
Antonio Carta

antonio.carta@unipi.it

Continual Learning
Baselines and Replay

Outline

CL Strategies

• categorization

• Components and design
choices

• Simple baselines

• Rehearsal methods

2

Image from Dall-e

CL Strategy

• A learning method designed for Continual Learning

• Typically a combination of naive finetuning plus some CL
specific component

• Formal Definition:

3

previous
model

new
data

exemplars
buffer

(optional)
task
label

new
model

new
buffer

Carta, Antonio, et al. "Ex-Model: Continual Learning from a Stream of Trained Models." CLVISION Workshop @ CVPR2022.

CL Strategy Categorization

• Replay: store sample and revisit them.

• Regularization: penalize forgetting.

• Parameter-Isolation/Architectural:
separate task-specific parameters

4
Continual Learning for Robotics: Definition, Framework, Learning Strategies, Opportunities and Challenges, Lesort et al. Information Fusion, 2020.

A continual learning survey: Defying forgetting in classification tasks. De Lange et al, TPAMI 2021.

CL Strategy Components

5

CL methods can be
combined together

• Regularization +

• Replay +

• Architectural +

• Bias correction:
methods for output
layer

Masana, Marc, et al. "Class-incremental learning: survey and performance evaluation on image classification." TPAMI

Baselines: Finetuning

Train: sequential SGD, each
time using only the current
data.

Inference: use last model (𝑀𝑖)

6

Note: Naive finetuning often results in catastrophic forgetting. CL
methods should always beat the Naive baseline

Baselines: Ensemble

Training: Train one model for
each experience. Each model is
completely independent

Inference: Compute output
using the correct model
(assume oracle if task labels
are not available).

7

… …

Note: if experiences are big enough, it may be hard to beat (especially
without task labels).

Baselines: Joint Training

JointTraining / Offline: Concatenate
all the data (keeping task labels) and
train starting from a random
initialization.

Sometimes referred as the upper
bound (incorrect).

8

…

Baselines: Cumulative

Training: for every experience,
accumulate all data available up to
now (ڂ𝑘=0

𝑖 𝐷𝑘) and re-train starting
from the previous model.

General rules
• If we have enough data, starting

from scratch achieves a slightly
higher performance than starting
from the previous model.

• Starting from the previous model
achieves faster convergence than
training from scratch.

9

Baselines

We will use as lower bound

• Naive Finetuning

We will use as upper bound

• Ensemble

• Joint

• Cumulative

10

Basic Design Choices

• Pretraining:
• Always helpful if available
• The literature suggests that early

phases of training are critical. If the
model only sees a small set of highly
correlated samples in the first epochs,
it may not be able to recover the
performance later.

• Model Architecture:
• CNN vs Transformers
• Batch Normalization
• Regularization: Dropout?
• Wide vs Deep networks

11

Multi-Head vs Single-Head

Continual Learning for Recurrent Neural Networks: an Empirical Evaluation. Cossu et al, 2021.

Model Architecture in CL

Mirzadeh, Seyed Iman, et al. "Architecture matters in continual learning." arXiv preprint arXiv:2202.00275 (2022). 12

Width and Depth

Mirzadeh, Seyed Iman, et al. "Architecture matters in continual learning." arXiv preprint arXiv:2202.00275 (2022). 13

Global Pooling

Mirzadeh, Seyed Iman, et al. "Architecture matters in continual learning." arXiv preprint arXiv:2202.00275 (2022). 14

NOTE: Global average pooling (GAP) is typically used in the final layer to reduce the number of features.

Replay

15

Class-Incremental Learning with Replay

Setting: virtual drift with new classes at each
experience. No repetitions in the stream.

Problem: How do we remember the old classes?

We will see that in general this is a very hard
problem if we never revisit the previous data.

Replay stores a limited set of samples from
the previous experiences and use them for
rehearsal.

16

Image from
https://towardsdatascience.com/reservoir-sampling-
for-efficient-stream-processing-97f47f85c11b

Replay

Good News: Replay is a simple,
general and effective strategy for CL.
• Approximates an i.i.d distribution
• Approximate cumulative training
• Relatively cheap in terms of

computations
Bad News:
• Memory limitations or privacy

constraints
• Scaling: for long streams we may

need to store a large buffer. Memory
increases over time

17

Replay Algorithm

Parameters: memory size

During training (finetuning + rehearsal):

• Sample from the current data

• Sample from the buffer using sampling policy

• Do SGD step on the concatenated mini-batch

After each experience (buffer update):

• Use insertion policy to choose data from the current experience

• Add example to the buffer

• Use removal policy if the buffer is too big

18

Growing vs Fixed Memory

Growing Memory: each
experience adds 𝑘 examples.
Unbounded growth.

Fixed Memory: Maximum
memory size 𝑀. Requires a
removal policy.

19

…

T=1

T=3

…
T=2

T=3

T=2

T=1K=1 M=2

Insert / Remove / Sample Policies

• Insertion: find the best examples to store in the buffer

• Remove: find the least useful example to remove them from
the buffer

• Sample: find the best examples to use for the current training
iteration

Data Balancing: Ideally, data should be balanced
(approximated i.i.d.). Class/task/experience balancing are
common choices.

20

Real vs Synthetic Samples

Real examples: taken from the original data.

Synthetic examples: sampled from a generative model.
Neuroplausible but unfortunately CL of generative models is
quite difficult and still largely unsolved.

21
Carta, Antonio, et al. "Ex-Model: Continual Learning from a Stream of Trained Models." CLVISION Workshop @ CVPR2022.

DeepInversion: https://github.com/NVlabs/DeepInversion

Input vs Latent Replay

Input Replay: store input
images

Latent Replay: store latent
representations at
intermediate layers

We will see an example at
the end of the lecture.

Latent Replay for Real-Time Continual Learning. Pellegrini et al. IROS, 2019. 22

Neuroplausibility of Replay

There are some (very high
level) parallels with the
brain:
• Memory formation is a

key part of learning in the
human brain

• Memories are noisy
• Memories are latent. The

brain doesn’t store the
raw input

• Sleep/Wake cycles are a
fundamental component
of memory formation

T. L. Hayes et al. 2021. “Replay in Deep Learning: Current Approaches and Missing Biological Elements.” 23

Random Replay

The most basic form of replay: random
insertion, deletion, and sampling.

Parameters: memory size

During training

• Sample from the concatenated data

• Do SGD step

After each experience:

• Sample randomly from the current
experience data

• Fill your fixed Random Memory (RM)

• Number of examples inserted/removed is
inversely proportional to the stream
length

24Latent Replay for Real-Time Continual Learning. Pellegrini et al. IROS, 2019.

Random Replay – Improved Sampling

• In general, the experience data and
the buffer may have very different
sizes

• Instead of concatenating the data
we should sample both separately

Improved Sampling:

• Sample from the current data
randomly

• Sample from the buffer randomly

• Do SGD step using the
concatenated mini-batches

25

Results

26

Random Replay

• Very simple to implement
• Good performance in simple settings

Problems:
• How much data: it doesn’t work in OCL because we select a discrete

number of samples to add.
• It doesn’t work if num_experiences >> mem_size

• Type of shifts: ignores imbalance in the stream. If a class is over-
represented in the stream, it will also dominate the buffer

• Task boundaries: it doesn’t need them (but it still not good in OCL)
• Task labels: unused. Simple improvement: split the buffer by task in

a balanced way

27

Reservoir Sampling

Reservoir sampling: uniform random
sampling, without replacement, of K items
from an infinite stream S.

At time N, we want 𝑝 𝑥𝑡 ∈ 𝑀 =
𝐾

𝑁
, ∀𝑡 ≤ 𝑁

28

(* S has items to sample, R will contain the result *)
ReservoirSample(S[1..n], R[1..k])
// fill the reservoir array
for i := 1 to k

R[i] := S[i]

// replace elements with gradually decreasing
probability
for i := k+1 to n
(* randomInteger(a, b) generates a uniform integer

from the inclusive range {a, ..., b} *)
j := randomInteger(1, i)
if j <= k

R[j] := S[i]

RS – Probabilities

• parameters: N current step, K
memory size, 𝑀𝑡 memory after 𝑡
elements

• Goal: At time N, we want 𝑝ሺ
ሻ

𝑥𝑖 ∈
𝑀𝑡 =

𝐾

𝑁
, ∀𝑡, 𝑖

• If 𝑡 ≤ 𝐾 everything fits in memory
and 𝑝ሺ𝑥𝑡 ∈ 𝑀𝑡ሻ

Vitter, Jeffrey S. "Random sampling with a reservoir." ACM Transactions on Mathematical Software (TOMS) 11.1 (1985): 37-57. 29

(* S has items to sample, R will contain the result *)
ReservoirSample(S[1..n], R[1..k])
// fill the reservoir array
for i := 1 to k

R[i] := S[i]

// replace elements with gradually decreasing
probability
for i := k+1 to n
(* randomInteger(a, b) generates a uniform integer

from the inclusive range {a, ..., b} *)
j := randomInteger(1, i)
if j <= k

R[j] := S[i]
• If 𝑡 > 𝐾

• 𝑗 uniformly random integer in 1, 𝑁

• New element: p xt ∈ 𝑀𝑡 = 𝑝 𝑗 ≤ 𝐾 =
𝐾

𝑁

• Old element (i < 𝑡) : 𝑝 𝑥𝑖 ∈ 𝑀 = 𝑝 𝑥𝑖 ∈ 𝑀𝑡−1 𝑎𝑛𝑑 𝑥𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 =
𝐾

𝑁−1

𝑁−1

𝑁
=

𝐾

𝑁

Reservoir Sampling

• Reservoir sampling fixes some of the issues of the Random
Replay (RR)

• How much data: works perfectly in OCL.

• type of shifts: ignores imbalance in the stream. If one class is
much more frequent, it will be over-represented in the buffer
• Easy to fix by balancing the buffer capacity by class (i.e. keep one

reservoir for each class)
• If the imbalance is at a different level (e.g. domain) we would need task

labels to recognize them (which we probably don’t have)

• Task boundaries: it doesn’t need them. It’s a strong OCL
baseline

30

Online Continual Learning with Replay

Soutif-Cormerais, Albin, et al. "A comprehensive empirical evaluation on online continual learning." ICCV Workshops. 2023. 31

Notice that we
apply different
augmentations
at each step!

A Note on Augmentations

• The buffer needs to provide a good
coverage of the past data distribution

• Diversity is clearly fundamental to
mitigate forgetting

• Diversity also helps overfitting the buffer

• Augmentation are a key implementation
detail

• Especially important in online settings
with multiple passes or with limited
buffer sizes

Zhang, Yaqian, et al. "A simple but strong baseline for online continual learning: Repeated augmented rehearsal." NeurIPS 2022 32

GDumb

A “Dumb” but popular replay baseline

• Greedy Sampler: The sampler greedily
stores samples while balancing the
classes.

• Dumb Learner: Before inference, the
learner trains a network from scratch
on memory 𝐷𝑡 provided by the sampler.

• Masking: If a mask 𝑚 is given at
inference, GDumb classifies on the
subset of labels provided by the mask.
• class-incremental: mask only unseen

classes.
• task-incremental: mask classes outside of

current task.

GDumb: A Simple Approach that Questions Our Progress in Continual Learning. Prabhu et al. ECCV, 2020. 33

Greedy Sampler

GDumb: A Simple Approach that Questions Our Progress in Continual Learning. Prabhu et al. ECCV, 2020. 34

Is Gdumb Fair?

• Gdumb trains the model from scratch at each step

• Zero knowledge transfer because the network is always trained
from scratch on the buffer data (quite dumb indeed!).

• Despite its simplicity, it is a very competitive method in the
class-incremental setting.

• Q: What is Gdumb biggest limitation?
• Suggestion: think about the constraints we had for OML methods.

35

Gdumb limitations

• Zero Knowledge Transfer

• Limited use of the data: the model is trained only on a number
of samples equivalent to the buffer size

• Latency: before inference we need to train a DNN from scratch,
which is very expensive if we need continuous evaluations

• Useful as a simple baseline for replay methods

36

Sample Selection Strategy

• How do we choose the best examples from the buffer?

• Often it’s a random (balanced) selection

• Can we do something better?

Online Continual Learning with Maximally Interfered Retrieval. Aljundi et al. 2019. 37

MIR – Maximally Interfered Retrieval

IDEA: Select examples that are more
negatively impacted by the weights
update.

High-Level Algorithm:

• Sample from the current data

• Estimate weight update

• Estimate loss of buffer samples with
the new weights

• Select samples with the largest drop
(𝑠𝑀𝐼−1)

• Do SGD step on concatenated
minibatch

Online Continual Learning with Maximally Interfered Retrieval. Aljundi et al. 2019. 38

New weights (new samples only)

Loss at the
new weights

Maximal
interference
criterion

Loss at the
old weights

MIR – Maximally Interfered Retrieval

LIMITATION: Computationally
expensive w.r.t. the actual
accuracy gain over random
selection

• It needs an additional forward
pass on a large subset of the
buffer examples to find the
maximally interfered ones

Online Continual Learning with Maximally Interfered Retrieval. Aljundi et al. 2019. 39

New weights (new samples only)

Loss at the
new weights

Maximal
interference
criterion

Loss at the
old weights

Example of MIR

Online Continual Learning with Maximally Interfered Retrieval. Aljundi et al. 2019. 40

Benchmark:
OCL version
of Split MNIST

Latent Replay

• PROBLEM: Replay in the input space is
inefficient and biologically implausible

• SOLUTION: replay latent activations
• Good Accuracy-Memory-Computation trade-

offs.
• There is no obvious choice for the layer.

Middle layers can be very wide.
• If we allow lossy storage activations can be

compressed a lot

• Algorithm:
• Store latent representation
• Forward new samples up to latent replay layer
• Concatenate new and stored representations
• Forward to the output layer

Latent Replay for Real-Time Continual Learning. Pellegrini et al. IROS, 2019. 41

Freezing + Latent Replay

• Low layers are trained early
during training. They don’t
change much afterward.

• We can freeze them at some
point.

• Improves latent replay. If we
don’t freeze the latent
representation in the buffer will
become outdated over time

42

Generative Replay

• Buffer size is limited by memory constraints.
• Using generative models we store a finite number of parameters but

can sample as many examples as we want.
• Biologically plausible.

Continual Learning with Deep Generative Replay, Shi et al, 2017. 43

Generative Replay in Practice

• Currently there is no effective
algorithm to train generative models
continually.

• We can train one model per
task/experience with a linear scaling
of the memory cost.

• Alternative: Knowledge Distillation
with generative samples
• If we use classification losses examples

should resemble the target class.
• if we use methods such as knowledge

distillation we can potentially use very
distorted samples

Lesort, T et al. Generative models from the perspective of continual learning. In IJCNN 2019. 44

CIFAR10 samples from
generative models

Did we just solve continual learning?

Not really…

• The gap with offline training is still big.

• The accuracy improvements with respect to
the memory size is often logarithmic.
• Huge buffer sizes (approximating a cumulative

strategy) are expensive.
• Example: ImageNet 50 imgs per class means

about 7 GB memory

• Additional forward and backward passes
over the same examples
• If you want to balance over tasks, this can easily

become a linear cost over time

45Latent Replay for Real-Time Continual Learning. Pellegrini et al. IROS, 2019.

How Many Samples do We Need?

• You may need a lot of exampes
to recover the joint training
performance

• For reference, CIFAR100 has
500 samples per class

• The plot shows a gap even
when more than half (320) of
the samples are stored for
rehearsal
• Early phases of training are

critical. Learning from a small
experience may hurt performance

• On the other hand, CL avoids
retraining from scratch and saves
memory

M. Masana et al. 2022. “Class-Incremental Learning: Survey and Performance Evaluation on Image Classification.” IEEE TPAMI 46

Natural Repetitions

H. Hemati et al. “Class-Incremental Learning with Repetition.” CoLLAs ‘23 47

In real-world applications, class repetitions may happen in the stream naturally.

• Rehearsal naturally happens even without any replay buffer.

• May be a less effective form of rehearsal (missing class, unbalanced, biased,
…)

• We can approximate it by generating a more natural stream with repetitions

Effect of Natural Repetitions

H. Hemati et al. “Class-Incremental Learning with Repetition.” CoLLAs ‘23 48

Missing class accuracy improves over time, even for naive finetuning

Naive finetuning approaches replay for long streams with repetitions

In unbalanced streams, class-
balanced buffers and reservoir
sampling are not effective

Take-Home Messages

• Replay is almost always beneficial if you can afford it. You should
use as much replay as you can.

• Easy to implement, even on low-powered edge devices.

• There are many improvements over the basic reservoir sampling, but
the gain are often marginal for medium (or bigger) buffers.

• There is a lot of CL research that tries to limit the need for replay for
practical reasons (memory, privacy) and because of biological
plausibility.
• latent replay is quite effective in this settings

• Generative is promising but limited by the CL capability of generative models

49

Next Lecture

Regularization Methods

• Approximating the past task loss
• With an approximation of the bayesian posterior

• With an approximation of the curvature of the loss

50

	Diapositiva 1: Continual Learning
	Diapositiva 2: Outline
	Diapositiva 3: CL Strategy
	Diapositiva 4: CL Strategy Categorization
	Diapositiva 5: CL Strategy Components
	Diapositiva 6: Baselines: Finetuning
	Diapositiva 7: Baselines: Ensemble
	Diapositiva 8: Baselines: Joint Training
	Diapositiva 9: Baselines: Cumulative
	Diapositiva 10: Baselines
	Diapositiva 11: Basic Design Choices
	Diapositiva 12: Model Architecture in CL
	Diapositiva 13: Width and Depth
	Diapositiva 14: Global Pooling
	Diapositiva 15: Replay
	Diapositiva 16: Class-Incremental Learning with Replay
	Diapositiva 17: Replay
	Diapositiva 18: Replay Algorithm
	Diapositiva 19: Growing vs Fixed Memory
	Diapositiva 20: Insert / Remove / Sample Policies
	Diapositiva 21: Real vs Synthetic Samples
	Diapositiva 22: Input vs Latent Replay
	Diapositiva 23: Neuroplausibility of Replay
	Diapositiva 24: Random Replay
	Diapositiva 25: Random Replay – Improved Sampling
	Diapositiva 26: Results
	Diapositiva 27: Random Replay
	Diapositiva 28: Reservoir Sampling
	Diapositiva 29: RS – Probabilities
	Diapositiva 30: Reservoir Sampling
	Diapositiva 31: Online Continual Learning with Replay
	Diapositiva 32: A Note on Augmentations
	Diapositiva 33: GDumb
	Diapositiva 34: Greedy Sampler
	Diapositiva 35: Is Gdumb Fair?
	Diapositiva 36: Gdumb limitations
	Diapositiva 37: Sample Selection Strategy
	Diapositiva 38: MIR – Maximally Interfered Retrieval
	Diapositiva 39: MIR – Maximally Interfered Retrieval
	Diapositiva 40: Example of MIR
	Diapositiva 41: Latent Replay
	Diapositiva 42: Freezing + Latent Replay
	Diapositiva 43: Generative Replay
	Diapositiva 44: Generative Replay in Practice
	Diapositiva 45: Did we just solve continual learning?
	Diapositiva 46: How Many Samples do We Need?
	Diapositiva 47: Natural Repetitions
	Diapositiva 48: Effect of Natural Repetitions
	Diapositiva 49: Take-Home Messages
	Diapositiva 50: Next Lecture

