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CL Scenarios
« CL assumptions

» Types of drifts
 Nomenclature

* Benchmarks examples
Evaluation

 CL eval vs prequential

» Hyperparameter selection

Metrics
« What and when to monitor

« Accuracy

 Forgetting

« Backward/forward transfer
« Computational performance
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What is a CL Scenario?

A common nomenclature that:
e A set of CL metrics that we want

to Optimize Task 1 Task 2 Task 3 Task 4 Task 5
* A SetoOf ConStI:aintS that theo p{t first  second first  second
Iearnlng algorlthm must SatISfy class class class class class class class class class class
. A A A A
° A reS'tFICted form Of aCCGSS. .to : ..... ......................... : ............................................................... : ...................... l, : ...... :
the data through a sequential o - -@ - - 00
data stream S I & s o s

Given the type of scenario and its
constraints we can identify a
proper strategy to learn it.



Continual Learning - Definition

In continual learning (CL) data arrives in a streaming fash-
ion as a (possibly infinite) sequence of learning experiences
S = ey,...,e,. Fora supervised classification problem,
each experience e; consists of a batch of samples D*. where
each sample is a tuple (x%,y3) of input and target, respec-
tively, and the labels y; are from the set )*, which is a subset
of the entire universe of classes ). Usually D" is split into a
separate train set D . and test set Dj,,.

A continual learning algorithm A“" is a function with
the following signature:

ACL: < z'C—Ll:' ir(Lin:M’i—h":i} — <.f1CL?M";> {l)

where ¥ is the model learned after training on experience
e;, M, a buffer of past knowledge, such as previous samples
or activations, stored from the previous experiences and
usually of fixed size. The term {; is a task label which may
be used to identify the correct data distribution.

The objective of a CL algorithm is to minimize the loss
Ls over the entire stream of data S
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where the loss £(f¢F(a),y) is computed on a single sample
(@, y), such as cross-entropy in classification problems.

Task 1 Task 2 Task 3 Task 4 Task 5
first  second first  second first  second first  second first  second
class  class class  class class  class class  class class  class
A A A A A
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Continual Learning for Robotics: Definition, Framework, Learning Strategies, Opportunities and Challenges, Lesort et al. Information Fusion, 2020.
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Scenarios Nomeclature: what we need

 How much data do we have in each experience?

* Do we know the type of shifts?

* Do we know when the shifts happen?

* Do we have task labels at training/inference time?




Real vs Virtual Shift

* Real shift:

« We have seen it in OML

« The world changes, either abruptly (covid lockdown) or continuously
(weather, financial markets). p(x, y) is changed.

 In some application you care only about the present and future and can
forget the past

* Virtual Shift
« Common CL assumption
* The «world» is fixed. Shifts are «virtual» and due to sample selection bias
« The data changes because the prior p(x) is changing. p(y|x) is fixed.

* You don't want to forget anything because you may encounter the old data
again in the future



Real vs Virtual Shift
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Non-stationarity Assumptions:

Real Shift: the world is changing
(more studied in OML).

Virtual Shift: the world is fixed
but there is a sample selection
bias.

We will often assume virtual shifts.



REMINDER: Dataset Shift Nomenclature

Dataset Shift: p,,.,(x,v) # p:: (x,y) Informally: any change in the distribution is a shift

Covariate shift: happen in X—Y problems when
* PeraWIx) = pese (¥Ix) @nd prrq (x) # prse(x)

« informally: the input distribution changes, the input->output relationship does not

Prior probability shift: happen in Y—X problems when
* Prra(X]y) = pese(x|y) and prq (¥) # prse(v)

 Informally: output->input relationship is the same but the probability of each class is

changed
Concept shift:
* PeraV|x) # Pese(Ylx) @and perq (x) = pese(x) in X—Y problems.

* Dera(X|Y) # pese(x|y) and pprq (¥) = prsr(v) in Y—X problems.
« Informally: the «concept» (i.e. the class)

Original Dat Covariate Shift Label Shift Concept Shift
L : 0? (N 00/"'290 00 %% |o® o 00,
) .,,’QQQ .:,r’o Q e®@ oo @ e®@ ..,,?00
00 9% | o0 o0 | ® oo e
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No Data Shift p(x) changes p(y) Changes p(y | X) changes

(a) Original data (b) Covariate shift (c) Label shift (d) Concept shift

Figure 1: Dataset shift illustration (Similar to Fig. 1in [4, 5].) Note that the dotted line is the decision
boundary between the two classes; i.e., the blue and yellow data points. Here, = represents the
input data and y represents the output we aim to predict.

Image: Dataset Shift in Machine Learning, Joaquin Quifionero-Candela et al, MIT Press Book, 2008. 9




Common Assumptions

» Shift is only virtual: we do not want to forget, we need to
accumulate knowledge.

* No labeling errors/conflicting information: targets are always
correct (but possibly noisy).

« Unbounded time: No hard latency requirements. We may have
computational constraints.

 Data in each experience can be freely processed: you can
shuffle them, process them multiple times, etc. like you would
do during offline training.
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Common Types of Shifts

* New Instances: each experience provides new instances for old classes. Old
instances are never seen again (in the training stream).

Task 1 Task 2 Task 10
(permutation 1) (permutation 2) (permutation 10)

BOEEEA EEERE bR

* New Classes: each experience provides new classes. Old classes are never
revisited (in the training stream).

Permuted
MNIST

Task 1 Task 2 Task 3 Task 4 Task 5

0/ F19

first second first second first second first second first second
class class class class class class class class class class

Split
MNIST
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Presence of Task Labels

» Task-aware: task labels are available during training and

inference SOTE: o
Task 1 Task 3 Task 5 references use
_ the term
0]/ Ea
first  second first  second first  second first  second first  second denote
class  class class  class class  class class  class class  class experiences
. ] even in task-
» Task-agnostic: task labels are not available agnostic

scenarios

- —
0l / 519

first second first second first second first second first second
class class class class class class class class class class

Task labels can
change the

output space
(single vs multi
head)
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Tasks in Continual Learning

 Task labels simplify the problem

« We can use multi-task models that take task labels as an explicit
argument

« Modularity also helps to prevent interference (it may limit forward transfer)

» Output space is smaller:
« 100 classes divided in 10 tasks -> 10-way classification
« 100 classes in a single task -> 100-way classification

* Notice: the term task in CL is a bit overloaded

« Sometimes, experiences are called tasks even when there are no
explicit labels or other mechanisms to disambiguate different tasks

« Often, tasks are actually domains (same problem, different p(x))

13



Batch vs Online/Streaming CL

How much data for each experience?
 Online CL (OCL) / Streaming CL: Single example/small minibatch
« Batch CL: Large batch, no constraint on the size of the experience

Task 1 Task 2 Task 5
first second first second first second first second first second
class class class class class class class class class class

A A A A
. '
e1 62 e4 e5
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Knowledge of Distribution Shifts

 Task-free: the model doesn’t know when the shift happens (as

in OML)
« Notice: we don’t have task labels AND we don’t know WHEN the shift

happens
« No common term for the «shift-aware» version

* In a batch scenario the typical assumption is that each
experience is the result of a distribution shift

* In OCL knowledge of task boundaries is more useful (because
the stream is much longer) but all the methods assume that

they don’t have access to it (more realistic)

15




Sharp vs Blurry Shifts

 Sharp Shifts: drift happen abruptly
* Blurry/Gradual Shifts: drift happen slowly
Most CL methods deal with sharp drifts

RotatedMNIST:

3 Remember the \‘:
Example of | assumption about «no
gradual shift: conflicting i

information»? We
may want to remove 6
or 9 here
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Img source: https://github.com/Continvvm/continuum 16



Nomenclature for Common Scenarios

Availability of Task/Distribution Labels: during training and/or testing

Task/Shift Boundaries: during training and/or testing

Experience Content: examples of [same|new] classes

Output Space: [Shared/Separate]

NOT an exhaustive classification

Class-Incremental Shared
Task-Incremental Yes Yes New Separate
Domain-Incremental No Yes Same Shared

(Online) Task-Free No No Any Shared

17



Task-Labels/Shift-Type Categorization

Alternative 2D categorization: e Single-Incremental-Task (SIT): t, =ty = --- = ty.

* Presence of task labels o Multi-Task (MT): Vi j € [1 nl? i 4 —> ti £,
- Type of shift (class/instance)

o e Multi-Incremental-Task (MIT): 3,5,k : t; =t; and t; # ty.
* NEW: repetitions of concepts

 Limitation: each experience has a single task label

_ New Instances (NI) | New Classes (NC) | New Instance and Classes
(NIC)

Multi-Task (MT) Task Incremental -
Single-Incremental Task (SIT) Domain-incremental Class-incremental  Data-incremental

Multiple-Incremental-Task - - ;
(MIT)

Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges. Lesort et al, Information

Fusion, 2020. 18



Dataset, Scenarios, Benchmarks

Class-Incremental Learning
Scenario
MNIST Dataset
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Split MNIST Benchmark

mm E] Exact specific sequences and composition of
el | It | Il | il | W vlieivie e. For example:

5 3 S% 1 5

e e - e C S1={class 0 & 1}, {class 2 & 3}

S2 ={class 5 & 7}, {class 0 & 8}

represents two possible Benchmark
Instances of Split MNIST.

Avalanche: An End-to-End Library for Continual Learning. Lomonaco et al. CLVision Workshop at CVPR 2021. 19



Some examples

Table 3: Benchmarks and environments for continual learning. For each resource, paper use cases
in the NI, NC and NIC scenarios are reported.
| Benchmark | NI NC NIC | Use Cases |
Split MNIST/Fashion MNIST v [83, 81, 57, 130]
Rotation MNIST v [92, 83, 127]
Permutation MNIST v 53, 73, 43, 150, 176, 83, 57, 127]
iCIFAR10/100 v | [125, 97, 70|
SVHN v 71, 145, 130]
CUB200 v | [80]
CORe50 v v Y 91, 115, 97]
iCubWorld28 v | [116, 90]
iCubWorld-Transformation v [117, 16]
LSUN v | [171]
ImageNet v [125, 95]
Omniglot v | 77, 144]
Pascal VOC v 104, 151]
Atari v | [136, 73, 144]
RNN CL benchmark v [153]
CRLMaze (based on VizDoom) v [89]
DeepMind Lab v [99]

Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges. Lesort et al, Information

Fusion, 2020. 20



Natural Video Benchmarks

utter  stapler  thermometer  doll

%‘"WW ’add sl pe&plez m
) *“ ) |¢,./ \ h.ﬂ

OpenlLoris

iCub-
Transformation

(Roady et al, 2020; She et al, 2020; Pasquale et al, 2079) 21



Example: CORe50

 Continuous Object Recognition
« 50 classes
 Short videos of object manipulation with different background
« Temporal coherence from videos

« Many scenarios: batch, online, with repetitions.

Lomonaco V. and Maltoni D. CORe50: a New Dataset and Benchmark for Continuous Object Recognition. CoRL2017. 22
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CL - Evaluation

25



Average Stream Accuracy

* The model is evaluated on the
average accuracy on the
entire (test) stream

* It must remember how the
classify data from old
experiences

The objective of a CL algorithm is to minimize the loss
L over the entire stream of data S:

s 1 T
Ls(fSln) = 57— Z Lol Pl @
Zl|D;('sl|l
IDI 1|
o I Zu" yi), (3

where the loss £( f¢%(a),y) is computed on a single sample
(@, y), such as cross-entropy in classification problems.

Task 1 Task 2 Task 3 Task 4 Task 5

0]/ &9

first second first second first second first second first second
class class class class class class class class class class

A A A A
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Offline Model Selection

* We assume to have access to three parallel stream
 Train/Validation/Test streams
« At time t, they all have data from the same distribution

e Offline Model Selection

* Train several models on the train stream
» Select best on the entire validation stream

* Final evaluation on the test stream

» Simple to implement but unrealistic. Assume to have
access to the entire stream at the end of training for model
selection purposes

27



Early Model Selection

 Use the first k experiences for model selection
« Train sequentially on the training splits (until time=k)
 Evaluate on the validation splits

 Select the best model on the first k expereriences of the validation
stream

 Continue training the best model on the rest of the training
stream

» Model selection is still offline, but only for the first part of the
stream

28



Continual Hyperparameter Selection

 Can we do the model selection without access to the old data?

« We have two objectives:

« Maximize plasticity (learning new experiences)
« Accuracy on current data
* |s to estimate given the current validation experience

« Minimize forgetting (of older experiences)
« Accuracy on past experiences (for the current model)
« We don't have the data to evaluate this objective
* Let's assume that we have only two hyperparameters:
* One controls plasticity
« The other controls stability (forgetting)

29



Continual Hyperparameter Selection

Example hyperparameters:
* Plasticity: learning rate
o Stability: regularization strength

PSEUDOCODE:

» For each experience:

« STEP 1: Find optimal plasticity hyperparameters
» This step will find the max accuracy you can get at the expense of stability
 fix them
« STEP 2: Find stability hyperparameters
- Start with maximal stability
» Decrease stability hyperparameters until you have a good enough accuracy

« This a stability-plasticity tradeoff. If you stop too soon you have low plasticity. If you stop too
late, you have too much forgetting.

30



Continual Hyperparameter Selection

ALGORITHM:

 for each experience:

 finetune on new data, coarse grid search
onlIr, get acc A

« train on new data with CL method (Ir from
prev step), get acc A*

. whiIePerformance on new data is too low
(A - A* too big)

» Decrease stability hparams
 train on new data, get acc A*

INTUITIVELY: after finding optimal
RlaSTICIty hparams, decrease forgetting

params until the performance is close
enough to the optimal plasticity
(tradeoff

M. De Lange et al. 2022. "A Continual Learning Survey: Defying Forgetting in Classification Tasks.” [EEE TPAMI

Algorithm 1. Continual Hyperparameter Selection
Framework

input H hyperparameter set, @ € |0, 1| decaying factor, p € [0, 1]
accuracy drop margin, D'*! new task data, W coarse
learning rate grid

require ¢’ previous task model parameters

require C'LM continual learning method

//Maximal Plasticity Search
1: A*=0
2: forn e ¥do
3: A « Finetune(D'*', n; #') > Finetuning accuracy
4: if A > A" then
5 A*, n* — A, n > Update best values
//Stability Decay
6: do
7. A< CLM(D', n*; ¢
8 if A < (1 —p)A* then
9: ‘H +— « - 'H > Hyperparameter decay
10: while A < (1 —p)A*

31




CL vs OML

Deep CL

* (possibly) Large experiences
* Virtual drift

* Domains: Vision, NLP, speech

 Evaluation: average accuracy
on the full stream

Online ML

* One sample at a time

« Real drift

 Domains: time series data

 Evaluation: prequential
accuracy

32



CL - Metrics
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What to monitor?

* Performance on
current/past/future experience

» Resource consumption:
Memory, CPU, Disk usage 08
» Model size growth

« Execution time and latency
 Data efficiency

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Gradient Episodic Memory for Continual Learning, Lopez-Paz et al. NIPS, 2017.
Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges, Lesort et al. Information Fusion, 2020. 34



Let N be the stream length, T the current
timestep, R, ; be the accuracy on the
experience i at time t

Time — which model to use;
* Last model: Ry 1

» Averaged over time: TLHZQO Yi=o Ry,
Data — which data to use:

» Current experience: R, ;

- Data seen up to now: T%l Yico Ry

1 _
+ Full stream: — >N o Ry

R

Try R1,1 Rl,z R1,3
Tro | Ra1 Rpo Rags
Tr3 | R3n Rz2 Rags

T
1
Average Accuracy: ACC = T Z;RTJ-

A

N .
_ Zi:l 23:1 R

N(N+1)
2

Don't forget, there is more than forgetting: new metrics for Continual Learning, Rrodriguez-Diaz et al. CL Workshop @ NeurlPS, 2018. 35



Zero-shot Forward Transfer

Q: Is continual learning improving

the performance on future R | Tey, Te, Tes
experiences? Tri | Rix Ria Ris
. Tr R .1 R \ R ,
« FWT Metric compares Try | Rar Rea Ros
» Accuracy on future experience i+k =
after training on experience i FWT = S R b
» against

« b; Accuracy on experience i of a
model trained with a random
initialization

« Averaged overi=2,...,T

Gradient Episodic Memory for Continual Learning. Lopez-Paz & Ranzato, NeurlPS 20177. 36



Evaluating Representation Learning with Linear Probing

 FWT assumes that the model can predict future experiences
« Most models can’t predict unseen classes
« Only makes sense for new instances, not new classes

» Alternative solution: Evaluate whether the latent
representation helps learning unseen tasks

* Linear Probing:
 Learn a linear classifier on top of the learned representation
« Compare against random feature extractor and previous models

 Measures whether the learned features transfer to the new
data

37



Backward Transfer

Q: Is continual learning improving the

erformance on OLD experiences?
p p R T81 TEQ Teg
. Iry | Rip Ri2 Rig
BWT Metric ’ ’ ’
. . - I'ry | Ron  Hpp  Hag3
« Accuracy on experience i after training on Trs | Rs1 Rso Ras
experience T - ’ ’ -
Minus: —
. : . 1
 Accuracy on experience i after training on BWT = —— ) Rr;—Ri;
experience i =1

Averaged over i=1,...,T-1

FORGETTING = - BWT

Gradient Episodic Memory for Continual Learning. Lopez-Paz & Ranzato, NeurlPS 20177. 38



Online CL — Desiderata

Evalution in Online CL is more difficult because

the stream is longer and task boundaries are Red diamonds = task boundaries
unknown.
« Knowledge Accumulation: the model should
improve over time
« Atany pointin time .
« High average accuracy but also fast adaptation )
« Continual Stability: the model should not forget ¢
previous knowledge <
« Atany pointin time
« We often assume virtual drifts when measuring , ;3 i\
stability % 500 1000 1500 2000
» Representation Quality: the latent iterations

representations should improve over time
« A weaker form of knowledge accumulation/stability

« Can be evaluated on out-of-distribution data or self-
supervised models

A. Soutif et al. "A Comprehensive Empirical Evaluation on Online Continual Learning” 2023 39



Knowledge Accumulation

Red diamonds = task boundaries

—_—

o

-

=

-
L

« Average Anytime Accuracy: accuracy
along the entire curve.

* Do not confuse with
« Avg accuracy at the end of training (final

Accuracy
N

diamond)
» Avg at task boundaries (avg of 0 500 1000 1500 2000
d 1a mond S) iteratibns |
. 4 )
Notation: 1Ll E
* f; model attime i AAA = n SJESJA(Ei:fj)
 E; experience i i’-:l\ =1 )
« A(E;, f;) accuracy of model f; for A .
experience Ei Average along the verage accuracy o

training curve data seen up to now

Lucas Caccia et. al, New Insights on Reducing Abrupt Representation Change in Online Continual Learning, ICLR 2022 40



Continual Stability

 Observe the behavior of the accuracy during training (curve from one diamond to the next)
« CL methods forget and re-learn old experiences during training
« This phenomenon is masked with the typical metrics measured only at boundaries (red

diamonds)
100 - . P — _
d\ R
% p .‘-.b S
2 l ' 0.5 ‘5, ,\/’:' el
O | k o
5 ; xg 0.3 ,] "“/ \
Q: E - If
L 0.2 |."‘
A Al I
*r ;-"J;l'"‘i'""‘l?“'" 01
O i — y—— — L . - |
0 500 1000 1500 2000 e
atch index

1terations

[1] Mathias Delange et. al, Continual Evaluation for Lifelong Learning: Identifying the stability gap, ICLR 2023
[2] Lucas Caccia et. al, New Insights on Reducing Abrupt Representation Change in Online Continual Learning, ICLR 2022
[3] A. Soutif et al. "A Comprehensive Empirical Evaluation on Online Continual Learning” 2023 41



Memory Usage

« Model Size (MS): How much space N Mem(6:)
does your model occupy? (MB, # of , > e Mem(6;)
params, etc.) MS = min(1, N )

 Scalability over time: What is the
increment in space required for
each new experience?

. Samﬁles Storage Size (SSS): How
much space do you require for
additional information (replay buffer,
past models...)?

N Mem(M;)
Zz’zl Mem (D) )

N

SS8S =1—min(1,

Don't forget, there is more than forgetting: new metrics for Continual Learning, Rrodriguez-Diaz et al. CL Workshop @ NeurlPS, 2018. 42



Q: What is the computational overhead

during training and inference? s Opsy(m)_)g
. . =1 1 s(T'r;
« #MAC — Multiply and Accumulate CE = min(1, z+v Pl

* Running Time, CPU/GPU time
» scalability over time

NOTE: evaluating GPU performance is tricky because you have
to consider CPU<->GPU communication, synchronization costs,
parallelization. #MAC can be misleading.

Don't forget, there is more than forgetting: new metrics for Continual Learning, Rrodriguez-Diaz et al. CL Workshop @ NeurlPS, 2018. 43



In general, multiple objectives!

Each application is different

and multiple objectives may
interfere with each other:

« Computational constraints
* Privacy Constraints
 Accuracy and Forgetting

—=[ SSS

y After Each Task

Don't forget, there is more than forgetting: new metrics for Continual Learning, Rrodriguez-Diaz et al. CL Workshop @ NeurlIPS, 2018.
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Task-Incremental vs Class-Incremental

incremental learning

e ————— N JEEEEE— task-IL

task-1D

o A

task 1 task n
class-IL
ta D
task 1 task n

training testing
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Task-Incremental vs Class-Incremental
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Fig. 2: A network trained continually to discriminate be- = . N
tween task 1 (left) and task 2 (middle) is unlikely to have 5 o :
learned features to discriminate between the four classes N T 20 40 60 80 100

(right). We call this problem inter-task confusion.

Predicted label

Fig. 3: Examples of task and class confusion matrices for
Finetuning (top row) and Finetuning with 2,000 exemplars
(bottom row) on CIFAR-100. Note the large bias towards
the classes of the last task for Finetuning. By exploiting
exemplars, the resulting classifier is clearly less biased.
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Classifier Bias in CIL

2.0 6
% 1.5 E 5]
1.0 =
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=
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q
-2.0 ' - - . 0
0 A0 410 [+11] B 100 0 20 40 [&11] a0 100
Classes Classes

) ) ) ) _ _ Replay does not fix the
Fig. 4: Bias and weight analysis for iCaRL with|2,000 exem-| task-recency bias

plars on CIFAR-100. We show the ordered biases and norm
of the last classification layer of the network for different
tasks. Note how the bias and the norm of the weights are
higher for the last tasks. This results in a task-recency bias.
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Self-Supervised Models

62.2

604 59.5 583 -
53.6
« SSL methods are more robustto o5
continual training l . . . I
i We evaluate the representation BYOL Barlow Twins MoCoV2+ SimCLR Swal VICReg
(linear probing)
68.2 G8.8 a8

 More realistic because we don't

need labels during training N WE  mw W  bw  pw
» We still need labels to finetune the . H B &

Classifier (Iinear probing ) BYOL mn@Twins M.nCn'u'2+ SimCLR SWAV | VICReg
otherwise we can't use the mode| = oweeeienns o ©ssmemm
1gure 1. Linear evaluation accuracy of representations learned

° with different self-supervised methods on class-incremental CI-
SSL methOdS are SIOW to Converge FAR100 and ImageNetl00. In blue the accuracy of SSL fine-

and reC]UII'e Iarge amOuntS Of data tuning, in green the improvement brought by CaSSLe. The red

dashed line 1s the accuracy attained by supervised fine-tuning.

Fini, Enrico, et al. "Self-supervised models are continual learners.”" CVPR. 2022. 49



Continual Pretraining

Continual Pre-Training Stream

Continual Pretraining

* SSL pre-training, T |
incrementally over time Fmimens iy | oot it

- Finetuning on the Ca ) [
downstream tasks using > D;M

Figure 1: The Continual Pre-training scenario. During
the IaSt mOdel each stage (experience) ¢ of continual pre-training (top),
the model h!" is pre-trained (center) on the dataset D"
(e.g., scientific abstracts). Subsequently (bottom), the
model is fine-tuned against one (or more) downstream
task DI (e.g. scientific abstracts classification). Forget-

Aga | n, SSL > Su perV|Sed, ting is measure by fine-tuning on D¢ (e.g. sentiment
: P analysis). At each stage, only the current pre-trained
bOth IN VISIOn a nd teXt and downstream datasets/models are available.
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Forgetting in Different Scenario
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Take-Home Messages

While DCL is similar to OCL, there are many differences:
 Domains: vision, NLP, ...
* Drift: real vs virtual

 Evaluation: avg. accuracy vs prequential

» Forgetting is a major concern which we don’t have in the prequential setting
« We can have forward transfer with deep learning models

« DCL methods are much more expensive than OCL. The main challenge is
avoiding forgetting, not fast adaptation
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Next Lecture

We start looking at the algorithms:
» Baselines for CL
* Replay Methods
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