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- what is meta-learning
* types of meta-learning algorithms
» metric-based meta-learning for few-shot learning
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« MTL: Train multiple tasks jointly. Sharing parts of the network
encourage positive transfer

 Transfer learning: Initialize with a pretrained model. Pretraining
optimized for transfer, finetuning optimized for adaptation

« Meta-learning: Can we optimize explicitly the meta-objectives
(transfer, fast adaptation, hyperparameter search)?
* a.k.a. Learning to learn
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» classic learning:
« given a dataset (sampled from a task), optimize a model
* input: samples (e.g. a single image)
« output: trained model (e.g. a CNN that classifies images)

* meta-learning:
* given a set of datasets (tasks), optimize learning
algorithms/hyperparameters
« input: a dataset (e.g. images on different domains)
 output: a general algorithm that optimizes models on images. Examples:
 a good model’s initialization (optimized for our tasks)

« amodel able to learn from few examples (optimized for our tasks)
« an optimizer with better convergence (optimized for our tasks)




« We want to train a humanoid robot to walk (this is our family of tasks)

* arobot has been trained to walk in a lab in different scenario (our
meta-train set)

« Now we deploy the robot in the real world (meta-test set)
« different environments, sim2real drift
« we have to train the robot again

- We know that we have to train the robot again, but can we reuse the
previous knowledge?
« |deal solution: the robot takes a few steps, stumbles a couple of times, and
then it is adapted to the new environment
« We can always move the robot to a new environment and let it learn to
walk again quickly and efficiently
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An example of 4-shot 2-class image classification.

Training Testing
B T e e i N By y Do you see the difference with

“standard” learning? Where is the

“meta” part?
Test dataset: “dog-otter”

~gwl

Bk @@‘ <§V® ﬁ In the meta-test phase, we have to train

--------------------------------------------------------------- the model on the meta-test tasks

image source: lilianweng.io 6



Sampling Few-Shot Episodes

Meta-Train and Meta-Test will sample from a disjoint set of classes

Algorithm 4 Random sampling of episodes for a Ne-way Ng-shot sce-
nario. N samples 1n the training set, K classes, No query samples per class.
RandomSample(S, N) uniformly samples without replacement N elements
from S. Training set D = {(X1,y1),-.., (Xn,YN)}. D denotes the subset
of D containing all elements (x;, y;) such that y; = k.

1: procedure SAMPLEFEWSHOTEPISODE(D)

2: V <« RandomSample ({1,...,K},N¢) > Select class indices
3 S.0 «— {}L{}

4: for kin{l....,Nc}do

5

Sk < RandomSample (Dy, . Ng) > Select support examples
6: Qr « RandomSample (Dy, \Sk.Np) v Select query examples
7: S« SuUS,
8: Q «— QU

9: return V., S, Q0
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tasks and meta-tasks

- task:< pi(X), Di (Y|X), Li >
 During training we have a dataset
* D ={<xy>~pi(xy)}
* meta-task: a distribution of tasks
+ a loss function
* Ty ooy T ~ p(@), T ~ p(T)

 During training we have a set of
datasets, each one sampled from a
different task in T

*{Di ~Ti, Ti~p(T)}
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learner and meta-learner

learner: a machine learning model

« Example: a deep neural network

meta-learner: a parameterized learning algorithm
A learned optimizer

* A learned initialization

« A learned hyperparameter search (e.g. neural architecture
search)



Formal Definition e e

Objective: 6* = argmingEp.. ppy[Lg(D)]

« We sample datasets (not instances)

« We sample from P(D) (the datasets distribution defined by our
family of tasks)

« We minimize the parameters (8) over the entire family of tasks
« Assumption: tasks have some shared structure

10



Common Terminology

RVARTAW

* support set: task training set
D
l

* query set: task test dataset
ptest
l

Training Testing

* meta-training: training
process over the meta-train
tasks

* meta-test: learning a new
task given its support set

11
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The meta-learning MNIST
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» background set of 30 alphabets
« evaluation set of 20 alphabets

 Use the background set to
learn general knowledge

about characters
» Use the evaluation set for

50 alphabets split into

one-shot learning
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Probabilistic vs Optimization Perspective

 optimization view:
* given a set of meta-datasets/tasks
« find model/optimization algo. able to (quickly) learn new (related)
tasks
« probabilistic view:
* given meta-datasets/tasks

« extract prior knowledge about tasks and use it to infer posterior for
new tasks

13
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Meta-Learning Families
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 Model-Based
» Optimization-Based
* Metric-Based

14



Model-based Meta-Learning B0

Design model architecture for fast adaptation on new tasks. Fast
adaptation either comes from the network design or from the
meta-learner

« Memory-Augmented Neural Networks (MANN) such as the
Neural Turing Machines have been adapted for meta-learning

» Meta-network decompose the network into fast and slow
weights. Slow weights are updated via SGD while the fast
weights are adapted via a meta-learner.

15



Optimization - based W

Model optimization algorithm via a meta-learner that updates the
model's parameters

« LSTM meta-learner updates the weights with a recurrent
network (learned optimizer).
» Think about the LSTM cell update. It's very similar to the SGD update

« Model-Agnostic Meta-Learning (MAML) learns an initialization
that generalizes over task (fast adaptation and few-shot)

16



Metric - based

Metric Learning: learns a metric over the input space

« Intuitively: a KNN where the distance function is learned via a deep
neural nétwork

 IDEA: learn the metric during the meta-train, use it during meta-test
« Classification using a distance metric: Py(y | x,5)
= D(xyypes ko (X X))y
Methods:
» Siamese Networks
» Matching Networks
* Relation Network

 Prototypical Networks

17
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Few-Shot Learning

few-shot classification: learning from very small datasets
Meta-Training Loss for Few-Shot Meta-Learning:

0 = argmaxgE; [ESLC@,BLC@ [Z(x,y)EBL Py (x,y, SL)”

* L subset of labels

« SL support set (data used for training)

« BL query set (data used for testing during meta-training)
* P, classification model (notice the dependency on S%)

. Durli(ng meta-test we receive a new support set for training on the new
tas

def. from https://lilianweng.github.io/posts/2018-11-30-meta-learning/ 18



Extreme Settings - One-shot and Zero-shot

RVARTAW

» one-shot: one example per class

 “Object Classification from a Single Example Utilizing Class relevance
Metrics”, M. Fink, NeurlPS 2004

« “One-shot Learning of Object Categories”, Fei-Fei et al, TPAMI 2006

« zero-shot: zero examples per class

 “Learning To Detect Unseen Object Classes by Between-Class Attribute
Transfer”, Lampert et al, CVPR 2009

Question: how can you even solve zero-shot learning?

19



An example of 4-shot 2-class image classification.

Training Testing

R wl
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Non-Parametric Models

Example kNN |S a non'parametrlc mOdel 3-Class classification (k = 15, weights = 'uniform’)
* no parameters o versicoor
« train: store dataset

o
o

@ virginica

bl
w
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« inference: output an average of the k closest _ «o; ‘o 0
distances § .. 0 .-';":,
» A good choice for few-shot learning and low- £, g 58 o gg e
data regimes in general. The model is simple % 0 l& :
and works well if we have a good distance > o &
metric. 2.0 °
Objective: 15
« Meta-Train: learn a distance metric Lo T - ’ .
« Meta-Test; learn a non-parametric model sepatlenath fem)

using the distance metric

image source: scikit-learn documentation 21



|2 distance in pixel space is very poor

« doesn’t consider invariances (rotations, translations)

 not semantic (background, object recognition)

« Curse of dimensionality (especially bad for few-shot settings)
INTUITION: we have to learn a metric. This is a meta-learning problem!
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Metric-based - the importance of embeddings

» we can learn embeddings to map instances in space

« embedding: map instances in a high dimensional space
» encode relationships between instances
« semantic relationships encoded as distances in embedding space

* objective: discriminate classes by computing distances in the
embedding space
« Example: “Activation Atlas”, Carter et al, Distill 2019

23




Example - Embeddings in NLP
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« given the meta-training data (set of datasets)
» meta-train: learn a good metric space
» meta-test: use the learned metric space to classify images

25



Deep Metric Learning e e

* The distance function is computed via a DNN
* The DNN computes embeddings
* Distances in the embeddings space are semantic

« Distances in the embeddings space are easy to compute (e.g.
cosine similarity)

Embed with DNN -> nearest neighbors classification

26



Siamese Networks

RVARTAW

» Two DNN with weight
sharing compute
embeddings

* Input: a pair of images, one
for each network
 Output: whether the images

are from the same class or
not (binary classification)

\d

S f‘::;.o

* | " probability
o of input 1 & 2 are
in the same class

CNN

embed 2

image source: https://lilianweng.github.io/posts/2018-11-30-meta-learning/
Paper: Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. “Siamese Neural Networks for One-Shot Image Recognition,”

27
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Siamese Networks — Meta-Train and Meta-Test

RVARTAW

* Meta-train: the siamese
network is trained to predict
whether two input images
are from the same class

* Meta-test: the siamese

:AO

network processes all the e {1
image pairs between a test - Tey sieai
image and every image in it

the support set

» final prediction is the class of
the support image with the
highest probability

embed 2

image source: https://lilianweng.github.io/posts/2018-11-30-meta-learning/
Paper: Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. “Siamese Neural Networks for One-Shot Image Recognition,”

28
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An example of 4-shot 2-class image classification.

Training Testing

R wl
éb'kesé@‘%ﬁ Q
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Siamese Networks — Meta-Train

 Siamese network fy (a CNN) learns to encode two images into
embeddings

- L1-distance between two embeddings |f5 (x;) — fo(x;)|
* You can use any differentiable distance function

» The distance is converted to a probability p by a linear feedforward
layer and sigmoid.

« probability of whether two images are drawn from the same class.

* p(x:%5) = a(W|fa(x) — fo(x;)])
» Cross-entropy loss between pair of images
* L(B) = Z(xi,xi,yi,yj)EB 1Yi=Yj logp (Xi’ X]) + (1 B 1Yi=y]') log (1 B p(xi’ X]))
* Images in the training batch B can be augmented with distortion.

image source: https://lilianweng.github.io/posts/2018-11-30-meta-learning/
Paper: Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. “Siamese Neural Networks for One-Shot Image Recognition,”

30
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Siamese Networks — Meta-Test

RVARTAW

 Meta-test:

* Given a support set S and a test
image x the final predicted class is ?

cs(x) =c (arg max P (X, xi))

@99

input 1 e
=5 -

. . 7 @
* ¢(x) is the class label of an image 1%
and ¢(.) is the predicted label. s
image source: https://lilianweng.github.io/posts/2018-11-30-meta-learning/ 31

Paper: Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. “Siamese Neural Networks for One-Shot Image Recognition,”


https://lilianweng.github.io/posts/2018-11-30-meta-learning/
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Siamese Networks — Assumptions and Limitations

 Learned embeddings generalize to unknown classes

« During meta-test we receive new tasks but we don't update the
siamese network (the distance metric)

* Different meta-train and meta-test conditions
« During meta-train binary classification
 During meta-test n-way classification (all samples in the support set)

32



Matching Networks

SIS

* PROBLEM: We want the same

meta-train and meta-test
conditions

« SOLUTION: do k-way
classification during meta-train

COMPONENTS:
« f embeds test sample

°g embedS SUppOI't set (le the Figure 1: Matching Networks architecture
entire dataset)

Vinyals, Oriol, Charles Blundell, and Timothy Lillicrap. “Matching Networks for One Shot Learning.”



Matching Networks — Attention

&
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« f embeds test sample

« g embeds support set (i.e. the
entire dataset)

* Distance: Cosine similarity

« Compute attention over all the
samples in the support set
ca(x.x;) = exp(cossim(f(x),g(xy)).
o Z;-;l exp(cossim(f(x),g(xi)).

Figure 1: Matching Networks architecture

Vinyals, Oriol, Charles Blundell, and Timothy Lillicrap. “Matching Networks for One Shot Learning.”



Matching Networks — Output

« attention a(x, x;)

 Output:

« Weighted sum of the support set
classes

 Attention weights
c cs(®) = P(y1xS) =35, axxpy;
« S ={(xp )Yy

Figure 1: Matching Networks architecture

Vinyals, Oriol, Charles Blundell, and Timothy Lillicrap. “Matching Networks for One Shot Learning.” 35
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Matching Networks — Embedding Network

* How do we compute the
embeddings?

- simple embedding: f takes a
single data sample as input.
* Itis possibletoset f =g

* full context embeddings:

consider the entire support set

together to compute context
embeddings:

« Bidirectional LSTM: gy (x;,S5)

Figure 1: Matching Networks architecture

Vinyals, Oriol, Charles Blundell, and Timothy Lillicrap. “Matching Networks for One Shot Learning.”



Matching Networks — Meta-Train and Meta-Test

RVARTAW

« meta-train: train f and g on k-

way classification on the meta-
train sets

» meta-test. embed support set, k-

way classification on unseen
data x

Figure 1: Matching Networks architecture

Vinyals, Oriol, Charles Blundell, and Timothy Lillicrap. “Matching Networks for One Shot Learning.”



- ; S-way Acc 20-way Acc
Model Matching F'n  Fine Tune l-shot 5-shot l-shot 5-shot
PIXELS Cosine N 417% 632% 26.7% 42.6%
BASELINE CLASSIFIER Cosine N 80.0% 95.0% 69.5% 89.1%
BASELINE CLASSIFIER Cosine Y 82.3% 98.4%  70.6% 92.0%
BASELINE CLASSIFIER Softmax Y 86.0% 97.6% 729% 92.3%
MANN (No Conv) [21] Cosine N 82.8% 94.9% — —
CONVOLUTIONAL SIAMESE NET [11] Cosine N 96.7% 98.4% 88.0% 96.5%
CONVOLUTIONAL SIAMESE NET [11] Cosine Y 973% 984% 88.1% 97.0%
MATCHING NETS (OURS) Cosine N 98.1% 98.9% 93.8% 98.5%
MATCHING NETS (OURS) Cosine Y 97.9% 98.7%  93.5% 98.7%

Table 1: Results on the Omniglot dataset.

Vinyals, Oriol, Charles Blundell, and Timothy Lillicrap. “Matching Networks for One Shot Learning.”




Matching Networks — Advantages

RVARTAW

* No difference in the task

between meta-train and meta-
test

 Can exploit relationship in the

entire support set when using full
context embeddings

Figure 1: Matching Networks architecture

Vinyals, Oriol, Charles Blundell, and Timothy Lillicrap. “Matching Networks for One Shot Learning.”
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Prototypical Networks

Prototypical networks compute embeddings with an embedding
function fy and compute prototypes for each class using the
support set.

(a) Few-shot (b) Zero-shot

J. Snell, et al. 2017. “Prototypical Networks for Few-Shot Learning.” 40
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Prototypical Networks

« fg encodes the input in the
embeddings space

* A prototype is computed as the
average embedding in the support
set

1
* Ve = |S_C|Z(Xi»yi)esc f9 (Xi)

(b) Zero-shot

 Output:
- d,, is a differentiable distance (MSE)

ex fo(x),ve))
P(y = c | x) — SthIﬂaJ((—dtp (fﬂ(x)ﬂvﬁ‘-)) - . ;;Ecp( Efj(( fo(x),vy))

J. Snell, et al. 2017. “Prototypical Networks for Few-Shot Learning.” 41
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Prototypical Networks

* Meta-Train: train f, on the meta-
train tasks optimizing the cross-
entropy

» Meta-Test. compute prototypes
using the support set and compute
P(y = c|x) for the test samples

J. Snell, et al. 2017. “Prototypical Networks for Few-Shot Learning.” 42



Algorithm 1 Training episode loss computation for prototypical networks. N is the number of
examples in the training set, K is the number of classes in the training set, No < K is the number
of classes per episode, Ng is the number of support examples per class, Ng is the number of query
examples per class. RANDOMSAMPLE(S, N) denotes a set of N elements chosen uniformly at
random from set S, without replacement.

Input: Training set D = {(x1,91),---,(Xn,yn)}, where each y; € {1,..., K'}. Dy denotes the
subset of D containing all elements (x;, y;) such that y; = k.
Output: The loss .J for a randomly generated training episode.

V < RANDOMSAMPLE({1,..., K}, N¢) > Select class indices for episode
for kin {1,...,N¢} do
Sk < RANDOMSAMPLE(Dy, , Ng) > Select support examples
Qr < RANDOMSAMPLE(Dy, \ Sk, Ng) > Select query examples
1
Cp N Z Jo(xi) > Compute prototype from support examples
" (xi,y:i)ESk
end for
J <0 > Initialize loss

for kin{1,...,N¢c} do
for (x,y) in Q. do
1

J
J— J+ NoNg

[d(f¢(x), ck)) + log Zcxp(—d(ftp(x)} ck)) > Update loss
Y

end for
end for

43




Table 1: Few-shot classification accuracies on Omniglot.

5-way Acc. 20-way Acc.
Model Dist. Fine Tune 1-shot  5-shot I-shot  5-shot
MATCHING NETWORKS Cosine N 98.1% 989% 93.8%  98.5%
MATCHING NETWORKS Cosine Y 079%  98.7%  93.5%  98.7%
NEURAL STATISTICIAN [6] - N 98.1% 99.5% 93.2% 98.1%
PROTOTYPICAL NETWORKS (OURS) Eucld. N 98.8% 99.7% 96.0% 98.9%

J. Snell, et al. 2017. “Prototypical Networks for Few-Shot Learning.”

44




Table 2: Few-shot classification accuracies on minilmageNet. All accuracy results are averaged over
600 test episodes and are reported with 95% confidence intervals. *Results reported by [22].

5-way Acc.
Model Dist. Fine Tune 1-shot 5-shot
BASELINE NEAREST NEIGHBORS” Cosine 28.86 + 0.54% 49.79 4+ 0.79%
MATCHING NETWORKS [29]* Cosine 43404+ 0.78% 51.09+0.71%

4356 & 0.84%  55.31 £ 0.73%
4344 4+ 0.77%  60.60 £+ 0.71%
4942 + 0.78%  68.20 + 0.66%

MATCHING NETWORKS FCE [29]* Cosine
META-LEARNER LSTM [22]* -
PROTOTYPICAL NETWORKS (OURS) Euchd.

222272

J. Snell, et al. 2017. “Prototypical Networks for Few-Shot Learning.” 45
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Prototypical Networks — Zero-Shot

» Zero-shot: in the zero-shot setting, no
labeled samples are given, Instead,
we have some meta-data for each

class

* i.e. the class prototype is given Ll Ui
» We still need to train the embeeding
function to match the given prototypes Table 3: Zero-shot classification accuracies on CUB-200.
« Example: Caltech-UCSD Birds (CUB) — A
by . : ge 50-way Acc.
11,788 images of 200 bird species Model Features 0-shot
« Meta-data: 312D attribute vector ALE [i Fish 26.9%
provided with the CUB dataset encoding SJE [5]] AlexNet 40.3%
various characteristics of SAMPLE CLUSTERING [17]  AlexNet 44.3%
the bird species such as their color, SJE [2] GoogLeNet  50.1%
shape, and feather patterns. DS-SJE [23] GoogLeNet  50.4%
N . ; ; ; DA-SJE [23] GoogleNet 50.9%
Model: pretrained CNN + linear mapping PROTO. NaTS (OURS) GgﬁiLgNzt 6%

J. Snell, et al. 2017. “Prototypical Networks for Few-Shot Learning.” 46



Recap — Deep Metric Learning

« Deep Metric Learning: learn distance metric (meta-train) + distance-
based classifier

» Siamese Networks: embeddings + pairwise comparisons
 Difference between meta-train and meta-test hurts performance

« Matching Networks: embeddings + k-way attention over support
« Same meta-train and meta-test conditions
* |t can exploit support set relationships

 Prototype Networks: compute class prototypes for classification
« Simple and effective
* It can be used for zero-shot learning

47
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Take-Home Messages W

» Meta-learning is learning-to-learning, and it allows to optimize
for meta-objectives such as forward transfer and fast
adaptation

* Few-Shot Learning is a very practical problem that benefits
from fast adaptation + transfer

» Deep Metric Learning is a simple and effective method to learn
in few-shot scenarios

48



References .

 Papers in the footnotes

 Stanford CS330 - Multi-Task and Meta-Learning has some
lectures on meta-learning and few-shot learning

* Lilianweng blogpost with many more methods:
https://lilianweng.github.io/posts/2018-11-30-meta-learning/
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Next Lecture .

* Intro to Continual Learning
« The problem of Catastrophic Forgetting
* Notebook

50
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