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Outline

How do we pretrain a 
network? 

Objective: forward transfer

• what is self-supervised 
learning

• self-supervised methods in 
computer vision 



Motivations

• we want to learn discriminative 
features for a classification 
problem but we don’t have 
labels

• we want features that are 
transferable to many 
downstream tasks 



Definition

• Self-supervised learning (SSL) is predictive learning. Given a 
(large) unlabeled dataset, the system is trained on a task where 
the labels are self-generated.

• pretext task: the self-supervised task that defines a supervised 
loss given the unsupervised data.

• evaluation: we have a set of downstream tasks. We finetune 
the pretrained model on each task separately and evaluate the 
performance.
• Downstream task: problems that we want to solve after pretraining

• KEEP IN MIND: we don’t care about the pretext task, it’s just a 
method to train the DNN representation.



Evaluation

• evaluation on downstream tasks

• finetuning on all layers

• linear probing: finetune only the final classifier



Example - BERT

• Example: BERT is a language model trained via self-supervised 
learning.
• objective: masked language modeling (MLM)

• input: 𝑥 is a sequence of tokens with some masked tokens

• output: 𝑦 is the original sequence, where the masked tokens are predicted from 
their surrounding context

• Why do we use the MLM objective?
• we have lots of data

• MLM does not require expensive labels

• MLM models transfer very well to downstream tasks in NLP



Methods

• augmentations: exploit the properties of the domain (vision), 
such as invariances to transformations, to learn robust 
representations

• contrastive learning: learn representations by comparing and 
contrasting pairwise images.

• encoding/autoregressive: learn to reconstruct the input or 
predict a missing part of the input.
• you have seen a lot of examples in ISPR and HLT, so we won’t cover 

them today

• keep in mind that they are part of the SSL family



Augmentations



Invariance to augmentations

• IDEA: if we apply small augmentations (rotations, white noise, 
translations, …) to an image, its class doesn’t change

• pretext task: given a batch of images resulting from different 
augmentations, predict whether they are the same image or not.

• The model must learn to
• extract salient features of the images to recognize them
• be invariant to augmentations 

image: Dosovitskiy, Alexey, et al. "Discriminative unsupervised feature learning with exemplar convolutional neural networks (2015)." arXiv preprint arXiv:1406.6909.



ExemplarCNN

• surrogate class: an instance (image) from the original dataset 
represent a surrogate class

• instances of the class: augmented version of the original instance. We 
create instances by repeatedly applying stochastic augmentations.

• augmentations: cropping, scaling, rotation, color, contrast
• pretext task: assign each augmented image to its corresponding 

surrogate class

image: Dosovitskiy, Alexey, et al. "Discriminative unsupervised feature learning with exemplar convolutional neural networks (2015)." arXiv preprint arXiv:1406.6909.



Learning from Image Patches

• pretext task: predict relative position 
of two random patches from the 
same image

• challenge: the task should be solvable 
but not too trivial
• if patches are too far, their relative 

position may be unpredictable
• if patches are neighbors, the model can 

track lines and edges to align the patches

• solution:
• extract patches from a grid (not too 

difficult)
• add noise and augmentations to break 

trivial solutions

Doersch, Carl, Abhinav Gupta, and Alexei A. Efros. "Unsupervised visual representation learning by context prediction." ICCV 2015.



Chromatic Aberrations

• Defining pretext tasks is hard

• The model must not be able to 
solve the problem using trivial
features

• Example: Chromatic Aberrations
• Color distortion along boundaries

due to poor lenses

• Chromatic aberrations make the 
patch task trivial to solve 



Learning from Image Patches

• randomly sample the central patch 
(cat eyes in the picture)

• randomly pick one neighbor from the 
3x3 grid centered around the first 
patch (8 choices)

• to make the task more difficult and 
encouraging learning nontrivial 
features
• add small gaps and jitters (see the 

image, the grid is not perfectly aligned)
• randomly upsample/downsample to 

introduce pixelation artifacts
• apply color transformations

Doersch, Carl, Abhinav Gupta, and Alexei A. Efros. "Unsupervised visual representation learning by context prediction." ICCV 2015.



Model Architecture

Doersch, Carl, Abhinav Gupta, and Alexei A. Efros. "Unsupervised visual representation learning by context prediction." ICCV 2015.



Contrastive Learning



Contrastive Learning

• Objective: learn a latent representation 
space that is semantically meaningful (for 
downstream tasks)

• Example: in a downstream classification 
problem, we would like the examples to be 
linearly separable

• IDEA: similar images are close to each 
other, diverse images are far

• contrastive learning: compare and 
contrast pairs of images during training to 
learn good representations 



Contrastive vs Supervised Learning

• softmax + crossentropy also pushes+contrast
• logits of the positive class are pushed up

• logits of the negative classes are pushed down

• this effect becomes problematic in imbalanced settings

• In contrastive learning we don’t need the labels



Contrastive Learning

• we need to compare and contrast

• positive pairs → bring them closer

• negative pairs → push them further

• Q1: How do we sample positive/negative pairs?

• Q2: Which loss do we use?



Representation Collapse

• Why do we need to push negative 
samples further?

• representation collapse: if we don’t 
there is a trivial solution: collapse 
everything to the same 
representation



Triplet Loss

F. Schroff et al. “FaceNet: A Unified Embedding for Face Recognition and Clustering.” CVPR 2015

minimize the distance between the anchor and positive and maximize the 
distance between the anchor and negative

• anchor: embedding representing the class/concept 

• positive: embedding of an image with the same label as the anchor 

• negative: embedding of an image from a different class 

• objective: pull anchor and positive closer, push anchor and negative 
further



Triplet Loss

minimize the distance between the anchor and positive and maximize the 
distance between the anchor and negative

• 𝑓(𝑥)embedding of image 𝑥

• < 𝑥, 𝑥+ , 𝑥− > anchor, positive, negative

• 𝜖 margin between positive and negative

F. Schroff et al. “FaceNet: A Unified Embedding for Face Recognition and Clustering.” CVPR 2015



Triplet Sampling

• problem: slow convergence due to instability

• triplet selection is crucial

• ideally, pick the most difficult examples

• hard positive argmax𝑥𝑖
𝑝 𝑓 𝑥𝑖

𝑎 − 𝑓 𝑥𝑖
𝑝

2

2
(further from anchor)

• hard negative argmin𝑥𝑖
𝑛 𝑓 𝑥𝑖

𝑎 − 𝑓 𝑥𝑖
𝑛

2

2
(closer to anchor)

• expensive to compute

• in practice, use large mini-batches



N-way Loss

• PROBLEM: triplet loss is slow to converge because it looks at a 
single <pos, neg> pair at each step

• SOLUTION: we can compare against more negative examples

• N -pair loss generalizes triplet loss by using N -1 negatives 

• reduces computational burden by using only N pairs of 
examples, instead of (N +1)×N

Sohn, Kihyuk “Improved Deep Metric Learning with Multi-Class N-Pair Loss Objective.” NIPS 2016



N-Way Loss

Sohn, Kihyuk “Improved Deep Metric Learning with Multi-Class N-Pair Loss Objective.” NIPS 2016



N-way loss (2)

ℒ 𝑥, 𝑥+, 𝑥𝑖 𝑖=1
𝑁−1 ; 𝑓 = log 1 + σ𝑖=1

𝑁−1 exp 𝑓⊤𝑓𝑖 − 𝑓⊤𝑓+

• 𝑥 anchor 

• 𝑥+ positive 

• 𝑥𝑖 𝑖=1
𝑁−1 negatives 

• efficiency: the same N example are reused for all the mini-
batch 
• only 𝑁 computations of the embeddings (expensive DNN forward 

pass) 

• 𝑁2 dot products

Sohn, Kihyuk “Improved Deep Metric Learning with Multi-Class N-Pair Loss Objective.” NIPS 2016



Negative Mining

• we want to find the hard samples 

METHOD: selection of negative samples for N-way loss

1. Evaluate Embedding Vectors: 
• choose randomly a large number of output classes C; 
• for each class, randomly pass a few (one or two) examples to extract their 

embedding vectors.

2. Select Negative Classes: 
• select one class randomly from C classes from step 1. 
• Next, greedily add a new class that violates triplet constraint the most

w.r.t. the selected classes till we reach N classes. When a tie appears, we 
randomly pick one of tied classes

3. Finalize N -pair: draw two examples from each selected class from 
step 2.

Sohn, Kihyuk “Improved Deep Metric Learning with Multi-Class N-Pair Loss Objective.” NIPS 2016



Embedding Regularization

• the similarity 𝑓⊤𝑓+ depends on the direction and norm of the 
embeddings

• unconstrained optimization leads to unbounded norm growth
• it pushes embeddings further without changing their direction
• which we want to avoid

• normalization would solve the norm growth but it is too restrictive

• penalizing the embedding norm ||𝑓||2
2 works well in practice

• avoids unbounded growth by penalizing it
• it doesn’t constrain too much

• KEEP IN MIND: this is a common issue with embedding-based 
methods

Sohn, Kihyuk “Improved Deep Metric Learning with Multi-Class N-Pair Loss Objective.” NIPS 2016



SimCLR

SimCLR: a simple framework for contrastive learning of visual 
representations

• IDEA: maximizing agreement between differently augmented views of 
the same data example via a contrastive loss in the latent space

• (1) composition of data augmentations plays a critical role in defining 
effective predictive tasks 

• (2) introducing a learnable nonlinear transformation between the 
representation and the contrastive loss substantially improves the 
quality of the learned representations, and 

• (3) contrastive learning benefits from larger batch sizes and more 
training steps compared to supervised learning

T. Chen et al “A Simple Framework for Contrastive Learning of Visual Representations.” 2020



SimCLR - Components

• Augmentations: random crop, resize back 
to the original size, random color 
distortions, and random Gaussian blur. The 
combination of random crop and color 
distortion is crucial for performance.

• base encoder: 𝐡𝑖 = 𝑓 ෤𝐱𝑖 , such as a ResNet
without the linear classifier

• projection head: contrastive loss is not 
applied directly to the embeddings but to a 
projected space. 1-layer MLP projection 
𝐳𝑖 = 𝑔 𝐡𝑖 = 𝑊(2)ReLU 𝑊(1)𝐡𝑖

T. Chen et al “A Simple Framework for Contrastive Learning of Visual Representations.” 2020



NT-Xent Loss

• contrastive loss: given N samples, apply augmentations (get 
2N samples), loss is a softmax on similarity scores

• NT-Xent: normalized temperature-scaled cross entropy loss

• ℓ𝑖,𝑗 = −log
exp sim 𝐳𝑖,𝐳𝑗 /𝜏

σ𝑘=1
2𝑁 𝟙[𝑘≠𝑖]exp sim 𝐳𝑖,𝐳𝑘 /𝜏

• cosine similarity sim(𝐮, 𝐯) = 𝐮⊤𝐯/∥ 𝐮 ∥∥ 𝐯 ∥

• 𝜏 softmax temperature

• doesn’t use negative mining

T. Chen et al “A Simple Framework for Contrastive Learning of Visual Representations.” 2020



Algorithm

T. Chen et al “A Simple Framework for Contrastive Learning of Visual Representations.” 2020



Batch Size

Contrastive Learning needs large batch sizes

T. Chen et al “A Simple Framework for Contrastive Learning of Visual Representations.” 2020



Performance

SSL performance is close to Supervised Performance

T. Chen et al “A Simple Framework for Contrastive Learning of Visual Representations.” 2020



BYOL - Bootstrap Your Own Latent

• IDEA: use a target network to provide target for the SSL model

• BYOL: bootstraps the outputs of a network to serve as targets 
for an enhanced representation

• no need for negative samples

J. Grill “Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning.” 2020



BYOL - Components

• two DNN, same architecture: online (𝜃) and target (𝜉) networks

• three modules: encoder, projector, predictor

• target network update with EMA: 𝜉 ← 𝜏𝜉 + (1 − 𝜏)𝜃, 𝜏 decay 
rate

J. Grill “Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning.” 2020



BYOL - Inputs

• two distributions of augmentations 𝒯 and 𝒯′ for the two 
networks

• two augmented views as input to the two networks
• 𝑣 ≜ 𝑡(𝑥) for the online net 𝑡 ∼ 𝒯
• 𝑣′ ≜ 𝑡′(𝑥) for the target net 𝑡′ ∼ 𝒯′

• outputs:
• target net output 𝑦𝜉

′ ≜ 𝑓𝜉 𝑣′

• target projection 𝑧𝜉
′ ≜ 𝑔𝜉 𝑦′

• online net output 𝑞𝜃 𝑧𝜃
• online net projection 𝑞𝜃 𝑧𝜃

J. Grill “Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning.” 2020



BYOL - Loss

• mean squared error between the normalized 
predictions and target projections

• loss: ℒ𝜃,𝜉 ≜ 𝑞𝜃 𝑧𝜃 − 𝑧𝜉
′

2

2
= 2 − 2 ⋅

𝑞𝜃 𝑧𝜃 ,𝑧𝜉
′

𝑞𝜃 𝑧𝜃 2⋅ 𝑧𝜉
′

2

• 𝑧 normalized vectors

• ℒ𝜃,𝜉
BYOL = ℒ𝜃,𝜉 + ෥ℒ𝜃,𝜉
• ෥ℒ is the same as ℒ with 𝑣

and 𝑣’ switched

J. Grill “Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning.” 2020



BYOL - Backpropagation

• does not backpropagate through the target network (which is 
updated with the EMA)

• sg=stop-gradient, truncates the backprop

• 𝜃 ← optimizer 𝜃, 𝛻𝜃ℒ𝜃,𝜉
BYOL, 𝜂

• 𝜉 ← 𝜏𝜉 + (1 − 𝜏)𝜃

J. Grill “Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning.” 2020



BYOL - Intuition

• the target network provides targets to the online network

• this works even if we use a randomly initialized network as 
target net
• the random net gets 1.4% accuracy on ImageNet (linear evaluation)

• the online net trained to predict the random target net outputs reaches 
18.8%

• much lower than BYOL but it still works

• we just need to provide better targets than those provided by the 
random net

J. Grill “Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning.” 2020



BYOL - Results

Linear probing on 
ImageNet is close 
to supervised 
training

J. Grill “Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning.” 2020



Some Implementation Details

• Hyperparemeters:
• many methods require large batch sizes and more iterations

• in general, don’t expect hyperparameters optimized for the supervised 
setting to transfer to the SSL setting

• IMPLEMENTATION DETAIL: augmentations are expensive
• they are often done on CPU. CPU←>GPU communication may become 

the bottleneck

• heavy augmentations may be slow. The GPU has to wait, wasting GPU 
cycles.

• several libraries are designed to optimized the preprocessing pipeline



Recap - Contrastive Learning

• IDEA: pull positive closer, push negatives further

• Triplet loss: select one anchor, one positive and one negative. 
Mine for hard negatives

• N-way loss: select N samples and do all the pairwise 
comparisons

• SimCLR: augmentations + contrastive loss + linear projection

• BYOL: bootstraps the outputs of a network to serve as targets 
for an enhanced representation



Take-Home Messages

• SSL methods learn robust representation without any 
supervision

• Augmentations are a fundamental tool to learn robust 
representations

• you can learn robust representations using contrastive learning 
(positives gets closer, negatives are pushed further)

• in vision, supervised models are still SotA, unlike NLP, but the 
gap is closing



References

• papers in the footnotes

• good blogpost with an overview of many more methods: 
https://lilianweng.github.io/posts/2019-11-10-self-supervised/



Next Lecture

• Definition of Meta-Learning

• Few-Shot Learning

• Deep Metric Learning
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