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Outline

CL Scenarios

• CL assumptions

• Types of drifts

• Nomenclature

• Benchmarks examples

Evaluation

• CL eval vs prequential

• Hyperparameter selection

Metrics

• What and when to monitor

• Accuracy

• Forgetting

• Backward/forward transfer

• Computational performance
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What is a CL Scenario?

A common nomenclature that:
• A set of CL metrics that we want 

to optimize
• A set of constraints that the 

learning algorithm must satisfy
• A restricted form of access to 

the data through a sequential 
data stream

Given the type of scenario and its 
constraints we can identify a 
proper strategy to learn it. 
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Continual Learning - Definition

5Continual Learning for Robotics: Definition, Framework, Learning Strategies, Opportunities and Challenges, Lesort et al. Information Fusion, 2020.



Scenarios Nomeclature: what we need

• How much data do we have in each experience?

• Do we know the type of shifts?

• Do we know when the shifts happen?

• Do we have task labels at training/inference time?
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Real vs Virtual Shift

• Real shift:
• We have seen it in OML
• The world changes, either abruptly (covid lockdown) or continuously 

(weather, financial markets). 𝑝(𝑥, 𝑦) is changed.
• In some application you care only about  the present and future and can 

forget the past

• Virtual Shift
• Common CL assumption
• The «world» is fixed. Shifts are «virtual» and due to sample selection bias
• The data changes because the prior 𝑝(𝑥) is changing. 𝑝 𝑦|𝑥  is fixed.
• You don’t want to forget anything because you may encounter the old data 

again in the future
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Real vs Virtual Shift
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Mnist 
Dataset

Non iid
experience 

split

Change of 
environment INVERTED

Column: +1
Lantern: -1

Column: -1
Lantern: +1

Non-stationarity Assumptions:

● Real Shift: the world is changing 
(more studied in OML).

● Virtual Shift: the world is fixed 
but there is a sample selection 
bias.

We will often assume virtual shifts.



REMINDER: Dataset Shift Nomenclature

Dataset Shift: 𝑝𝑡𝑟𝑎 𝑥, 𝑦 ≠ 𝑝𝑡𝑠𝑡 𝑥, 𝑦  Informally: any change in the distribution is a shift

Covariate shift: happen in X→Y problems when 

• 𝑝𝑡𝑟𝑎 𝑦 𝑥 = 𝑝𝑡𝑠𝑡 𝑦 𝑥  and 𝑝𝑡𝑟𝑎 𝑥 ≠ 𝑝𝑡𝑠𝑡(𝑥)

• informally: the input distribution changes, the input->output relationship does not

Prior probability shift: happen in Y→X problems when

• 𝑝𝑡𝑟𝑎 𝑥 𝑦 = 𝑝𝑡𝑠𝑡 𝑥 𝑦  and 𝑝𝑡𝑟𝑎 𝑦 ≠ 𝑝𝑡𝑠𝑡 𝑦

• Informally: output->input relationship is the same but the probability of each class is 
changed

Concept shift:

• 𝑝𝑡𝑟𝑎 𝑦 𝑥 ≠ 𝑝𝑡𝑠𝑡 𝑦 𝑥  and 𝑝𝑡𝑟𝑎 𝑥 = 𝑝𝑡𝑠𝑡 𝑥  in X→Y problems. 

• 𝑝𝑡𝑟𝑎 𝑥 𝑦 ≠ 𝑝𝑡𝑠𝑡 𝑥 𝑦  and 𝑝𝑡𝑟𝑎 𝑦 = 𝑝𝑡𝑠𝑡 𝑦  in Y→X problems.

• Informally: the «concept» (i.e. the class) 

Image: Dataset Shift in Machine Learning, Joaquin Quiñonero-Candela et al, MIT Press Book, 2008. 9



Common Assumptions

• Shift is only virtual: we do not want to forget, we need to 
accumulate knowledge.

• No labeling errors/conflicting information: targets are always 
correct (but possibly noisy).

• Unbounded time: No hard latency requirements. We may have 
computational constraints.

• Data in each experience can be freely processed: you can 
shuffle them, process them multiple times, etc. like you would 
do during offline training.
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Common Types of Shifts

• New Instances: each experience provides new instances for old classes. Old 
instances are never seen again (in the training stream).

• New Classes: each experience provides new classes. Old classes are never 
revisited (in the training stream).

11
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Presence of Task Labels

• Task-aware: task labels are available during training and 
inference

• Task-agnostic: task labels are not available
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Task labels can 
change the 

output space 
(single vs multi 

head)

NOTE: some 
references use 

the term 
«task» to 
denote 

experiences 
even in task-

agnostic 
scenarios



Tasks in Continual Learning

• Task labels simplify the problem
• We can use multi-task models that take task labels as an explicit 

argument
• Modularity also helps to prevent interference (it may limit forward transfer)

• Output space is smaller:
• 100 classes divided in 10 tasks -> 10-way classification

• 100 classes in a single task -> 100-way classification

• Notice: the term task in CL is a bit overloaded
• Sometimes, experiences are called tasks even when there are no 

explicit labels or other mechanisms to disambiguate different tasks

• Often, tasks are actually domains (same problem, different 𝑝(𝑥))
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Batch vs Online/Streaming CL

How much data for each experience?

• Online CL (OCL) / Streaming CL: Single example/small minibatch

• Batch CL: Large batch, no constraint on the size of the experience
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Knowledge of Distribution Shifts

• Task-free: the model doesn’t know when the shift happens (as 
in OML)
• Notice: we don’t have task labels AND we don’t know WHEN the shift 

happens

• No common term for the «shift-aware» version 

• In a batch scenario the typical assumption is that each 
experience is the result of a distribution shift

• In OCL knowledge of task boundaries is more useful (because 
the stream is much longer) but all the methods assume that 
they don’t have access to it (more realistic)
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Sharp vs Blurry Shifts

• Sharp Shifts: drift happen abruptly

• Blurry/Gradual Shifts: drift happen slowly

Most CL methods deal with sharp drifts

16img source: https://github.com/Continvvm/continuum

Example of 
gradual shift:
Rotated MNIST

Remember the 
assumption about «no 

conflicting 
information»? We 

may want to remove 6 
or 9 here



Nomenclature for Common Scenarios

• Availability of Task/Distribution Labels: during training and/or testing

• Task/Shift Boundaries: during training and/or testing

• Experience Content: examples of [same|new] classes

• Output Space:  [Shared/Separate]

• NOT an exhaustive classification

17

Name Task Labels Boundaries Classes Output

Class-Incremental No Yes New Shared

Task-Incremental Yes Yes New Separate

Domain-Incremental No Yes Same Shared

(Online) Task-Free No No Any Shared



Task-Labels/Shift-Type Categorization

Alternative 2D categorization:
• Presence of task labels

• Type of shift (class/instance)

• NEW: repetitions of concepts

• Limitation: each experience has a single task label

18
Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges. Lesort et al, Information 

Fusion, 2020.

New Instances (NI) New Classes (NC) New Instance and Classes 
(NIC)

Multi-Task (MT) - Task Incremental -

Single-Incremental Task (SIT) Domain-incremental Class-incremental Data-incremental

Multiple-Incremental-Task 
(MIT)

- - -



Dataset, Scenarios, Benchmarks

19

MNIST Dataset

Split MNIST Benchmark

Class-Incremental Learning 
Scenario

Settings:
1. Each e contains only examples of new 

classes never seen before (clear 
boundaries)

2. No t available during train or test.
3. Shared output space

+

Exact specific sequences and composition of 
e. For example:

S1 = {class 0 & 1}, {class 2 & 3}
S2 = {class 5 & 7}, {class 0 & 8}

represents two possible Benchmark 
Instances of Split MNIST.

Benchmark Instances

Avalanche: An End-to-End Library for Continual Learning. Lomonaco et al. CLVision Workshop at CVPR 2021.



Some examples

20
Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges. Lesort et al, Information 

Fusion, 2020.



Natural Video Benchmarks

21

Stream-
51

OpenLoris

iCub-
Transformation

(Roady et al, 2020; She et al, 2020; Pasquale et al, 2019)



Example: CORe50

• Continuous Object Recognition
• 50 classes

• Short videos of object manipulation with different background

• Temporal coherence from videos

• Many scenarios: batch, online, with repetitions.

22Lomonaco V. and Maltoni D. CORe50: a New Dataset and Benchmark for Continuous Object Recognition. CoRL2017. 



CORe50

23

# Images 164,866

Format RGB-D

Image size 350x350
128x128

# Categories 10

# Obj. x Cat. 5

# Sessions 11

# img. x Sess. ~300

# Outdoor Sess. 3

Acquisition  Sett. Hand held
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CL – Evaluation 

25



Average Stream Accuracy

• The model is evaluated on the 
average accuracy on the 
entire (test) stream

• It must remember how the 
classify data from old 
experiences

26



Offline Model Selection

• We assume to have access to three parallel stream
• Train/Validation/Test streams

• At time t, they all have data from the same distribution

• Offline Model Selection
• Train several models on the train stream

• Select best on the entire validation stream

• Final evaluation on the test stream

• Simple to implement but unrealistic. Assume to have 
access to the entire stream at the end of training for model 
selection purposes

27



Early Model Selection

• Use the first k experiences for model selection
• Train sequentially on the training splits (until time=k)

• Evaluate on the validation splits

• Select the best model on the first k expereriences of the validation 
stream

• Continue training the best model on the rest of the training 
stream

• Model selection is still offline, but only for the first part of the 
stream

28



Continual Hyperparameter Selection

• Can we do the model selection without access to the old data?

• We have two objectives:
• Maximize plasticity (learning new experiences)

• Accuracy on current data
• Is to estimate given the current validation experience

• Minimize forgetting (of older experiences)
• Accuracy on past experiences (for the current model)
• We don’t have the data to evaluate this objective

• Let’s assume that we have only two hyperparameters:
• One controls plasticity
• The other controls stability (forgetting)

29



Continual Hyperparameter Selection

Example hyperparameters:

• Plasticity: learning rate

• Stability: regularization strength

PSEUDOCODE:

• For each experience:
• STEP 1: Find optimal plasticity hyperparameters 

• This step will find the max accuracy you can get at the expense of stability
• fix them

• STEP 2: Find stability hyperparameters
• Start with maximal stability
• Decrease stability hyperparameters until you have a good enough accuracy
• This a stability-plasticity tradeoff. If you stop too soon you have low plasticity. If you stop too 

late, you have too much forgetting.

30



Continual Hyperparameter Selection

ALGORITHM:

• for each experience:
• finetune on new data, coarse grid search 

on lr, get acc A
• train on new data with CL method (lr from 

prev step), get acc A*
• while performance on new data is too low 

(A - A* too big) 
• Decrease stability hparams
• train on new data, get acc A*

INTUITIVELY: after finding optimal 
plasticity hparams, decrease forgetting 
hparams until the performance is close 
enough to the optimal plasticity 
(tradeoff)

31M. De Lange et al. 2022. “A Continual Learning Survey: Defying Forgetting in Classification Tasks.” IEEE TPAMI



CL vs OML

Deep CL

• (possibly) Large experiences

• Virtual drift

• Domains: Vision, NLP, speech

• Evaluation: average accuracy 
on the full stream

 

32

Online ML

• One sample at a time

• Real drift

• Domains: time series data

• Evaluation: prequential 
accuracy

 



CL – Metrics 

33



What to monitor?

• Performance on 
current/past/future experience

• Resource consumption:
Memory, CPU, Disk usage

• Model size growth 

• Execution time and latency

• Data efficiency

• ...

34
Gradient Episodic Memory for Continual Learning, Lopez-Paz et al. NIPS, 2017.

Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges, Lesort et al. Information Fusion, 2020.



Accuracy

Let 𝑁 be the stream length, 𝑇 the current 
timestep, 𝑅𝑡,𝑖 be the accuracy on the 
experience 𝑖 at time 𝑡
Time – which model to use:
• Last model: 𝑅𝑇,𝑇

• Averaged over time:  
1

𝑇+1
σ𝑡=0

𝑇 σ𝑖=0
𝑡 𝑅𝑡,𝑖 

Data – which data to use:
• Current experience: 𝑅𝑡,𝑡

• Data seen up to now: 
1

𝑇+1
 σ𝑖=0

𝑇 𝑅𝑇,𝑖

• Full stream: 
1

𝑁
 σ𝑖=0

𝑁−1 𝑅𝑇,𝑖

35Don't forget, there is more than forgetting: new metrics for Continual Learning, Rrodriguez-Diaz et al. CL Workshop @ NeurIPS, 2018.



Zero-shot Forward Transfer

Q: Is continual learning improving 
the performance on future 
experiences?

• FWT Metric compares
• Accuracy on future experience i+k

after training on experience i

• against
• ഥ𝒃𝒊 Accuracy on experience i of a 

model trained with a random 
initialization

• Averaged over i=2,...,T

36Gradient Episodic Memory for Continual Learning. Lopez-Paz & Ranzato, NeurIPS 2017.



Evaluating Representation Learning with Linear Probing

• FWT assumes that the model can predict future experiences
• Most models can’t predict unseen classes

• Only makes sense for new instances, not new classes

• Alternative solution: Evaluate whether the latent 
representation helps learning unseen tasks

• Linear Probing:
• Learn a linear classifier on top of the learned representation

• Compare against random feature extractor and previous models

• Measures whether the learned features transfer to the new 
data

37



Backward Transfer

Q: Is continual learning improving the 
performance on OLD experiences?

BWT Metric

• Accuracy on experience i after training on 
experience T

Minus:

• Accuracy on experience i after training on 
experience i

Averaged over i=1,...,T-1

FORGETTING = - BWT

38Gradient Episodic Memory for Continual Learning. Lopez-Paz & Ranzato, NeurIPS 2017.



Online CL – Desiderata

Evalution in Online CL is more difficult because 
the stream is longer and task boundaries are 
unknown.

• Knowledge Accumulation: the model should 
improve over time
• At any point in time
• High average accuracy but also fast adaptation

• Continual Stability: the model should not forget 
previous knowledge
• At any point in time
• We often assume virtual drifts when measuring 

stability

• Representation Quality: the latent 
representations should improve over time
• A weaker form of knowledge accumulation/stability
• Can be evaluated on out-of-distribution data or self-

supervised models

A. Soutif et al. “A Comprehensive Empirical Evaluation on Online Continual Learning“  2023 39

Red diamonds = task boundaries



Knowledge Accumulation

• Average Anytime Accuracy: accuracy 
along the entire curve.

• Do not confuse with
• Avg accuracy at the end of training (final 

diamond)
• Avg at task boundaries (avg of 

diamonds)

Notation:

• 𝑓𝑖 model at time 𝑖

• 𝐸𝑖 experience 𝑖

• 𝐴 𝐸𝑖 , 𝑓𝑖 accuracy of model 𝑓𝑖 for 
experience 𝐸𝑖

Lucas Caccia et. al, New Insights on Reducing Abrupt Representation Change in Online Continual Learning, ICLR 2022 40

Red diamonds = task boundaries

Average accuracy of 
data seen up to now

Average along the 
training curve



Continual Stability

• Observe the behavior of the accuracy during training (curve from one diamond to the next)

• CL methods forget and re-learn old experiences during training

• This phenomenon is masked with the typical metrics measured only at boundaries (red 
diamonds)

[1] Mathias Delange et. al, Continual Evaluation for Lifelong Learning: Identifying the stability gap, ICLR 2023
[2] Lucas Caccia et. al, New Insights on Reducing Abrupt Representation Change in Online Continual Learning, ICLR 2022

[3] A. Soutif et al. “A Comprehensive Empirical Evaluation on Online Continual Learning“  2023 41



Memory Usage

• Model Size (MS): How much space 
does your model occupy? (MB, # of 
params, etc.)

• Scalability over time: What is the 
increment in space required for 
each new experience?

• Samples Storage Size (SSS): How 
much space do you require for 
additional information (replay buffer, 
past models…)?

42Don't forget, there is more than forgetting: new metrics for Continual Learning, Rrodriguez-Diaz et al. CL Workshop @ NeurIPS, 2018.



Computation

Q: What is the computational overhead 
during training and inference? 

• #MAC – Multiply and Accumulate 

• Running Time, CPU/GPU time

• scalability over time

43Don't forget, there is more than forgetting: new metrics for Continual Learning, Rrodriguez-Diaz et al. CL Workshop @ NeurIPS, 2018.

NOTE: evaluating GPU performance is tricky because you have 
to consider CPU<->GPU communication, synchronization costs, 
parallelization. #MAC can be misleading.



In general, multiple objectives!

Each application is different 
and multiple objectives may 
interfere with each other:

• Computational constraints

• Privacy Constraints

• Accuracy and Forgetting

44Don't forget, there is more than forgetting: new metrics for Continual Learning, Rrodriguez-Diaz et al. CL Workshop @ NeurIPS, 2018.



Forgetting in CL Scenarios

45



Task-Incremental vs Class-Incremental

46Masana, Marc, et al. "Class-incremental learning: survey and performance evaluation on image classification." IEEE TPAMI 2022



Task-Incremental vs Class-Incremental

47Masana, Marc, et al. "Class-incremental learning: survey and performance evaluation on image classification." IEEE TPAMI 2022



Classifier Bias in CIL

48Masana, Marc, et al. "Class-incremental learning: survey and performance evaluation on image classification." IEEE TPAMI 2022

Replay does not fix the 
task-recency bias



Self-Supervised Models

• SSL methods are more robust to 
continual training

• We evaluate the representation 
(linear probing)

• More realistic because we don’t 
need labels during training

• We still need labels to finetune the 
classifier (linear probing), 
otherwise we can’t use the model

• SSL methods are slow to converge 
and require large amounts of data

49Fini, Enrico, et al. "Self-supervised models are continual learners." CVPR. 2022.



Continual Pretraining

Continual Pretraining

• SSL pre-training, 
incrementally over time

• Finetuning on the 
downstream tasks using 
the last model

Again, SSL > supervised, 
both in vision and text

50Cossu, Andrea, et al. "Continual pre-training mitigates forgetting in language and vision." arXiv preprint arXiv:2205.09357 (2022).



Forgetting in Different Scenario

Some tasks are much more 
robust to CL than others
• Incremental classification 

results in catastrophic 
forgetting

• SSL methods are more robust
• Tasks such as reconstruction 

are very robust

• Forgetting will also depend on 
the drifts (iid vs class vs domain 
vs gradual…)

51Thai, Anh, et al. "Does continual learning= catastrophic forgetting." arXiv preprint arXiv:2101.07295 (2021).



Take-Home Messages

While DCL is similar to OCL, there are many differences:

• Domains: vision, NLP, …

• Drift: real vs virtual

• Evaluation: avg. accuracy vs prequential
• Forgetting is a major concern which we don’t have in the prequential setting

• We can have forward transfer with deep learning models

• DCL methods are much more expensive than OCL. The main challenge is 
avoiding forgetting, not fast adaptation

52



Next Lecture

We start looking at the algorithms:

• Baselines for CL

• Replay Methods

53
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