
Antonio Carta

antonio.carta@unipi.it

Knowledge Transfer and
Adaptation

Self-Supervised Learning

Outline

How do we pretrain a
network?

Objective: forward transfer

• what is self-supervised
learning

• self-supervised methods in
computer vision

Motivations

• we want to learn discriminative
features for a classification
problem but we don’t have
labels

• we want features that are
transferable to many
downstream tasks

Definition

• Self-supervised learning (SSL) is predictive learning. Given a
(large) unlabeled dataset, the system is trained on a task where
the labels are self-generated.

• pretext task: the self-supervised task that defines a supervised
loss given the unsupervised data.

• evaluation: we have a set of downstream tasks. We finetune
the pretrained model on each task separately and evaluate the
performance.
• Downstream task: problems that we want to solve after pretraining

• KEEP IN MIND: we don’t care about the pretext task, it’s just a
method to train the DNN representation.

Evaluation

• evaluation on downstream tasks

• finetuning on all layers

• linear probing: finetune only the final classifier

Example - BERT

• Example: BERT is a language model trained via self-supervised
learning.
• objective: masked language modeling (MLM)

• input: 𝑥 is a sequence of tokens with some masked tokens

• output: 𝑦 is the original sequence, where the masked tokens are predicted from
their surrounding context

• Why do we use the MLM objective?
• we have lots of data

• MLM does not require expensive labels

• MLM models transfer very well to downstream tasks in NLP

Methods

• augmentations: exploit the properties of the domain (vision),
such as invariances to transformations, to learn robust
representations

• contrastive learning: learn representations by comparing and
contrasting pairwise images.

• encoding/autoregressive: learn to reconstruct the input or
predict a missing part of the input.
• you have seen a lot of examples in ISPR and HLT, so we won’t cover

them today

• keep in mind that they are part of the SSL family

Augmentations

Invariance to augmentations

• IDEA: if we apply small augmentations (rotations, white noise,
translations, …) to an image, its class doesn’t change

• pretext task: given a batch of images resulting from different
augmentations, predict whether they are the same image or not.

• The model must learn to
• extract salient features of the images to recognize them
• be invariant to augmentations

image: Dosovitskiy, Alexey, et al. "Discriminative unsupervised feature learning with exemplar convolutional neural networks (2015)." arXiv preprint arXiv:1406.6909.

ExemplarCNN

• surrogate class: an instance (image) from the original dataset
represent a surrogate class

• instances of the class: augmented version of the original instance. We
create instances by repeatedly applying stochastic augmentations.

• augmentations: cropping, scaling, rotation, color, contrast
• pretext task: assign each augmented image to its corresponding

surrogate class

image: Dosovitskiy, Alexey, et al. "Discriminative unsupervised feature learning with exemplar convolutional neural networks (2015)." arXiv preprint arXiv:1406.6909.

Learning from Image Patches

• pretext task: predict relative position
of two random patches from the
same image

• challenge: the task should be solvable
but not too trivial
• if patches are too far, their relative

position may be unpredictable
• if patches are neighbors, the model can

track lines and edges to align the patches

• solution:
• extract patches from a grid (not too

difficult)
• add noise and augmentations to break

trivial solutions

Doersch, Carl, Abhinav Gupta, and Alexei A. Efros. "Unsupervised visual representation learning by context prediction." ICCV 2015.

Chromatic Aberrations

• Defining pretext tasks is hard

• The model must not be able to
solve the problem using trivial
features

• Example: Chromatic Aberrations
• Color distortion along boundaries

due to poor lenses

• Chromatic aberrations make the
patch task trivial to solve

Learning from Image Patches

• randomly sample the central patch
(cat eyes in the picture)

• randomly pick one neighbor from the
3x3 grid centered around the first
patch (8 choices)

• to make the task more difficult and
encouraging learning nontrivial
features
• add small gaps and jitters (see the

image, the grid is not perfectly aligned)
• randomly upsample/downsample to

introduce pixelation artifacts
• apply color transformations

Doersch, Carl, Abhinav Gupta, and Alexei A. Efros. "Unsupervised visual representation learning by context prediction." ICCV 2015.

Model Architecture

Doersch, Carl, Abhinav Gupta, and Alexei A. Efros. "Unsupervised visual representation learning by context prediction." ICCV 2015.

Contrastive Learning

Contrastive Learning

• Objective: learn a latent representation
space that is semantically meaningful (for
downstream tasks)

• Example: in a downstream classification
problem, we would like the examples to be
linearly separable

• IDEA: similar images are close to each
other, diverse images are far

• contrastive learning: compare and
contrast pairs of images during training to
learn good representations

Contrastive vs Supervised Learning

• softmax + crossentropy also pushes+contrast
• logits of the positive class are pushed up

• logits of the negative classes are pushed down

• this effect becomes problematic in imbalanced settings

• In contrastive learning we don’t need the labels

Contrastive Learning

• we need to compare and contrast

• positive pairs → bring them closer

• negative pairs → push them further

• Q1: How do we sample positive/negative pairs?

• Q2: Which loss do we use?

Representation Collapse

• Why do we need to push negative
samples further?

• representation collapse: if we don’t
there is a trivial solution: collapse
everything to the same
representation

Triplet Loss

F. Schroff et al. “FaceNet: A Unified Embedding for Face Recognition and Clustering.” CVPR 2015

minimize the distance between the anchor and positive and maximize the
distance between the anchor and negative

• anchor: embedding representing the class/concept

• positive: embedding of an image with the same label as the anchor

• negative: embedding of an image from a different class

• objective: pull anchor and positive closer, push anchor and negative
further

Triplet Loss

minimize the distance between the anchor and positive and maximize the
distance between the anchor and negative

• 𝑓(𝑥)embedding of image 𝑥

• < 𝑥, 𝑥+ , 𝑥− > anchor, positive, negative

• 𝜖 margin between positive and negative

F. Schroff et al. “FaceNet: A Unified Embedding for Face Recognition and Clustering.” CVPR 2015

Triplet Sampling

• problem: slow convergence due to instability

• triplet selection is crucial

• ideally, pick the most difficult examples

• hard positive argmax𝑥𝑖
𝑝 𝑓 𝑥𝑖

𝑎 − 𝑓 𝑥𝑖
𝑝

2

2
(further from anchor)

• hard negative argmin𝑥𝑖
𝑛 𝑓 𝑥𝑖

𝑎 − 𝑓 𝑥𝑖
𝑛

2

2
(closer to anchor)

• expensive to compute

• in practice, use large mini-batches

N-way Loss

• PROBLEM: triplet loss is slow to converge because it looks at a
single <pos, neg> pair at each step

• SOLUTION: we can compare against more negative examples

• N -pair loss generalizes triplet loss by using N -1 negatives

• reduces computational burden by using only N pairs of
examples, instead of (N +1)×N

Sohn, Kihyuk “Improved Deep Metric Learning with Multi-Class N-Pair Loss Objective.” NIPS 2016

N-Way Loss

Sohn, Kihyuk “Improved Deep Metric Learning with Multi-Class N-Pair Loss Objective.” NIPS 2016

N-way loss (2)

ℒ 𝑥, 𝑥+, 𝑥𝑖 𝑖=1
𝑁−1 ; 𝑓 = log 1 + σ𝑖=1

𝑁−1 exp 𝑓⊤𝑓𝑖 − 𝑓⊤𝑓+

• 𝑥 anchor

• 𝑥+ positive

• 𝑥𝑖 𝑖=1
𝑁−1 negatives

• efficiency: the same N example are reused for all the mini-
batch
• only 𝑁 computations of the embeddings (expensive DNN forward

pass)

• 𝑁2 dot products

Sohn, Kihyuk “Improved Deep Metric Learning with Multi-Class N-Pair Loss Objective.” NIPS 2016

Negative Mining

• we want to find the hard samples

METHOD: selection of negative samples for N-way loss

1. Evaluate Embedding Vectors:
• choose randomly a large number of output classes C;
• for each class, randomly pass a few (one or two) examples to extract their

embedding vectors.

2. Select Negative Classes:
• select one class randomly from C classes from step 1.
• Next, greedily add a new class that violates triplet constraint the most

w.r.t. the selected classes till we reach N classes. When a tie appears, we
randomly pick one of tied classes

3. Finalize N -pair: draw two examples from each selected class from
step 2.

Sohn, Kihyuk “Improved Deep Metric Learning with Multi-Class N-Pair Loss Objective.” NIPS 2016

Embedding Regularization

• the similarity 𝑓⊤𝑓+ depends on the direction and norm of the
embeddings

• unconstrained optimization leads to unbounded norm growth
• it pushes embeddings further without changing their direction
• which we want to avoid

• normalization would solve the norm growth but it is too restrictive

• penalizing the embedding norm ||𝑓||2
2 works well in practice

• avoids unbounded growth by penalizing it
• it doesn’t constrain too much

• KEEP IN MIND: this is a common issue with embedding-based
methods

Sohn, Kihyuk “Improved Deep Metric Learning with Multi-Class N-Pair Loss Objective.” NIPS 2016

SimCLR

SimCLR: a simple framework for contrastive learning of visual
representations

• IDEA: maximizing agreement between differently augmented views of
the same data example via a contrastive loss in the latent space

• (1) composition of data augmentations plays a critical role in defining
effective predictive tasks

• (2) introducing a learnable nonlinear transformation between the
representation and the contrastive loss substantially improves the
quality of the learned representations, and

• (3) contrastive learning benefits from larger batch sizes and more
training steps compared to supervised learning

T. Chen et al “A Simple Framework for Contrastive Learning of Visual Representations.” 2020

SimCLR - Components

• Augmentations: random crop, resize back
to the original size, random color
distortions, and random Gaussian blur. The
combination of random crop and color
distortion is crucial for performance.

• base encoder: 𝐡𝑖 = 𝑓 ෤𝐱𝑖 , such as a ResNet
without the linear classifier

• projection head: contrastive loss is not
applied directly to the embeddings but to a
projected space. 1-layer MLP projection
𝐳𝑖 = 𝑔 𝐡𝑖 = 𝑊(2)ReLU 𝑊(1)𝐡𝑖

T. Chen et al “A Simple Framework for Contrastive Learning of Visual Representations.” 2020

NT-Xent Loss

• contrastive loss: given N samples, apply augmentations (get
2N samples), loss is a softmax on similarity scores

• NT-Xent: normalized temperature-scaled cross entropy loss

• ℓ𝑖,𝑗 = −log
exp sim 𝐳𝑖,𝐳𝑗 /𝜏

σ𝑘=1
2𝑁 𝟙[𝑘≠𝑖]exp sim 𝐳𝑖,𝐳𝑘 /𝜏

• cosine similarity sim(𝐮, 𝐯) = 𝐮⊤𝐯/∥ 𝐮 ∥∥ 𝐯 ∥

• 𝜏 softmax temperature

• doesn’t use negative mining

T. Chen et al “A Simple Framework for Contrastive Learning of Visual Representations.” 2020

Algorithm

T. Chen et al “A Simple Framework for Contrastive Learning of Visual Representations.” 2020

Batch Size

Contrastive Learning needs large batch sizes

T. Chen et al “A Simple Framework for Contrastive Learning of Visual Representations.” 2020

Performance

SSL performance is close to Supervised Performance

T. Chen et al “A Simple Framework for Contrastive Learning of Visual Representations.” 2020

BYOL - Bootstrap Your Own Latent

• IDEA: use a target network to provide target for the SSL model

• BYOL: bootstraps the outputs of a network to serve as targets
for an enhanced representation

• no need for negative samples

J. Grill “Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning.” 2020

BYOL - Components

• two DNN, same architecture: online (𝜃) and target (𝜉) networks

• three modules: encoder, projector, predictor

• target network update with EMA: 𝜉 ← 𝜏𝜉 + (1 − 𝜏)𝜃, 𝜏 decay
rate

J. Grill “Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning.” 2020

BYOL - Inputs

• two distributions of augmentations 𝒯 and 𝒯′ for the two
networks

• two augmented views as input to the two networks
• 𝑣 ≜ 𝑡(𝑥) for the online net 𝑡 ∼ 𝒯
• 𝑣′ ≜ 𝑡′(𝑥) for the target net 𝑡′ ∼ 𝒯′

• outputs:
• target net output 𝑦𝜉

′ ≜ 𝑓𝜉 𝑣′

• target projection 𝑧𝜉
′ ≜ 𝑔𝜉 𝑦′

• online net output 𝑞𝜃 𝑧𝜃
• online net projection 𝑞𝜃 𝑧𝜃

J. Grill “Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning.” 2020

BYOL - Loss

• mean squared error between the normalized
predictions and target projections

• loss: ℒ𝜃,𝜉 ≜ 𝑞𝜃 𝑧𝜃 − 𝑧𝜉
′

2

2
= 2 − 2 ⋅

𝑞𝜃 𝑧𝜃 ,𝑧𝜉
′

𝑞𝜃 𝑧𝜃 2⋅ 𝑧𝜉
′

2

• 𝑧 normalized vectors

• ℒ𝜃,𝜉
BYOL = ℒ𝜃,𝜉 + ෥ℒ𝜃,𝜉
• ෥ℒ is the same as ℒ with 𝑣

and 𝑣’ switched

J. Grill “Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning.” 2020

BYOL - Backpropagation

• does not backpropagate through the target network (which is
updated with the EMA)

• sg=stop-gradient, truncates the backprop

• 𝜃 ← optimizer 𝜃, 𝛻𝜃ℒ𝜃,𝜉
BYOL, 𝜂

• 𝜉 ← 𝜏𝜉 + (1 − 𝜏)𝜃

J. Grill “Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning.” 2020

BYOL - Intuition

• the target network provides targets to the online network

• this works even if we use a randomly initialized network as
target net
• the random net gets 1.4% accuracy on ImageNet (linear evaluation)

• the online net trained to predict the random target net outputs reaches
18.8%

• much lower than BYOL but it still works

• we just need to provide better targets than those provided by the
random net

J. Grill “Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning.” 2020

BYOL - Results

Linear probing on
ImageNet is close
to supervised
training

J. Grill “Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning.” 2020

Some Implementation Details

• Hyperparemeters:
• many methods require large batch sizes and more iterations

• in general, don’t expect hyperparameters optimized for the supervised
setting to transfer to the SSL setting

• IMPLEMENTATION DETAIL: augmentations are expensive
• they are often done on CPU. CPU←>GPU communication may become

the bottleneck

• heavy augmentations may be slow. The GPU has to wait, wasting GPU
cycles.

• several libraries are designed to optimized the preprocessing pipeline

Recap - Contrastive Learning

• IDEA: pull positive closer, push negatives further

• Triplet loss: select one anchor, one positive and one negative.
Mine for hard negatives

• N-way loss: select N samples and do all the pairwise
comparisons

• SimCLR: augmentations + contrastive loss + linear projection

• BYOL: bootstraps the outputs of a network to serve as targets
for an enhanced representation

Take-Home Messages

• SSL methods learn robust representation without any
supervision

• Augmentations are a fundamental tool to learn robust
representations

• you can learn robust representations using contrastive learning
(positives gets closer, negatives are pushed further)

• in vision, supervised models are still SotA, unlike NLP, but the
gap is closing

References

• papers in the footnotes

• good blogpost with an overview of many more methods:
https://lilianweng.github.io/posts/2019-11-10-self-supervised/

Next Lecture

• Definition of Meta-Learning

• Few-Shot Learning

• Deep Metric Learning

	Slide 1: Knowledge Transfer and Adaptation
	Slide 2: Outline
	Slide 3: Motivations
	Slide 4: Definition
	Slide 5: Evaluation
	Slide 6: Example - BERT
	Slide 7: Methods
	Slide 8: Augmentations
	Slide 9: Invariance to augmentations
	Slide 10: ExemplarCNN
	Slide 11: Learning from Image Patches
	Slide 12: Chromatic Aberrations
	Slide 13: Learning from Image Patches
	Slide 14: Model Architecture
	Slide 15: Contrastive Learning
	Slide 16: Contrastive Learning
	Slide 17: Contrastive vs Supervised Learning
	Slide 18: Contrastive Learning
	Slide 19: Representation Collapse
	Slide 20: Triplet Loss
	Slide 21: Triplet Loss
	Slide 22: Triplet Sampling
	Slide 23: N-way Loss
	Slide 24: N-Way Loss
	Slide 25: N-way loss (2)
	Slide 26: Negative Mining
	Slide 27: Embedding Regularization
	Slide 28: SimCLR
	Slide 29: SimCLR - Components
	Slide 30: NT-Xent Loss
	Slide 31: Algorithm
	Slide 32: Batch Size
	Slide 33: Performance
	Slide 34: BYOL - Bootstrap Your Own Latent
	Slide 35: BYOL - Components
	Slide 36: BYOL - Inputs
	Slide 37: BYOL - Loss
	Slide 38: BYOL - Backpropagation
	Slide 39: BYOL - Intuition
	Slide 40: BYOL - Results
	Slide 41: Some Implementation Details
	Slide 42: Recap - Contrastive Learning
	Slide 43: Take-Home Messages
	Slide 44: References
	Slide 45: Next Lecture

