Knowledge Transfer and
Adaptation

Optimization-Based Meta Learning

Antonio Carta

antonio.carta@unipi.it

 Optimization-based meta-learning

« Model-Agnostic Meta Learner (MAML)
 Implementation, Tips and tricks for MAML
« Some extensions in the literature

Motivation — Learning to Learn

« MTL: Train multiple tasks jointly. Sharing parts of the network
encourage positive transfer

. quTL: {D}raln ’ _",DIE]raln} N QMTL

* Meta-learning: Can we optimize the learning algorithm to solve
novel tasks (transfer, low-shot and fast adaptation,
hyperparameter search)? a.k.a. Learning to learn

o AMETA(D,, ..., Dy} > A, A DN — gN+1

Example: Few-Shot Image Classification

An example of 4-shot 2-class image classification.

Training

"""""""" Train dataset #1: “cat-hird” |

i bikes

image source: lilianweng.io 4

Testing

In the meta-test phase, we have to train
the model on the meta-test tasks
(unseen classes!)

Common Terminology

SILy N

 support set: task training set
D
l

* query set: task test dataset
plest
l

Training Testing

* meta-training: training
process over the meta-train
tasks

- meta-test: learning a new
task given its support set

learner and meta-learner

Optimization-based methods meta-learn the base algorithm
(A™) hyperparameters

AMETA (D, ..., Dy} = A", A DYAN — gN+1

learner: a differentiable model such as a deep CNN
meta-learner: a parameterized learning algorithm

A learned optimizer

* Learned hyperparameters (learning rate, schedule)
* A learned initialization (our focus today)

Model-Agnostic Meta
Learning

"SIy

Meta-Learning a Model's Initialization

» Optimization problem:

+0" = minEyr) | £7 (Ui (6,D777), D7)]

* p(T): distribution over tasks
« Few-shot: Uy trains on the (small) support set

* 0 model’s initialization

* U}, base learning algorithms
 Fast adaptation: usually U,, is a small number of SGD steps
« We use k to denote the number of SGD steps

* 8% optimal initialization for the family of tasks p(7")

Meta-Learning a Model's Initialization

« Optimization problem:
-0 = minEyr [£r (U (6,0577), D7)

It's a bilevel optimization problem:

* Inner loop (U,): optimize on a new task starting from 6 with
algorithm Uy,

« Quter loop: optimize initialization @ to improve generalization
over the whole family of tasks

Inner and Outer Objective

. g% = meinIEp(T) [LT (Uk (9, DTSuPP) ’ DTqueTY)]

Equivalent formulation with separate inner/outer objectives:

* 9" =minEpq) |£(6, D7*¢")] (outer objective: evaluate on query set)

« where 8 = U, (0, D2"PP) (inner objective: train on support set)
k T

10

SILy N

%

b

5
"SIy

MTL vs Meta Learning Initialization

« How can we learn a solution that is better than the multi-task solution
oM = min Y [£7(8,D7)] 777

Motivating Example: Sine Regression
» Task: a sine wave. Each task has a different phase and amplitude
» Model predicts the output of the sine wave function

Question: What is the optimal MTL solution? What about the optimal
meta-learning one?

11

Sine Regression Results

Answer:

« the optimal MTL solution is the one that outputs 0 everywhere (minimum MSE
loss for the average of tasks)

« the optimal meta-learned solution is the one that quickly adapts the model
output to a different phase and amplitude.

MAML, K=5 MAML, K=10 pretrained, K=5, step size=0.01 pretrained, K=10, step size=0.02

-+] I]]] -

pre-update -+ 1gradstep =-- 10 gradsteps — ground truth 4 & used for grad pre-update

1 érad si;ep .- 16 grad steps.
Figure 2. Few-shot adaptation for the simple regression task. Left: Note that MAML is able to estimate parts of the curve where there are
no datapoints, indicating that the model has learned about the periodic structure of sine waves. Right: Fine-tuning of a model pretrained
on the same distribution of tasks without MAML, with a tuned step size. Due to the often contradictory outputs on the pre-training tasks,
this model is unable to recover a suitable representation and fails to extrapolate from the small number of test-time samples.

12

"SIy

Model-Agnostic Meta Learning

- Optimization problem: 8* = meinIEp(T) [Lr(U7(6))]

* NOTE: we remove the dependency on query/supp sets to
simplify the notation, but they are still there

GOAL: we want to optimize 6

* Meta-train:
* Inner loop: optimize solution for each task starting from 6
 Quter loop: optimize 6
 The optimizer U; needs to be differentiable (SGD methods are ok)
 Needs to backpropagate on Uy (e.g. over multiple SGD steps)

« Meta-test: use Ur and 8" to learn a novel task

13

MAML - Pseudocode

This is the pseudo code for Uy which is a single SGD step

Algorithm 6 MAML Training episode. p(7) is a distribution over tasks. a,
are the inner and outer learning rates, respectively.

I: procedure MAMLTRAIN(P(T), @, B)
Single-task ~ 2: () «— randomly initialize
Solution 3: while not done do > outer loop
Found by Us 4 T~ p(T) > Sample batch of tasks
DT DI ~ T > sample support and query sets
6: for i tasks do > Inner optimization loop
7: 0\ U7 (0, D) > Inner gradient-based adaptation
8: 0« 0 — XJ{V.*; 2 pave Lj {U;, E)?ue) > Update initialization
Notice the different use of The gradient backpropagates through 6;

suppport and query sets

14

SILy N

FO-MAML - Truncated Gradient

« FO-MAML (First Order
MAML) is a popular
approximation which
computes the truncated
gradient

- VoL (fp) IS considered
constant during the outer
gradient computation
(line 10)

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: p(7): distribution over tasks
Require: «, 3: step size hyperparameters
I: randomly initialize &
2: while not done do

3:

4
5:
6.

7.

9:
10:

Sample batch of tasks 7; ~ p(T)

for all 7; do
Sample K datapoints D = {x@), y} from 7;
Evaluate Vo L7, (fo) using D and L; in Equation (2)
or (3)
Compute adapted parameters with gradient descent:
0; =0 —aVeLlr,(fe)
Sample datapoints D} = {x(j), yU)} from 7; for the
meta-update

end for

Update 0 < 0 — BV -1 1) £7:(fe:) using each D;

and L7; in Equation 2 or 3

11: end while

15

PyTorch Functional API

16

Functional API

* To implement MAML, we will need to backpropagate through
the optimizer steps
« The optimizer needs to be differentiable
« We need a computational graph of optimizer computation

« We need the framework to be able to compute second-order
derivatives

* torch.func is the pytorch functional APl (needs torch >=2.0)

« We will use pytorch but the API are similar across frameworks
(e.g. JAX)

https://pytorch.org/docs/stable/func.whirlwind_tour.html 17

Notebook

« See notebook "demo torch_func.ipynb™ in the repository

« Also check the pytorch docs: torch.func Whirlwind Tour —
PyTorch 2.2 documentation

18

https://pytorch.org/docs/stable/func.whirlwind_tour.html

Stateful vs functional API

W =

torch.randn(1, 2, requires_grad=True)

torch.randn(2, requires_grad=True)

W.grad = None

1 = ((W ** 2)@x).sum()

1.backward()

print("stateful API: ", W.grad.tolist())

foo = lambda W: ((W ** 2)@x).sum()
gw = grad(foo) (W)
print("functional API: ", gw.tolist())

19

IATZg

CEN

Back to MAML...

20

Batch Normalization

Batch Normalization rescales the activations:
x—E[x]

"V Napare VP
Training mode — statistics computed on the current mini-batch:
. 0] = (k) 0] _ _m)
E[x®™] = Eg [uB , and Var[x®] = ——Ep [(O’B)]
» Statistics depend on the samples in each mini-batch
* In MAML, each mini-batch contains samples from a single task

Inference mode — uses EMA of u, 0 seen during training:
, (B) g5 (F)
. y(&) — gpNinS (1)) = 00 X2-Ex®]
y¥) = BN x =y +f
y,p00 () Var[x(®]+e

« In MAML (and in general in MTL)H these statistics will be averaged across ALL THE TASKS,
obtaining different values from the ones used during training (Single task)!

Batch Normalization is often problematic in multi-task/meta-learning settings due to its
dependence on i.i.d. sampling of the data

MAML implementations often disable the training mode

21

Training Instability

The bilevel optimization of MAML can be
unstable. Some tricks in the literature:

More stable architectures to avoid 0o

exploding gradients (e.g. skip connections)

Minimize a loss at every step (instead of
using only the final model)

Start with first-order approximation to
speed up early training. Then, switch to full
gradient

Per-step and per-layer learning rates

Cosine annealing to schedule outer
learning rate

Per-step batch normalization statistics

0.8

o
-l

validation accuracy
[=]
o

]

=
]

=

o
w

Strided MAML vs Strided MAML++

V

— MAML++ seed_0
—— MAML++ seed 1
—— MAML++ seed 2
—— MAML seed O
—— MAML seed 1
~—— MAML seed_2

20 40 60 80 100
epoch

source: Antoniou, Antreas, Harrison Edwards, and Amos Storkey. "How to train your MAML." arXiv preprint arXiv:1810.09502 (2018). 22

Partial Adaptation

SILy N

» Two possible goals:
 Rapid Learning: condition the
network for fast adaptation

Rapid Learning
* Feature Reuse: Learn features

, Y
that generalize across task and
get rapid learning as a

; Task 1
('il Task 1 \?‘ &
! o
consequence \(N. 0

Feature Reuse

Tasgk 2
X Task 2 170 &
« Sometimes, you don't need to | \-_wsg Task 3 f’-“i 2
adapt the whole network Task 3 . o 5 1
* Almost No Inner Loop (ANIL): al -2 Hiner kiop
adapts only the final layer in

the inner loop

Raghu, Aniruddh, et al. "Rapid learning or feature reuse? towards understanding the effectiveness of maml." arXiv preprint arXiv:1909.09157 (2019).

23

Extensions and Related Work

* Many works extend MAML by learning the learning rates and
other hyperparameters

* It has also been applied in incremental learning settings

* Alternatives without second-order gradients have been
proposed (REPTILE)

24

Take-Home Messages

« Optimization-Based Meta-learning is a general framework that
works in a large number of settings

 Elegant mathematical formulation that directly optimize the
goal of fast adaptation

* Tricky to train and more expensive than normal SGD due to
backprop through optimizer

25

References

« MAML paper: Finn, Chelsea, Pieter Abbeel, and Sergey Levine.
"Model-agnostic meta-learning for fast adaptation of deep
networks." ICML 2017.

« Reference implementation in the repository

26

Next Lecture

* Intro to Continual Learning
* The problem of Catastrophic Forgetting
* Notebook

27

	Slide 1: Knowledge Transfer and Adaptation
	Slide 2: Outline
	Slide 3: Motivation – Learning to Learn
	Slide 4: Example: Few-Shot Image Classification
	Slide 5: Common Terminology
	Slide 6: learner and meta-learner
	Slide 7: Model-Agnostic Meta Learning
	Slide 8: Meta-Learning a Model’s Initialization
	Slide 9: Meta-Learning a Model’s Initialization
	Slide 10: Inner and Outer Objective
	Slide 11: MTL vs Meta Learning Initialization
	Slide 12: Sine Regression Results
	Slide 13: Model-Agnostic Meta Learning
	Slide 14: MAML – Pseudocode
	Slide 15: FO-MAML – Truncated Gradient
	Slide 16: PyTorch Functional API
	Slide 17: Functional API
	Slide 18: Notebook
	Slide 19: Stateful vs functional API
	Slide 20: Back to MAML…
	Slide 21: Batch Normalization
	Slide 22: Training Instability
	Slide 23: Partial Adaptation
	Slide 24: Extensions and Related Work
	Slide 25: Take-Home Messages
	Slide 26: References
	Slide 27: Next Lecture

