slide 23: Domain Adaptation
	Slide 24: Task vs Domain
	Slide 25: Terminology
	Slide 26: Domain Adaptation Problem
	Slide 27: Assumptions
	Slide 28: Domain Adaptation Methods
	Slide 29: Domain Bias
	Slide 30: Sample Selection Bias
	Slide 31: Source and Target Error
	Slide 32: Importance Sampling (IS)
	Slide 33: Importance Sampling Algorithm
	Slide 34: IS Assumption
	Slide 35: Domain Adaptation Methods
	Slide 36: Feature Alignment
	Slide 37: Domain Invariance
	Slide 38: Fooling the Domain Classifier
	Slide 39: Deep Domain Confusion
	Slide 40: Deep Domain Confusion
	Slide 41: DANN – Domain-Adversarial Neural Network
	Slide 42: DANN
	Slide 43
	Slide 44: DANN
	Slide 45: Domain Adaptation Methods
	Slide 46: Domain Translation
	Slide 47: CycleGAN
	Slide 48: CycleGAN – Translation Consistency
	Slide 49: Cycle Consistency Loss
	Slide 50: GAN Loss
	Slide 51: GAN Loss
	Slide 52: Domain Adaptation Methods
	Slide 53: Conclusion
	Slide 54: Take-Home Messages
	Slide 55: References
	Slide 56: Next-Lecture

