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Outline

CL Strategies

• categorization

• Components and design 
choices

• Simple baselines

• Rehearsal methods
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CL Strategy

• A learning method designed for Continual Learning

• Typically a combination of naive finetuning plus some CL 
specific component

• Formal Definition:
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Carta, Antonio, et al. "Ex-Model: Continual Learning from a Stream of Trained Models." CLVISION Workshop @ CVPR2022.



CL Strategy Categorization

• Replay: store sample and revisit them.

• Regularization: penalize forgetting.

• Parameter-Isolation/Architectural: 
separate task-specific parameters
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Continual Learning for Robotics: Definition, Framework, Learning Strategies, Opportunities and Challenges, Lesort et al. Information Fusion, 2020. 

A continual learning survey: Defying forgetting in classification tasks. De Lange et al, TPAMI 2021.



CL Strategy Components
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CL methods can be 
combined together

• Regularization +

• Replay +

• Architectural + 

• Bias correction: 
methods for output 
layer

Masana, Marc, et al. "Class-incremental learning: survey and performance evaluation on image classification." TPAMI



Baselines: Finetuning

Train: sequential SGD, each 
time using only the current 
data.

Inference: use last model (𝑀𝑖)
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Note: Naive finetuning often results in catastrophic forgetting. CL 
methods should always beat the Naive baseline



Baselines: Ensemble

Training: Train one model for 
each experience. Each model is 
completely independent

Inference: Compute output 
using the correct model 
(assume oracle if task labels 
are not available).
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… …

Note: if experiences are big enough, it may be hard to beat (especially 
without task labels).



Baselines: Joint Training

JointTraining / Offline: Concatenate 
all the data (keeping task labels) and 
train starting from a random 
initialization.

Sometimes referred as the upper 
bound (incorrect).
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…



Baselines: Cumulative

Training: for every experience, 
accumulate all data available up to 
now (ڂ𝑘=0

𝑖 𝐷𝑘) and re-train starting 
from the previous model.

General rules
• If we have enough data, starting 

from scratch achieves a slightly 
higher performance than starting 
from the previous model.

• Starting from the previous model 
achieves faster convergence than 
training from scratch.
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Baselines

We will use as lower  bound

• Naive Finetuning

We will use as upper bound

• Ensemble

• Joint 

• Cumulative
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Basic Design Choices

• Pretraining: 
• Always helpful if available
• The literature suggests that early 

phases of training are critical. If the 
model only sees a small set of highly 
correlated samples in the first epochs, 
it may not be able to recover the 
performance later.

• Model Architecture:
• CNN vs Transformers
• Batch Normalization
• Regularization: Dropout?
• Wide vs Deep networks

11

Multi-Head vs Single-Head

Continual Learning for Recurrent Neural Networks: an Empirical Evaluation. Cossu et al, 2021.



Model Architecture in CL

Mirzadeh, Seyed Iman, et al. "Architecture matters in continual learning." arXiv preprint arXiv:2202.00275 (2022). 12



Width and Depth

Mirzadeh, Seyed Iman, et al. "Architecture matters in continual learning." arXiv preprint arXiv:2202.00275 (2022). 13



Global Pooling

Mirzadeh, Seyed Iman, et al. "Architecture matters in continual learning." arXiv preprint arXiv:2202.00275 (2022). 14

NOTE: Global average pooling (GAP) is typically used in the final layer to reduce the number of features.



Replay
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Class-Incremental Learning with Replay

Setting: virtual drift with new classes at each 
experience. No repetitions in the stream. 

Problem: How do we remember the old classes?

We will see that in general this is a very hard 
problem if we never revisit the previous data.

Replay stores a limited set of samples from 
the previous experiences and use them for 
rehearsal.

16

Image from 
https://towardsdatascience.com/reservoir-sampling-
for-efficient-stream-processing-97f47f85c11b



Replay

Good News: Replay is a simple, 
general and effective strategy for CL.
• Approximates an i.i.d distribution
• Approximate cumulative training
• Relatively cheap in terms of 

computations
Bad News:
• Memory limitations or privacy 

constraints
• Scaling: for long streams we may 

need to store a large buffer. Memory 
increases over time
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Replay Algorithm

Parameters: memory size

During training (finetuning + rehearsal):

• Sample from the current data

• Sample from the buffer using sampling policy

• Do SGD step on the concatenated mini-batch

After each experience (buffer update):

• Use insertion policy to choose data from the current experience

• Add example to the buffer

• Use removal policy if the buffer is too big

18



Growing vs Fixed Memory

Growing Memory: each 
experience adds 𝑘 examples. 
Unbounded growth.

Fixed Memory: Maximum 
memory size 𝑀. Requires a 
removal policy.
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Insert / Remove / Sample Policies

• Insertion: find the best examples to store in the buffer

• Remove: find the least useful example to remove them from 
the buffer

• Sample: find the best examples to use for the current training 
iteration

Data Balancing: Ideally, data should be balanced 
(approximated i.i.d.). Class/task/experience balancing are 
common choices.
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Real vs Synthetic Samples

Real examples: taken from the original data.

Synthetic examples: sampled from a generative model. 
Neuroplausible but unfortunately CL of generative models is 
quite difficult and still largely unsolved.

21
Carta, Antonio, et al. "Ex-Model: Continual Learning from a Stream of Trained Models." CLVISION Workshop @ CVPR2022.

DeepInversion: https://github.com/NVlabs/DeepInversion



Input vs Latent Replay

Input Replay: store input 
images

Latent Replay: store latent 
representations at 
intermediate layers

We will see an example at 
the end of the lecture.

Latent Replay for Real-Time Continual Learning. Pellegrini et al. IROS, 2019. 22



Neuroplausibility of Replay

There are some (very high 
level) parallels with the 
brain:
• Memory formation is a 

key part of learning in the 
human brain

• Memories are noisy
• Memories are latent. The 

brain doesn’t store the 
raw input

• Sleep/Wake cycles are a 
fundamental component 
of memory formation

T. L. Hayes et al. 2021. “Replay in Deep Learning: Current Approaches and Missing Biological Elements.” 23



Random Replay

The most basic form of replay: random 
insertion, deletion, and sampling.

Parameters: memory size

During training

• Sample from the concatenated data

• Do SGD step

After each experience:

• Sample randomly from the current 
experience data

• Fill your fixed Random Memory (RM) 

• Number of examples inserted/removed is 
inversely proportional to the stream 
length

24Latent Replay for Real-Time Continual Learning. Pellegrini et al. IROS, 2019.



Random Replay – Improved Sampling

• In general, the experience data and 
the buffer may have very different 
sizes

• Instead of concatenating the data 
we should sample both separately

Improved Sampling:

• Sample from the current data 
randomly

• Sample from the buffer randomly

• Do SGD step using the 
concatenated mini-batches
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Results

26



Random Replay

• Very simple to implement
• Good performance in simple settings

Problems:
• How much data: it doesn’t work in OCL because we select a discrete 

number of samples to add. 
• It doesn’t work if num_experiences >> mem_size

• Type of shifts: ignores imbalance in the stream. If a class is over-
represented in the stream, it will also dominate the buffer

• Task boundaries: it doesn’t need them (but it still not good in OCL)
• Task labels: unused. Simple improvement: split the buffer by task in 

a balanced way

27



Reservoir Sampling

Reservoir sampling: uniform random 
sampling, without replacement, of K items 
from an infinite stream S.

At time N, we want 𝑝 𝑥𝑡 ∈ 𝑀 =
𝐾

𝑁
, ∀𝑡 ≤ 𝑁
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(* S has items to sample, R will contain the result *)
ReservoirSample(S[1..n], R[1..k])
// fill the reservoir array
for i := 1 to k

R[i] := S[i]

// replace elements with gradually decreasing 
probability
for i := k+1 to n
(* randomInteger(a, b) generates a uniform integer 

from the inclusive range {a, ..., b} *)
j := randomInteger(1, i)
if j <= k

R[j] := S[i]



RS – Probabilities 

• parameters: N current step, K 
memory size, 𝑀𝑡 memory after 𝑡 
elements

• Goal: At time N, we want 𝑝ሺ
ሻ

𝑥𝑖 ∈
𝑀𝑡 =

𝐾

𝑁
, ∀𝑡, 𝑖

• If 𝑡 ≤ 𝐾 everything fits in memory 
and 𝑝ሺ𝑥𝑡 ∈ 𝑀𝑡ሻ

Vitter, Jeffrey S. "Random sampling with a reservoir." ACM Transactions on Mathematical Software (TOMS) 11.1 (1985): 37-57. 29

(* S has items to sample, R will contain the result *)
ReservoirSample(S[1..n], R[1..k])
// fill the reservoir array
for i := 1 to k

R[i] := S[i]

// replace elements with gradually decreasing 
probability
for i := k+1 to n
(* randomInteger(a, b) generates a uniform integer 

from the inclusive range {a, ..., b} *)
j := randomInteger(1, i)
if j <= k

R[j] := S[i]
• If 𝑡 > 𝐾

• 𝑗 uniformly random integer in 1, 𝑁

• New element: p xt ∈ 𝑀𝑡 =  𝑝 𝑗 ≤ 𝐾 =
𝐾

𝑁

• Old element (i < 𝑡) : 𝑝 𝑥𝑖 ∈ 𝑀 = 𝑝 𝑥𝑖 ∈ 𝑀𝑡−1 𝑎𝑛𝑑 𝑥𝑖  𝑖𝑠 𝑛𝑜𝑡 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 =
𝐾

𝑁−1

𝑁−1

𝑁
=

𝐾

𝑁
  



Reservoir Sampling

• Reservoir sampling fixes some of the issues of the Random 
Replay (RR)

• How much data: works perfectly in OCL.

• type of shifts: ignores imbalance in the stream. If one class is 
much more frequent, it will be over-represented in the buffer
• Easy to fix by balancing the buffer capacity by class (i.e. keep one 

reservoir for each class)
• If the imbalance is at a different level (e.g. domain) we would need task 

labels to recognize them (which we probably don’t have)

• Task boundaries: it doesn’t need them. It’s a strong OCL 
baseline

30



Online Continual Learning with Replay

Soutif-Cormerais, Albin, et al. "A comprehensive empirical evaluation on online continual learning." ICCV Workshops. 2023. 31

Notice that we
apply different
augmentations 
at each step!



A Note on Augmentations

• The buffer needs to provide a good 
coverage of the past data distribution

• Diversity is clearly fundamental to 
mitigate forgetting

• Diversity also helps overfitting the buffer

• Augmentation are a key implementation 
detail

• Especially important in online settings 
with multiple passes or with limited 
buffer sizes

Zhang, Yaqian, et al. "A simple but strong baseline for online continual learning: Repeated augmented rehearsal." NeurIPS 2022 32



GDumb

A “Dumb” but popular replay baseline

• Greedy Sampler: The sampler greedily 
stores samples while balancing the 
classes.

• Dumb Learner: Before inference, the 
learner trains a network from scratch
on memory 𝐷𝑡 provided by the sampler. 

• Masking: If a mask 𝑚 is given at 
inference, GDumb classifies on the 
subset of labels provided by the mask. 
• class-incremental: mask only unseen 

classes.
• task-incremental: mask classes outside of 

current task.

GDumb: A Simple Approach that Questions Our Progress in Continual Learning. Prabhu et al. ECCV, 2020. 33



Greedy Sampler

GDumb: A Simple Approach that Questions Our Progress in Continual Learning. Prabhu et al. ECCV, 2020. 34



Is Gdumb Fair?

• Gdumb trains the model from scratch at each step

• Zero knowledge transfer because the network is always trained 
from scratch on the buffer data (quite dumb indeed!).

• Despite its simplicity, it is a very competitive method in the 
class-incremental setting. 

• Q: What is Gdumb biggest limitation? 
• Suggestion: think about the constraints we had for OML methods.

35



Gdumb limitations

• Zero Knowledge Transfer

• Limited use of the data: the model is trained only on a number 
of samples equivalent to the buffer size

• Latency: before inference we need to train a DNN from scratch, 
which is very expensive if we need continuous evaluations

• Useful as a simple baseline for replay methods

36



Sample Selection Strategy

• How do we choose the best examples from the buffer?

• Often it’s a random (balanced) selection

• Can we do something better?

Online Continual Learning with Maximally Interfered Retrieval. Aljundi et al. 2019. 37



MIR – Maximally Interfered Retrieval

IDEA: Select examples that are more 
negatively impacted by the weights 
update.

High-Level Algorithm:

• Sample from the current data

• Estimate weight update

• Estimate loss of buffer samples with 
the new weights

• Select samples with the largest drop 
(𝑠𝑀𝐼−1)

• Do SGD step on concatenated 
minibatch

Online Continual Learning with Maximally Interfered Retrieval. Aljundi et al. 2019. 38

New weights (new samples only)

Loss at the
new weights

Maximal 
interference
criterion

Loss at the
old weights



MIR – Maximally Interfered Retrieval

LIMITATION: Computationally 
expensive w.r.t. the actual 
accuracy gain over random 
selection

• It needs an additional forward 
pass on a large subset of the 
buffer examples to find the 
maximally interfered ones

Online Continual Learning with Maximally Interfered Retrieval. Aljundi et al. 2019. 39

New weights (new samples only)

Loss at the
new weights

Maximal 
interference
criterion

Loss at the
old weights



Example of MIR

Online Continual Learning with Maximally Interfered Retrieval. Aljundi et al. 2019. 40

Benchmark:
OCL version
of Split MNIST



Latent Replay

• PROBLEM: Replay in the input space is 
inefficient and biologically implausible

• SOLUTION: replay latent activations
• Good Accuracy-Memory-Computation trade-

offs.
• There is no obvious choice for the layer. 

Middle layers can be very wide.
• If we allow lossy storage activations can be 

compressed a lot

• Algorithm:
• Store latent representation
• Forward new samples up to latent replay layer
• Concatenate new and stored representations
• Forward to the output layer

Latent Replay for Real-Time Continual Learning. Pellegrini et al. IROS, 2019. 41



Freezing + Latent Replay

• Low layers are trained early 
during training. They don’t 
change much afterward.

• We can freeze them at some 
point.

• Improves latent replay. If we 
don’t freeze the latent 
representation in the buffer will 
become outdated over time

42



Generative Replay

• Buffer size is limited by memory constraints.
• Using generative models we store a finite number of parameters but 

can sample as many examples as we want.
• Biologically plausible.

Continual Learning with Deep Generative Replay, Shi et al, 2017. 43



Generative Replay in Practice

• Currently there is no effective 
algorithm to train generative models 
continually.

• We can train one model per 
task/experience with a linear scaling 
of the memory cost.

• Alternative: Knowledge Distillation 
with generative samples
• If we use classification losses examples 

should resemble the target class. 
• if we use methods such as knowledge 

distillation we can potentially use very 
distorted samples 

Lesort, T et al. Generative models from the perspective of continual learning. In IJCNN 2019. 44

CIFAR10 samples from 
generative models



Did we just solve continual learning?

Not really…

• The gap with offline training is still big.

• The accuracy improvements with respect to 
the memory size is often logarithmic.
• Huge buffer sizes (approximating a cumulative 

strategy) are expensive.
• Example: ImageNet 50 imgs per class means 

about 7 GB memory

• Additional forward and backward passes 
over the same examples
• If you want to balance over tasks, this can easily 

become a linear cost over time

45Latent Replay for Real-Time Continual Learning. Pellegrini et al. IROS, 2019.



How Many Samples do We Need?

• You may need a lot of exampes 
to recover the joint training 
performance

• For reference, CIFAR100 has 
500 samples per class

• The plot shows a gap even 
when more than half (320) of 
the samples are stored for 
rehearsal
• Early phases of training are 

critical. Learning from a small 
experience may hurt performance

• On the other hand, CL avoids 
retraining from scratch and saves 
memory

M. Masana et al. 2022. “Class-Incremental Learning: Survey and Performance Evaluation on Image Classification.” IEEE TPAMI 46



Natural Repetitions

H. Hemati et al. “Class-Incremental Learning with Repetition.” CoLLAs ‘23 47

In real-world applications, class repetitions may happen in the stream naturally. 

• Rehearsal naturally happens even without any replay buffer.

• May be a less effective form of rehearsal (missing class, unbalanced, biased, 
…)

• We can approximate it by generating a more natural stream with repetitions



Effect of Natural Repetitions

H. Hemati et al. “Class-Incremental Learning with Repetition.” CoLLAs ‘23 48

Missing class accuracy improves over time, even for naive finetuning

Naive finetuning approaches replay for long streams with repetitions

In unbalanced streams, class-
balanced buffers and reservoir 
sampling are not effective



Take-Home Messages

• Replay is almost always beneficial if you can afford it. You should 
use as much replay as you can.

• Easy to implement, even on low-powered edge devices.

• There are many improvements over the basic reservoir sampling, but 
the gain are often marginal for medium (or bigger) buffers.

• There is a lot of CL research that tries to limit the need for replay for 
practical reasons (memory, privacy) and because of biological 
plausibility.
• latent replay is quite effective in this settings

• Generative is promising but limited by the CL capability of generative models

49



Next Lecture

Regularization Methods

• Approximating the past task loss
• With an approximation of the bayesian posterior

• With an approximation of the curvature of the loss

50
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