Continual Learning

Baselines and Replay

Antonio Carta

antonio.carta@unipi.it

CL Strategies
 categorization

« Components and design
choices

» Simple baselines
 Rehearsal methods

Image from Dall-e

CL Strategy

* A learning method designed for Continual Learning

» Typically a combination of naive finetuning plus some CL
specific component

 Formal Definition:

previc?uls exemplars ne\(/jvl bni‘]fv
mode buffer mode uffer
Ol ., OL 1 CL
A . < i—1> trainvMi—lati> — <fz 7M”6>
new (optional)
task
data label

Carta, Antonio, et al. "Ex-Model: Continual Learning from a Stream of Trained Models." CLVISION Workshop @ CVPR2022. 3

CL Strategy Categorization

* Replay: store sample and revisit them.
* Regularization: penalize forgetting.

- Parameter-Isolation/Architectural:
separate task-specific parameters

Continual Learning Methods
B e
Replay Regularization-based Parameter isolation
methods methods methods
Rehearsal Pseudo Constrained Prior-focused Data-focused Fixed Dynamic
| Rehearsal | | | Network Architectures
iCaRL [16] | GEM [55] EWC [27] LwE [58] | l
ER [49] DGR [12] A-GEM [6] IMM [28] LFL [59] PackNet [61] PNN [64]
SER [50] PR [52] GSS [48] SI [56] EBLL [9] PathNet [30] Expert Gate [5]
TEM [51] CCLUGM [53] R-EWC [57] DMC [60] Piggyback [62] RCL [65]
CoPE [33] LGM [54] MAS [13] HAT [63] DAN [17]
Riemannian
Walk [14]

Rehearsal Generative Replay
o Pure a
Rehearsal
Net
® ICAR M
@]
o EWC ® CWR
© Si ® PNN /
O LWF

Regularization ~ Architectural

Continual Learning for Robotics: Definition, Framework, Learning Strategies, Opportunities and Challenges, Lesort et al. Information Fusion, 2020.

A continual learning survey: Defying forgetting in classification tasks. De Lange et al, TPAMI 2021.

CL Strategy Components

CL methods can be
combined together

Finetuning
 Regularization +

 Architectural + — %
athint I + auxiliary dataset
idouble distillation)

 Bias correction: == { o
methods for output '
I a ye r + exemplars

Masana, Marc, et al. "Class-incremental learning: survey and performance evaluation on image classification." TPAMI

IL2M

BiC

LUCIR

Baselines: Finetuning

Train: sequential SGD, each Inference: use last model (M;)
time using only the current
data.
B8 i
(D
———

Note: Naive finetuning often results in catastrophic forgetting. CL
methods should always beat the Naive baseline

Baselines: Ensemble

Training: Train one model for Inference: Compute output
each experience. Each model is using the correct model
completely independent (assume oracle if task labels

are not available).

—
M; 4 M;

— —
M; 4 M;

s

Note: if experiences are big enough, it may be hard to beat (especially
without task labels). 7

Baselines: Joint Training

JointTraining / Offline: Concatenate
all the data (keeping task labels) and
train starting from a random
initialization.

Sometimes referred as the upper
bound (incorrect).

Baselines: Cumulative

Training: for every experience,
accumulate all data available up to
now (U},—o, D) and re-train

General rules

* If we have enough data, starting
from scratch achieves a slightly
higher performance than starting
from the previous model.

» Starting from the previous model
achieves faster convergence than
training from scratch.

Baselines

We will use as lower bound
* Naive Finetuning

We will use as upper bound
* Ensemble

« Joint

« Cumulative

10

Basic Design Choices

* Pretraining:
 Always helpful if available

 The literature suggests that early

hases of training are critical. If the _
Pnodel only sees g small set of highly l“*a:“ 1) lHET’EJ Head 3 Single Head

correlated samples in the first epochs,)
it may not be able to recover the

performance later. [] []
MODEL MODEL

 Model Architecture:
« CNN vs Transformers
« Batch Normalization
 Regularization: Dropout?
» Wide vs Deep networks

Multi-Head vs Single-Head

Continual Learning for Recurrent Neural Networks: an Empirical Evaluation. Cossu et al, 2021. 11

Model Architecture in CL

C -
0 == NN x8 ViT 512/1024 89 = CNN x12 ViT-Large
- ~8— WRN-10-10 =@— Resnet 18 - —8— WRN-50-2 —®— ResNet 101
0 80 O 30
© ©
o O -
S 70 g 75
< <
& S0 70
@ 60 ®
g > 65
< _ < U0
ol
60
1 5 10 15 20 1 2 3 4 5 §) 7 8 9 10
Tasks Learned Tasks Learned
(a) Split CIFAR-100 (b) Split ImageNet-1K

Figure 2: Evolution of average accuracy for various architectures on (a) Split CIFAR-100: CNNs have
smaller forgetting than other architectures while WideResNets have the highest learning accuracy, and
(b) Split ImageNet-1K WideResNets and ResNets have higher learning accuracy than CNNs and ViTs.
However, the latter has smaller forgetting.

12

Width and Depth

Params Average Average Learning
Benchmark Model Depth (M) Accuracy Forgetting Accuracy
Rot MNIST MLP-128 2 0.1 70.8 £0.68 31.5 £0.92 96.0 £0.90
Rot MNIST MLP-128 8 0.2 68.9 +1.07 354 +1.34 97.3 +£0.76
Rot MNIST MLP-256 2 0.3 71.1 £0.43 31.4 +0.48 96.1 +0.82
Rot MNIST MLP-256 8 0.7 70.4 £0.61 32.1 £0.75 96.3 £0.77
Rot MNIST MLP-512 2 0.7 72.6 £0.27 29.6 £0.36 96.4 £0.73
CIFAR-100 CNN x4 3 2.3 68.1 +0.5 8.7 £0.21 76.4 £6.92
CIFAR-100 CNN x4 6 5.4 62.9 £0.86 124 +1.62 77.7 £5.49
CIFAR-100 CNN x8 3 7.5 69.9 +0.62 8.0 £0.71 77.5 £6.78
CIFAR-100 CNN x8 6 19.9 66.5 + 1.01 10.7 £1.19 76.6 £4.78
CIFAR-100 ViT 512/1024 2 4.6 56.4 £1.14 159 +0.95 68.1 £7.15
CIFAR-100 ViT 512/1024 4 8.8 51.7 £1.4 21.9 £1.3 71.4 £5.52

Tab. 3 shows that across all architectures, over-parametrization through increasing width is helpful
in improving the continual learning performance as evidenced by lower forgetting and higher average
accuracy numbers. For MLP, when the width is increased from 128 to 512, the performance in all
measures improves. However, for both MLP-128 and MLP-256 when the depth is increased from 2 to 8
the average accuracy is reduced, and the average forgetting is increased with a marginal gain in learning
accuracy. Finally, note that MLP-256 with 8 layers has roughly the same number of parameters as the
MLP-512 with 2 layers. However, the wider one of these two networks has a better continual learning
performance.

13

Global Pooling

Table 5: Role of Global Average Pooling (GAP) for Split CIFAR-100: related to our arguments in
Sec. 3.1, adding GAP to CNNs significantly increases the forgetting. Later, we show that removing GAP

from ResNets can also significantly reduce forgetting as well.

Model Params Pre-Classification Average Average Learning Joint
ode (M) Width Accuracy Forgetting Accuracy Accuracy
CNN x4 2.3 8192 68.1 £0.5 8.7 +£0.21 76.4 £6.92 73.4 +0.89
CNN x4 + GAP 1.5 512 60.1 +£0.43 14.3 +0.8 66.1 £7.76 76.9 +0.81
CNN x4 (16x) + GAP 32.3 8192 73.6 £0.39 5.2 £0.66 75.6 £4.77 T77.9 £0.37
CNN x8 7.5 16384 69.9 +£0.62 8.0 £0.71 77.5 £6.78 T4.1 +0.83
CNN x8 + GAP 6.1 1024 63.1 £2.0 14.7 £1.68 70.1 £7.18 T78.3 £0.97
CNN x16 26.9 32768 76.8 £0.76 4.7 £0.84 81.0 £6.97 74.6 +0.86
CNN x16 + GAP 23.8 2048 66.3 £0.82 12.2 £0.65 72.3 £6.02 T78.9 £0.27

NOTE: Global average pooling (GAP) is typically used in the final layer to reduce the number of features.

14

Replay

15

Class-Incremental Learning with Replay

Setting: virtual drift with new classes at each
experience. No repetitions in the stream.

Problem: How do we remember the old classes?

We will see that in general this is a very hard
problem if we never revisit the previous data.

Replay stores a limited set of samples from
the previous experiences and use them for
rehearsal.

ACL: <fzc—li7 ;:rainvMi—l tl) — <fiCL MZ>

e T¢| data stream

acceptance

Y
/ ;\\ Din probability

==Y
N

dropped points

Image from
https.//towardsdatascience.com/reservoir-sampling-
for-efficient-stream-processing-97f47f85c11b

16

Replay

Good News: Replay is a simple

general and effective strategy for CL.
 Approximates an i.i.d distribution | [T
» Approximate cumulative training S —
» Relatively cheap in terms of i/
computations o A —
Bad News: W B W @ w W
[) Memory IimitatiOnS Or privacy Figure 5.2: Split-MNIST memory-accuracy Figure 5.3: Split-CIFAR-10 memory-accuracy
constraints

» Scaling: for long streams we may
need to store alarge buffer. Memory
increases over time

17

Replay Algorithm

Parameters: memory size

During training (finetuning + rehearsal):

« Sample from the current data

« Sample from the buffer using sampling policy

* Do SGD step on the concatenated mini-batch

After each experience (buffer update):

» Use insertion policy to choose data from the current experience
« Add example to the buffer

» Use removal policy if the buffer is too big

18

Growing vs Fixed Memory

Growing Memory: each Fixed Memory: Maximum
experience adds k examples. memory size M. Requires a
Unbounded growth. removal policy.

M=2
T=1 K=1 T=1
T=2 1=2

19

Insert / Remove / Sample Policies

* Insertion: find the best examples to store in the buffer

* Remove: find the least useful example to remove them from
the buffer

« Sample: find the best examples to use for the current training
Iteration

Data Balancing: Ideally, data should be balanced
(approximated i.i.d.). Class/task/experience balancing are
common choices.

20

Real vs Synthetic Samples

Real examples: taken from the original data.

Synthetic examples: sampled from a generative model.
Neuroplausible but unfortunately CL of generative models is
quite difficult and still largely unsolved.

II "~ — 4’._--

Ice;erg Illl !rmse jlp IJ

Mohau r(16)

Shlpwreck

Puppv(s)

Pug-dog

Carta, Antonio, et al. "Ex-Model: Continual Learning from a Stream of Trained Models." CLVISION Workshop @ CVPR2022.

Deepinversion: https.//github.com/NVlabs/Deepinversion =

Input vs Latent Replay

Input Replay: store input
Images

Latent Replay: store latent
representations at
intermediate layers

We will see an example at
the end of the lecture.

Output Layer (classes)

Class @
specific

discriminative A —
features
(training at
full pace) External Storage
(replay patterns)

4

Low-level
generic
features
(slow
training)

4-.2«»;;“:
‘_ﬁw‘if == g
Input Layer (images)

Latent : = :
@ - e

layer

Forward Pass (all patterns)
Backward pass (all patterns)

Concat (at W
mini-batch level)

Forward Pass (native patterns)
Backward pass (native patterns)

<

Figure 1: Architectural diagram of Latent Replay.

Latent Replay for Real-Time Continual Learning. Pellegrini et al. IROS, 2019.

22

Neuroplausibility of Replay

There are some (very high
It)evel) parallels with the
rain:

. Memor¥ formationis a
key part of learning in the
human brain

 Memories are noisy

« Memories are latent. The
brain doesn't store the
raw Input

 Sleep/Wake cycles are a
fundamental component
of memory formation

Time >

Sequential
Waking [NREM REM |
aster Replay
wneoding m A() m Synaptic
Consolidation
Neocortex Active System

+ Consolidation

& & B3

(a) Depiction of the contributions of replay to memory formation and consolidation during wak-
ing, NREM, and REM stages.

T. L. Hayes et al. 2021. "Replay in Deep Learning: Current Approaches and Missing Biological Elements.” 23

Random Replay

The most basic form of replay: random
insertion, deletion, and sampling.

Parameters: memory size

During training

« Sample from the concatenated data
* Do SGD step

After each experience:

« Sample randomly from the current
experience data

« Fill your fixed Random Memory (RM)

« Number of examples inserted/removed is
Inve[[?]ely proportional to the stream
eng

Algorithm 1 Pseudocode explaining how the external memory
R M 1is populated across the training batches. Note that the amount
h of patterns to add progressively decreases to maintain a nearly
balanced contribution from the different training batches, but no
constraints are enforced to achieve a class-balancing.

: RM =0

: RMg,;.. = number of patterns to be stored in RM

1
2
3: for each training batch B;:

4: train the model on shuffled B; U RM
5

6

RMsize
h =

0
Rg 44 = random sampling A patterns from B;

%) ifi ==1
random sample h patterns from RM otherwise
8: RM = (RM - R’replace) U Radd

7 Rreplace =

Latent Replay for Real-Time Continual Learning. Pellegrini et al. IROS, 2019. 24

Random Replay — Improved Sampling

¢ In genel’a|, the eXpeI’IenCe data and Algorithm 1 Pseudocode explaining how the external memory
'the buffer may have Very d|fferent R M 1is populated across the training batches. Note that the amount

. h of patterns to add progressively decreases to maintain a nearly
SIZES balanced contribution from the different training batches, but no

i I nS'tead Of concaten a-tl ng -the d ata C()ll‘lst;'c;i;ts_a;e enforced to achieve a class-balancing.

we ShOUId Sample bOth Separately 2: RMg;,. = number of patterns to be stored in RM

3: for each training batch B;:

Improved Sampling: 4: train %aglodel on shuffled B; U RM
5 h — -size
* Sam ple from the cu rrent d ata 6: Rada = ?andom sampling h patterns from B;
randomly e ifi =1

random sample h patterns from RM otherwise

« Sample from the buffer randomly S RAM = (RM — Ryeptoce) U Roua

* Do SGD step using the
concatenated mini-batches

25

90 1 _'___,‘____'_,._'._.--u-l'l-
=0 4
70 4
. Replay -
g 60 4 === Gdumb :
g —= GSS 5
- sad w 0000 | ICarl <
10 4
o = Replay
— -
30 BT 20 1 e — == Gdumb
.......... .
- =-= [Carl
20) 15 4
LI | L] L] T L] T L] L] L] ¥ L] L]
1L E 500 R 1IN 2000000 ol 200] G0 Rid) T

Memory size Memory size

Figure 5.2: Split-MNIST memory-accuracy Figure 5.3: Split-CIFAR-10 memory-accuracy

curve curve

26

Random Replay

* Very simple to implement
» Good performance in simple settings

Problems:

« How much data: it doesn’t work in OCL because we select a discrete
number of samples to add.

* It doesn’t work if num_experiences >> mem_size

 Type of shifts: ignores imbalance in the stream. If a class is over-
represented in the stream, it will also dominate the buffer

 Task boundaries: it doesn't need them (but it still not good in OCL)

 Task labels: unused. Simple improvement: split the buffer by task in
a balanced way

27

Reservoir Sampling

Reservoir sampling: uniform random
sampling, without replacement, of K items

from an infinite stream S.
(* S has items to sample, R will contain the result *)

At time N, we want p(x, € M) = %,Vt < N ReservoirSample(S[1..n], R[1..k])

for 1 := 1 to k

8 it data stream R[] := S[i]
®
acceptance
//\\ Dir, probability
® for i := k+1l to n
. \(reservoir (* randomInteger(a, b) generates a uniform integer
[R(t) from the inclusive range {a, ..., b} *)
j := randomInteger(1l, i)
\\. if j <= k
. R[J] := S[i]

dropped points

28

RS - Probabilities

parameters: N current step, K

(* S has items to sample, R will contain the result *)
ReservoirSample(S[1..n], R[1..k])

for i := 1 to k

memory size, M, memory aftert R[i] := S[i]
elements
Goal: Ay time N, we want p(x; €
Mt) - -, Vt,l
N for 1 := k+1 to n
(* randomInteger(a, b) generates a uniform integer
If t < K everything fits in memory from the inclusive range {a, ..., b} *)
and p(x; € M;) j := randomInteger(1, i)
if § <= k
R[J] := S[i]
Ift > K
« juniformly random integerin [1, N]
* New element: p(x € M;) = p(j < K) = %
« Oldelement(i<t):p(x; € M) = p(x; € M,_; and x; is not removed) = %E = %

29

Reservoir Sampling

* Reservoir sampling fixes some of the issues of the Random
Replay (RR)

 How much data: works perfectly in OCL.

* type of shifts: ignores imbalance in the stream. If one class is
much more frequent, it will be over-represented in the buffer

« Easy to fix by balancing the buffer capacity by class (i.e. keep one
reservoir for each class)

« If the imbalance is at a different level (e.g. domain) we would need task
labels to recognize them (which we probably don’t have)

» Task boundaries: it doesn’'t need them. It's a strong OCL
baseline

30

Online Continual Learning with Replay

N Online Continual Learning

for (x_new, y_new) in train_stream:

for k in train_passes:

Notice that we
apply different
augmentations
at each step!

X_hew, y_new augment(x_new, y_new)

X_mem, y_mem = augment(sample(memory))

compute_loss_and_backprop(x_new, y_new, X_mem, y_mem)
weilghts_udpate()

update(memory, x_new, y_new)

evaluation

Soutif-Cormerais, Albin, et al. "A comprehensive empirical evaluation on online continual learning.” ICCV Workshops. 2023.

A Note on Augmentations

» The buffer needs to provide a good
coverage of the past data distribution

* Diversity is clearly fundamental to
mitigate forgetting

* Diversity also helps overfitting the buffer

« Augmentation are a key implementation
detail

 Especially important in online settings
with multiple passes or with limited
buffer sizes

Accuracy (%)
fed Ll e o g Ln
i w wel L LT]

Pt
=]

S——

s —+— w/o aug

-§- wjaug1
wfaug 2

#
= 1
} :
L -

1 N] Lk L) 14 % 15 1 17 %
Replay lteration Number (K)

32

A “Dumb” but popular replay baseline

Gready Dumb
« Greedy Sampler: The sampler greedily @

stores samples while balancing the
classes.

« Dumb Learner: Before inference, the
learner trains a network from scratch
on memory D, provided by the sampler. |

« Masking: If a mask m is given at o
inference, GDumb classifies on the inference
subset of labels provided by the mask. |

Selection Learning

« class-incremental: mask only unseen g
classes. jEsE

clcL © O TICL O]

 task-incremental: mask classes outside of Oy O G- Maskm)
current task. Output

0, Prediction (p)

GDumb: A Simple Approach that Questions Our Progress in Continual Learning. Prabhu et al. ECCV, 2020. 33

Greedy Sampler

Algorithm 1. Greedy Balancing Sampler

1: Init: counter Cy={}, Dy={} with capacity k. Online samples arrive from t=1

2:

3: function SAMPLE(z¢, yr, Di—1,Vi—1) > Input: New sample and past state
4: ke = &

[Vi—1]

5: if y, & Vi1 or Ci_1|ye] < ke then

6: if 3. Ci >=k then > If memory is full, replace
7 yr = argmaz(Cy_1) > Select largest class, break ties randomly
8: (xi,vi) = Di—1.random(y,) > Select random sample from class y,
9: Dy = (Dy1 — (zi,yi)) U (4, ye)

10: Cy [?!r] = C.f_—l[?}r] — 1
11: else > If memory has space, add
12: Dy =Dy 1 U (x4, ye)
13: end if
14: Vi=Vi1 Uy

15: Cilye] = Co—1fye] + 1
16: end if

17: return D,
18: end function

GDumb: A Simple Approach that Questions Our Progress in Continual Learning. Prabhu et al. ECCV, 2020. 34

Is Gdumb Fair?

« Gdumb trains the model from scratch at each step

« Zero knowledge transfer because the network is always trained
from scratch on the buffer data (quite dumb indeed!).

 Despite its simplicity, it is a very competitive method in the
class-incremental setting.

* Q: What is Gdumb biggest limitation?
» Suggestion: think about the constraints we had for OML methods.

35

Gdumb limitations

« Zero Knowledge Transfer

* Limited use of the data: the model is trained only on a number
of samples equivalent to the buffer size

* Latency: before inference we need to train a DNN from scratch,
which is very expensive if we need continuous evaluations

» Useful as a simple baseline for replay methods

36

Sample Selection Strategy

« How do we choose the best examples from the buffer?
« Often it's a random (balanced) selection
« Can we do something better?

Stream of Non-iid Samples

Catv Dog Lion vs Zebra Dog vs. Horse

Wolf vs Car Orange v Apple

/ ’ r——— Incoming Batch / . b

& (il '
gt [—
A ot |

] I Find Likely
. ' (Randomly Select Stored | | Generative Gﬁn;e 1 Interfered
H ' i - Memories Model P Sampl
| Update on Augmented Batch

Update on Augmented Batch Naive Approach \ Maximally Interfered

Online Continual Learning with Maximally Interfered Retrieval. Aljundi et al. 2079. 37

MIR - Maximally Interfered Retrieval

IDEA: Select examples that are more
negatlvely impacted by the weights New weights (new samples only)
up

ate.
, , 0" =0 — aVL(fo(X:),Y:)
High-Level Algorithm:

« Sample from the current data Maximal et the
» Estimate weight update interference old weights
. Estimate | f buffer samples with criterion

Estimate 108, of buffer samp sur-1(@) =1 (fo(@), y)— 1 (fola),)
 Select samples with the largest drop Loss at the

SyI—1 new weights

« Do SGD step on concatenated

minibatch

Online Continual Learning with Maximally Interfered Retrieval. Aljundi et al. 2079. 38

MIR - Maximally Interfered Retrieval

LIMITATION: Computationally
expensive w.r.t. the actual

New weights (new samples only)

accuracy gain over random 0 =0 —aVL(fe(X:),Yr)
selection
- It needs an additional forward vdmal Loss at the
old weights
pass on a large subset of the criterion
ouffer examples to find the smr-1(z) = (folx), y)— L (fo(),)
maximally interfered ones Loss at the

new weights

Online Continual Learning with Maximally Interfered Retrieval. Aljundi et al. 2079. 39

Benchmark:
OCL version
of Split MNIST

(b) Most interfered samples while learning
the last task (8 vs 9). Top row is the incoming
batch. Rows 2 and 3 show the most interfered
samples for the classifier, Row 4 and 5 for
the VAE. We observe retrieved samples look
similar but belong to different category.

Online Continual Learning with Maximally Interfered Retrieval. Aljundi et al. 2079.

40

Latent Replay

Output Layer (classes)

 PROBLEM: Replay in the input space is 4 |
inefficient and bidlogically implausible e]
- SOLUTION: replay latent activations " Silen | B 1
. gﬁcgd Accuracy-Memory-Computation trade- ihace m Exismal Siotags \/
. L — (repla){ Qgﬁerns) i
« There is no obvious choice for the layer. " B - ot
Middle layers can be very wide. C laer — A 1
« If we allow lossy storage activations can be vl 3
compressed a lot SoRETE
» Algorithm: oy H
« Store latent representation telking; :
« Forward new samples up to latent replay layer - §v
 Concatenate new and stored representations e g
« Forward to the output layer o Retieyer Grages)

Figure 1: Architectural diagram of Latent Replay.

Latent Replay for Real-Time Continual Learning. Pellegrini et al. IROS, 2019. 41

Freezing + Latent Replay

Output Layer (classes)

* Low layers are trained early] 1
during training. They don't el 1

features

change much afterward. osres, %

full pace)

* We can freeze them at some © Latent

replay

External Storage
(replay patterns) i V

_— —] Concat (at
' ‘ ; ’===- ,7_ mini-batch level)

Forward Pass (all patterns)

point. ey A

- Improves latent replay. If we aenerc
don't freeze the latent Low]
representation in the buffer will v

become outdated over time

Input Layer (images)

Figure 1: Architectural diagram of Latent Replay.

42

Generative Replay

 Buffer size is limited by memory constraints.

 Using generative models we store a finite number of parameters but
can sample as many examples as we want.

» Biologically plausible.

Scholar,
v

Scholar;
v

Scholary

v
Scholary

(a) Sequential Training

Current Task Current Task

l New Scholar | New Scholar

Current ' x Current| *
Replay X Replay x' @ _

Generator Generator
0ld Scholar 0ld Scholar
(b) Training Generator (c) Training Solver

Continual Learning with Deep Generative Replay, Shi et al, 2017.

43

Generative Replay in Practice

 Currently there is no effective
algorithm to train generative models
continually.

« We can train one model per
task/experience with a linear scaling
of the memory cost.

» Alternative: Knowledge Distillation
with generative samples

* If we use classification losses examples CIFAR10 samples from
should resemble the target class. generative models

* if we use methods such as knowledge
distillation we can potentially use very
distorted samples

Generative Replay

-

Lesort, T et al. Generative models from the perspective of continual learning. In IJCNN 20179. 44

Did we just solve continual learning?

Not really...
» The gap with offline training is still big.

- The accuracy improvements with respect to
the memory size is often logarithmic.

» Huge buffer sizes (approximating a cumulative
strategy) are expensive.

« Example: ImageNet 50 imgs per class means
about 7 GB memory

 Additional forward and backward passes
over the same examples

- If you want to balance over tasks, this can easily
become a linear cost over time

Latent Replay for Real-Time Continual Learning. Pellegrini et al. IROS, 2019.

Accuracy %

Rehearsal vs Reheasal-free

—— CWR* (rehe. 1500) |
= AR1* (rehe. 1500)
[—— CWR#

- AR]1*

Cumulatlve

0 50

100 150 200 250 300 350
Encountered Batches

45

How Many Samples do We Need?

* You may need a lot of exampes IS o A
to recover the joint training 100
performance

 For reference, CIFAR100 has 80

500 samples per class

* The plot shows a gap even
when more than half (320) of
the samples are stored for
rehearsal

« Early phases of training are

critical. Learning from a small
experience may hurt performance

Accuracy (%)

« On the other hand, CL avoids 12 5 10 20 40 80 160 320
re‘tra”‘“ng from Scratch and saves Number of exemplars per class (log scale)
memory

Fig. 7: Results for CIFAR-100 (10/10) on ResNet-32 trained
from scratch with different exemplar memory sizes.

M. Masana et al. 2022. “Class-Incremental Learning: Survey and Performance Evaluation on Image Classification.” [EEE TPAMI 46

Natural Repetitions

In real-world applications, class repetitions may happen in the stream naturally.

* Rehearsal naturally happens even without any replay buffer.
« May be a less effective form of rehearsal (missing class, unbalanced, biased,

« We can approximate it by generating a more natural stream with repetitions

Occurrence Matrix Concepts (@ AWM ¢+ & 0 & 0) CL Streams
Gsamp - ~ [Instances x |
Parameters e e, e5 e es -
—— Cq
N Stream o
K Matrix |—» E;
Ps(S)| " | | Generator &

PT Cy

| S

H. Hemati et al. “Class-Incremental Learning with Repetition.” CoLLAs 23 47

Effect of Natural Repetitions

Naive finetuning approaches replay for long streams with repetitions

Average Test Accuracy Average Seen Class Accuracy Average Missing Class Accuracy
0.6 0.6
0.5 0.5 3
> > et
o4 Q0.4 Ll
5 5(]3 M
0'3 | : [y i
g n 2 M“r"‘r 9 A ¥
< 0.2 T Strategy <o0.2 *W m Strategy <o0.2 T,J,m" ! Strategy
o —— ER- —— ER- N —— ER-
01 il ER_CB 01 r ER.CB o1 » ER.CB
Naive Naive JJ’I Naive
0.0 0.0 0.0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Experience Experience Experience

Missing class accuracy improves over time, even for naive finetuning

0.9

0g| Class Status ?

07| @ Present

[I y
%, |

A | M ‘."’A "' It

Zi Lo 0 . 150 30 “ ' BT 500

Experience
Figure 6: Accuracy of a particular class over the stream. The target class is either present or absent in the experiences
indicated by the blue and orange points, respectively.

In unbalanced streams, class-
balanced buffers and reservoir
sampling are not effective

0.5

Strategy

— ER-FA
04H__ ER-CB/M/V/WM
N’\,MJK\/\/

> —— ER-RS
% 0.3 — nNaive M
— ~ v
!
O 0.2
<

0.1

0.0

0 20 40 60 80 100
Experience

Figure 10: Accuracy of Infrequent Classes.

H. Hemati et al. “Class-Incremental Learning with Repetition.” CoLLAs 23 48

Take-Home Messages

« Replay is almost always beneficial if you can afford it. You should
use as much replay as you can.

 Easy to implement, even on low-powered edge devices.

* There are many improvements over the basic reservoir sampling, but
the gain are often marginal for medium (or bigger) buffers.

* There is a lot of CL research that tries to limit the need for replay for
practical reasons (memory, privacy) and because of biological
plausibility.

* |latent replay is quite effective in this settings
« Generative is promising but limited by the CL capability of generative models

49

Next Lecture

Regularization Methods

» Approximating the past task loss
« With an approximation of the bayesian posterior
« With an approximation of the curvature of the loss

50

	Diapositiva 1: Continual Learning
	Diapositiva 2: Outline
	Diapositiva 3: CL Strategy
	Diapositiva 4: CL Strategy Categorization
	Diapositiva 5: CL Strategy Components
	Diapositiva 6: Baselines: Finetuning
	Diapositiva 7: Baselines: Ensemble
	Diapositiva 8: Baselines: Joint Training
	Diapositiva 9: Baselines: Cumulative
	Diapositiva 10: Baselines
	Diapositiva 11: Basic Design Choices
	Diapositiva 12: Model Architecture in CL
	Diapositiva 13: Width and Depth
	Diapositiva 14: Global Pooling
	Diapositiva 15: Replay
	Diapositiva 16: Class-Incremental Learning with Replay
	Diapositiva 17: Replay
	Diapositiva 18: Replay Algorithm
	Diapositiva 19: Growing vs Fixed Memory
	Diapositiva 20: Insert / Remove / Sample Policies
	Diapositiva 21: Real vs Synthetic Samples
	Diapositiva 22: Input vs Latent Replay
	Diapositiva 23: Neuroplausibility of Replay
	Diapositiva 24: Random Replay
	Diapositiva 25: Random Replay – Improved Sampling
	Diapositiva 26: Results
	Diapositiva 27: Random Replay
	Diapositiva 28: Reservoir Sampling
	Diapositiva 29: RS – Probabilities
	Diapositiva 30: Reservoir Sampling
	Diapositiva 31: Online Continual Learning with Replay
	Diapositiva 32: A Note on Augmentations
	Diapositiva 33: GDumb
	Diapositiva 34: Greedy Sampler
	Diapositiva 35: Is Gdumb Fair?
	Diapositiva 36: Gdumb limitations
	Diapositiva 37: Sample Selection Strategy
	Diapositiva 38: MIR – Maximally Interfered Retrieval
	Diapositiva 39: MIR – Maximally Interfered Retrieval
	Diapositiva 40: Example of MIR
	Diapositiva 41: Latent Replay
	Diapositiva 42: Freezing + Latent Replay
	Diapositiva 43: Generative Replay
	Diapositiva 44: Generative Replay in Practice
	Diapositiva 45: Did we just solve continual learning?
	Diapositiva 46: How Many Samples do We Need?
	Diapositiva 47: Natural Repetitions
	Diapositiva 48: Effect of Natural Repetitions
	Diapositiva 49: Take-Home Messages
	Diapositiva 50: Next Lecture

