
Antonio Carta

antonio.carta@unipi.it

Knowledge Transfer and
Adaptation

Optimization-Based Meta Learning

1

Outline

• Optimization-based meta-learning

• Model-Agnostic Meta Learner (MAML)

• Implementation, Tips and tricks for MAML

• Some extensions in the literature

2

Motivation – Learning to Learn

• MTL: Train multiple tasks jointly. Sharing parts of the network
encourage positive transfer
• 𝒜𝑀𝑇𝐿: 𝒟1

train , … , 𝒟𝑁
train → 𝜃𝑀𝑇𝐿

• Meta-learning: Can we optimize the learning algorithm to solve
novel tasks (transfer, low-shot and fast adaptation,
hyperparameter search)? a.k.a. Learning to learn

• 𝒜𝑀𝐸𝑇𝐴: 𝒟1, … , 𝒟𝑁 → 𝒜∗, 𝒜∗: 𝒟𝑁+1
train → 𝜃𝑁+1

3

Example: Few-Shot Image Classification

4image source: lilianweng.io

An example of 4-shot 2-class image classification.

In the meta-test phase, we have to train
the model on the meta-test tasks
(unseen classes!)

Common Terminology

• support set: task training set
𝒟𝑖

tr

• query set: task test dataset

𝒟𝑖
test

• meta-training: training
process over the meta-train
tasks

• meta-test: learning a new
task given its support set

5

learner and meta-learner

Optimization-based methods meta-learn the base algorithm
(𝒜∗) hyperparameters

 𝒜𝑀𝐸𝑇𝐴: 𝒟1, … , 𝒟𝑁 → 𝒜∗, 𝒜∗: 𝒟𝑁+1
train → 𝜃𝑁+1

learner: a differentiable model such as a deep CNN

meta-learner: a parameterized learning algorithm

• A learned optimizer

• Learned hyperparameters (learning rate, schedule)

• A learned initialization (our focus today)

6

Model-Agnostic Meta
Learning

7

Meta-Learning a Model’s Initialization

• Optimization problem:

• 𝜃∗ = 𝑚𝑖𝑛
𝜃

𝔼𝑝(𝒯) ℒ𝒯 𝑈𝑘 𝜃, 𝐷𝜏
𝑆𝑢𝑝𝑝

, 𝐷𝜏
𝑞𝑢𝑒𝑟𝑦

• 𝑝(𝒯): distribution over tasks
• Few-shot: 𝑈𝒯 trains on the (small) support set

• 𝜃 model’s initialization

• 𝑈𝑘 base learning algorithms
• Fast adaptation: usually 𝑈𝑘 is a small number of SGD steps
• We use k to denote the number of SGD steps

• 𝜃∗: optimal initialization for the family of tasks 𝑝(𝒯)

8

Meta-Learning a Model’s Initialization

• Optimization problem:

• 𝜃∗ = 𝑚𝑖𝑛
𝜃

𝔼𝑝(𝒯) ℒ𝒯 𝑈𝑘 𝜃, 𝐷𝜏
𝑆𝑢𝑝𝑝

, 𝐷𝜏
𝑞𝑢𝑒𝑟𝑦

It’s a bilevel optimization problem:

• Inner loop (𝑈𝑘): optimize on a new task starting from 𝜃 with
algorithm 𝑈𝑘

• Outer loop: optimize initialization 𝜃 to improve generalization
over the whole family of tasks

9

Inner and Outer Objective

• 𝜃∗ = 𝑚𝑖𝑛
𝜃

𝔼𝑝(𝒯) ℒ𝒯 𝑈𝑘 𝜃, 𝐷𝜏
𝑆𝑢𝑝𝑝

, 𝐷𝜏
𝑞𝑢𝑒𝑟𝑦

Equivalent formulation with separate inner/outer objectives:

• 𝜃∗ = 𝑚𝑖𝑛
𝜃

𝔼𝑝(𝒯) ℒ𝒯
෨𝜃, 𝐷𝜏

𝑞𝑢𝑒𝑟𝑦
(outer objective: evaluate on query set)

• where ෨𝜃 = 𝑈𝑘 𝜃, 𝐷𝜏
𝑆𝑢𝑝𝑝

(inner objective: train on support set)

10

MTL vs Meta Learning Initialization

• How can we learn a solution that is better than the multi-task solution
𝜃𝑀𝑇𝐿 = 𝑚𝑖𝑛

𝜃
σ𝒯 ℒ𝒯(𝜃, 𝐷𝒯) ???

Motivating Example: Sine Regression

• Task: a sine wave. Each task has a different phase and amplitude

• Model predicts the output of the sine wave function

Question: What is the optimal MTL solution? What about the optimal
meta-learning one?

11

Sine Regression Results

12Figure from: Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." ICML 2017.

Answer:
• the optimal MTL solution is the one that outputs 0 everywhere (minimum MSE

loss for the average of tasks)
• the optimal meta-learned solution is the one that quickly adapts the model

output to a different phase and amplitude.

Model-Agnostic Meta Learning

• Optimization problem: 𝜃∗ = 𝑚𝑖𝑛
𝜃

𝔼𝑝(𝒯) ℒ𝒯 𝑈𝒯(𝜃)

• NOTE: we remove the dependency on query/supp sets to
simplify the notation, but they are still there

GOAL: we want to optimize 𝜃
• Meta-train:

• Inner loop: optimize solution for each task starting from 𝜃
• Outer loop: optimize 𝜃

• The optimizer 𝑈𝒯 needs to be differentiable (SGD methods are ok)

• Needs to backpropagate on 𝑈𝒯 (e.g. over multiple SGD steps)

• Meta-test: use 𝑈𝒯 and 𝜃∗ to learn a novel task

13

MAML – Pseudocode

14

The gradient backpropagates through 𝜃𝑖
′

This is the pseudo code for 𝑈𝒯 which is a single SGD step

Single-task
Solution
Found by 𝑈𝒯

Notice the different use of
suppport and query sets

FO-MAML – Truncated Gradient

• FO-MAML (First Order
MAML) is a popular
approximation which
computes the truncated
gradient

• ∇𝜃ℒ𝒯𝑖
𝑓𝜃 is considered

constant during the outer
gradient computation
(line 10)

15pseudocode: Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." ICML 2017.

PyTorch Functional API

16

Functional API

• To implement MAML, we will need to backpropagate through
the optimizer steps
• The optimizer needs to be differentiable

• We need a computational graph of optimizer computation

• We need the framework to be able to compute second-order
derivatives

• torch.func is the pytorch functional API (needs torch >= 2.0)

• We will use pytorch but the API are similar across frameworks
(e.g. JAX)

17https://pytorch.org/docs/stable/func.whirlwind_tour.html

Notebook

• See notebook `demo torch_func.ipynb` in the repository

• Also check the pytorch docs: torch.func Whirlwind Tour —
PyTorch 2.2 documentation

18

https://pytorch.org/docs/stable/func.whirlwind_tour.html

Stateful vs functional API

W = torch.randn(1, 2, requires_grad=True)

x = torch.randn(2, requires_grad=True)

stateful API

W.grad = None # reset gradient (optimizer.zero_grad)

l = ((W ** 2)@x).sum()

l.backward()

print("stateful API: ", W.grad.tolist())

Functional API

foo = lambda W: ((W ** 2)@x).sum()

gw = grad(foo)(W)

print("functional API: ", gw.tolist())

19

Back to MAML…

20

Batch Normalization

• Batch Normalization rescales the activations:

• 𝑦 =
𝑥−E[𝑥]

Var[𝑥]+𝜖
∗ 𝛾 + 𝛽

• Training mode – statistics computed on the current mini-batch:

• 𝐸 𝑥(𝑘) = 𝐸𝐵 𝜇𝐵
(𝑘)

, and Var 𝑥(𝑘) =
𝑚

𝑚−1
𝐸𝐵 𝜎𝐵

(𝑘) 2

• Statistics depend on the samples in each mini-batch
• In MAML, each mini-batch contains samples from a single task

• Inference mode – uses EMA of 𝜇, 𝜎 seen during training:

• 𝑦(𝑘) = 𝐵𝑁
𝛾(𝑘),𝛽(𝑘)
𝑖𝑛𝑓

𝑥(𝑘) = 𝛾(𝑘) 𝑥(𝑘)−𝐸 𝑥(𝑘)

Var 𝑥(𝑘) +𝜖

+ 𝛽(𝑘)

• In MAML (and in general in MTL), these statistics will be averaged across ALL THE TASKS,
obtaining different values from the ones used during training (single task)!

• Batch Normalization is often problematic in multi-task/meta-learning settings due to its
dependence on i.i.d. sampling of the data

• MAML implementations often disable the training mode

21

Training Instability

The bilevel optimization of MAML can be
unstable. Some tricks in the literature:

• More stable architectures to avoid
exploding gradients (e.g. skip connections)

• Minimize a loss at every step (instead of
using only the final model)

• Start with first-order approximation to
speed up early training. Then, switch to full
gradient

• Per-step and per-layer learning rates

• Cosine annealing to schedule outer
learning rate

• Per-step batch normalization statistics

22source: Antoniou, Antreas, Harrison Edwards, and Amos Storkey. "How to train your MAML." arXiv preprint arXiv:1810.09502 (2018).

Partial Adaptation

• Two possible goals:
• Rapid Learning: condition the

network for fast adaptation
• Feature Reuse: Learn features

that generalize across task and
get rapid learning as a
consequence

• Sometimes, you don’t need to
adapt the whole network

• Almost No Inner Loop (ANIL):
adapts only the final layer in
the inner loop

23Raghu, Aniruddh, et al. "Rapid learning or feature reuse? towards understanding the effectiveness of maml." arXiv preprint arXiv:1909.09157 (2019).

Extensions and Related Work

• Many works extend MAML by learning the learning rates and
other hyperparameters

• It has also been applied in incremental learning settings

• Alternatives without second-order gradients have been
proposed (REPTILE)

24

Take-Home Messages

• Optimization-Based Meta-learning is a general framework that
works in a large number of settings

• Elegant mathematical formulation that directly optimize the
goal of fast adaptation

• Tricky to train and more expensive than normal SGD due to
backprop through optimizer

25

References

• MAML paper: Finn, Chelsea, Pieter Abbeel, and Sergey Levine.
"Model-agnostic meta-learning for fast adaptation of deep
networks." ICML 2017.

• Reference implementation in the repository

26

Next Lecture

• Intro to Continual Learning

• The problem of Catastrophic Forgetting

• Notebook

27

	Slide 1: Knowledge Transfer and Adaptation
	Slide 2: Outline
	Slide 3: Motivation – Learning to Learn
	Slide 4: Example: Few-Shot Image Classification
	Slide 5: Common Terminology
	Slide 6: learner and meta-learner
	Slide 7: Model-Agnostic Meta Learning
	Slide 8: Meta-Learning a Model’s Initialization
	Slide 9: Meta-Learning a Model’s Initialization
	Slide 10: Inner and Outer Objective
	Slide 11: MTL vs Meta Learning Initialization
	Slide 12: Sine Regression Results
	Slide 13: Model-Agnostic Meta Learning
	Slide 14: MAML – Pseudocode
	Slide 15: FO-MAML – Truncated Gradient
	Slide 16: PyTorch Functional API
	Slide 17: Functional API
	Slide 18: Notebook
	Slide 19: Stateful vs functional API
	Slide 20: Back to MAML…
	Slide 21: Batch Normalization
	Slide 22: Training Instability
	Slide 23: Partial Adaptation
	Slide 24: Extensions and Related Work
	Slide 25: Take-Home Messages
	Slide 26: References
	Slide 27: Next Lecture

