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Outline

• Optimization-based meta-learning

• Model-Agnostic Meta Learner (MAML)

• Implementation, Tips and tricks for MAML

• Some extensions in the literature
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Motivation – Learning to Learn

• MTL: Train multiple tasks jointly. Sharing parts of the network 
encourage positive transfer 
• 𝒜𝑀𝑇𝐿: 𝒟1

train , … , 𝒟𝑁
train → 𝜃𝑀𝑇𝐿

• Meta-learning: Can we optimize the learning algorithm to solve 
novel tasks (transfer, low-shot and fast adaptation, 
hyperparameter search)? a.k.a. Learning to learn

• 𝒜𝑀𝐸𝑇𝐴: 𝒟1, … , 𝒟𝑁 → 𝒜∗, 𝒜∗: 𝒟𝑁+1
train → 𝜃𝑁+1
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Example: Few-Shot Image Classification

4image source: lilianweng.io

An example of 4-shot 2-class image classification.

In the meta-test phase, we have to train 
the model on the meta-test tasks
(unseen classes!)



Common Terminology

• support set: task training set 
𝒟𝑖

tr

• query set: task test dataset 

𝒟𝑖
test

• meta-training: training 
process over the meta-train 
tasks

• meta-test: learning a new 
task given its support set
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learner and meta-learner

Optimization-based methods meta-learn the base algorithm 
(𝒜∗) hyperparameters

 𝒜𝑀𝐸𝑇𝐴: 𝒟1, … , 𝒟𝑁 → 𝒜∗, 𝒜∗: 𝒟𝑁+1
train → 𝜃𝑁+1

learner: a differentiable model such as a deep CNN

meta-learner: a parameterized learning algorithm

• A learned optimizer

• Learned hyperparameters (learning rate, schedule)

• A learned initialization (our focus today)
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Model-Agnostic Meta 
Learning
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Meta-Learning a Model’s Initialization

• Optimization problem:

• 𝜃∗ = 𝑚𝑖𝑛
𝜃

𝔼𝑝(𝒯) ℒ𝒯 𝑈𝑘 𝜃, 𝐷𝜏
𝑆𝑢𝑝𝑝

, 𝐷𝜏
𝑞𝑢𝑒𝑟𝑦

• 𝑝(𝒯): distribution over tasks
• Few-shot: 𝑈𝒯 trains on the (small) support set

• 𝜃 model’s initialization

• 𝑈𝑘  base learning algorithms
• Fast adaptation: usually 𝑈𝑘 is a small number of SGD steps
• We use k to denote the number of SGD steps

• 𝜃∗: optimal initialization for the family of tasks 𝑝(𝒯) 
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Meta-Learning a Model’s Initialization

• Optimization problem:

• 𝜃∗ = 𝑚𝑖𝑛
𝜃

𝔼𝑝(𝒯) ℒ𝒯 𝑈𝑘 𝜃, 𝐷𝜏
𝑆𝑢𝑝𝑝

, 𝐷𝜏
𝑞𝑢𝑒𝑟𝑦

It’s a bilevel optimization problem:

• Inner loop (𝑈𝑘): optimize on a new task starting from 𝜃 with 
algorithm 𝑈𝑘

• Outer loop: optimize initialization 𝜃 to improve generalization 
over the whole family of tasks
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Inner and Outer Objective

• 𝜃∗ = 𝑚𝑖𝑛
𝜃

𝔼𝑝(𝒯) ℒ𝒯 𝑈𝑘 𝜃, 𝐷𝜏
𝑆𝑢𝑝𝑝

, 𝐷𝜏
𝑞𝑢𝑒𝑟𝑦

Equivalent formulation with separate inner/outer objectives:

• 𝜃∗ = 𝑚𝑖𝑛
𝜃

𝔼𝑝(𝒯) ℒ𝒯
෨𝜃, 𝐷𝜏

𝑞𝑢𝑒𝑟𝑦
(outer objective: evaluate on query set)

• where ෨𝜃 = 𝑈𝑘 𝜃, 𝐷𝜏
𝑆𝑢𝑝𝑝

(inner objective: train on support set)
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MTL vs Meta Learning Initialization

• How can we learn a solution that is better than the multi-task solution 
𝜃𝑀𝑇𝐿 = 𝑚𝑖𝑛

𝜃
σ𝒯 ℒ𝒯(𝜃, 𝐷𝒯)  ???

Motivating Example: Sine Regression

• Task: a sine wave. Each task has a different phase and amplitude

• Model predicts the output of the sine wave function

Question: What is the optimal MTL solution? What about the optimal 
meta-learning one?
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Sine Regression Results

12Figure from: Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." ICML 2017.

Answer: 
• the optimal MTL solution is the one that outputs 0 everywhere (minimum MSE 

loss for the average of tasks)
• the optimal meta-learned solution is the one that quickly adapts the model 

output to a different phase and amplitude.



Model-Agnostic Meta Learning

• Optimization problem: 𝜃∗ = 𝑚𝑖𝑛
𝜃

𝔼𝑝(𝒯) ℒ𝒯 𝑈𝒯(𝜃)

• NOTE: we remove the dependency on query/supp sets to 
simplify the notation, but they are still there

GOAL: we want to optimize 𝜃
• Meta-train:

• Inner loop: optimize solution for each task starting from 𝜃
• Outer loop: optimize 𝜃

• The optimizer 𝑈𝒯  needs to be differentiable (SGD methods are ok)

• Needs to backpropagate on 𝑈𝒯  (e.g. over multiple SGD steps)

• Meta-test: use 𝑈𝒯  and 𝜃∗ to learn a novel task
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MAML – Pseudocode
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The gradient backpropagates through 𝜃𝑖
′

This is the pseudo code for 𝑈𝒯  which is a single SGD step

Single-task
Solution
Found by 𝑈𝒯

Notice the different use of 
suppport and query sets



FO-MAML – Truncated Gradient

• FO-MAML (First Order 
MAML) is a popular 
approximation which 
computes the truncated 
gradient

• ∇𝜃ℒ𝒯𝑖
𝑓𝜃  is considered 

constant during the outer 
gradient computation 
(line 10)

15pseudocode: Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." ICML 2017.



PyTorch Functional API
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Functional API

• To implement MAML, we will need to backpropagate through 
the optimizer steps
• The optimizer needs to be differentiable

• We need a computational graph of optimizer computation

• We need the framework to be able to compute second-order 
derivatives

• torch.func is the pytorch functional API (needs torch >= 2.0)

• We will use pytorch but the API are similar across frameworks 
(e.g. JAX)

17https://pytorch.org/docs/stable/func.whirlwind_tour.html



Notebook

• See notebook `demo torch_func.ipynb` in the repository

• Also check the pytorch docs: torch.func Whirlwind Tour — 
PyTorch 2.2 documentation
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Stateful vs functional API

W = torch.randn(1, 2, requires_grad=True)

x = torch.randn(2, requires_grad=True)

# stateful API

W.grad = None # reset gradient (optimizer.zero_grad)

l = ((W ** 2)@x).sum()

l.backward()

print("stateful API: ", W.grad.tolist())

# Functional API

foo = lambda W: ((W ** 2)@x).sum()

gw = grad(foo)(W)

print("functional API: ", gw.tolist())
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Back to MAML…
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Batch Normalization

• Batch Normalization rescales the activations: 

• 𝑦 =
𝑥−E[𝑥]

Var[𝑥]+𝜖
∗ 𝛾 + 𝛽

• Training mode – statistics computed on the current mini-batch:

• 𝐸 𝑥(𝑘) = 𝐸𝐵 𝜇𝐵
(𝑘)

,  and Var 𝑥(𝑘) =
𝑚

𝑚−1
𝐸𝐵 𝜎𝐵

(𝑘) 2

• Statistics depend on the samples in each mini-batch
• In MAML, each mini-batch contains samples from a single task

• Inference mode – uses EMA of 𝜇, 𝜎 seen during training:

• 𝑦(𝑘) = 𝐵𝑁
𝛾(𝑘),𝛽(𝑘)
𝑖𝑛𝑓

𝑥(𝑘) = 𝛾(𝑘) 𝑥(𝑘)−𝐸 𝑥(𝑘)

Var 𝑥(𝑘) +𝜖

+ 𝛽(𝑘)

• In MAML (and in general in MTL), these statistics will be averaged across ALL THE TASKS, 
obtaining different values from the ones used during training (single task)!

• Batch Normalization is often problematic in multi-task/meta-learning settings due to its 
dependence on i.i.d. sampling of the data

• MAML implementations often disable the training mode
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Training Instability

The bilevel optimization of MAML can be 
unstable. Some tricks in the literature:

• More stable architectures to avoid 
exploding gradients (e.g. skip connections)

• Minimize a loss at every step (instead of 
using only the final model)

• Start with first-order approximation to 
speed up early training. Then, switch to full 
gradient

• Per-step and per-layer learning rates

• Cosine annealing to schedule outer 
learning rate

• Per-step batch normalization statistics

22source: Antoniou, Antreas, Harrison Edwards, and Amos Storkey. "How to train your MAML." arXiv preprint arXiv:1810.09502 (2018).



Partial Adaptation

• Two possible goals:
• Rapid Learning: condition the 

network for fast adaptation
• Feature Reuse: Learn features 

that generalize across task and 
get rapid learning as a 
consequence

• Sometimes, you don’t need to 
adapt the whole network

• Almost No Inner Loop (ANIL): 
adapts only the final layer in 
the inner loop

23Raghu, Aniruddh, et al. "Rapid learning or feature reuse? towards understanding the effectiveness of maml." arXiv preprint arXiv:1909.09157 (2019).



Extensions and Related Work

• Many works extend MAML by learning the learning rates and 
other hyperparameters

• It has also been applied in incremental learning settings

• Alternatives without second-order gradients have been 
proposed (REPTILE)
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Take-Home Messages

• Optimization-Based Meta-learning is a general framework that 
works in a large number of settings

• Elegant mathematical formulation that directly optimize the 
goal of fast adaptation

• Tricky to train and more expensive than normal SGD due to 
backprop through optimizer
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References

• MAML paper: Finn, Chelsea, Pieter Abbeel, and Sergey Levine. 
"Model-agnostic meta-learning for fast adaptation of deep 
networks." ICML 2017.

• Reference implementation in the repository
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Next Lecture

• Intro to Continual Learning

• The problem of Catastrophic Forgetting

• Notebook
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