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Outline

• CL regularization as past loss approximation

• EWC: an information-geometric approximation

• SI: an optimization-based approximation

• We will also discuss Natural Gradient Descent
• This is unrelated to our goal of mitigating forgetting but it’s a 

popular application of the same theory behind EWC
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Proxy Losses
Tools to find a good surrogate loss for the old data
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Continual Learning Objective

CL Loss: 
ℒtot (𝜃) = ℒnew (𝜃) + ℒold (𝜃)

• We estimate ℒnew (𝜃) from new data (easy)

• How do we estimate ℒold (𝜃)?
• We don’t have access to the old data

• We need to approximate it
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Bayesian vs Optimization Approach

• Given the current model 𝜃𝑡 trained up to experience 𝑡

• Bayesian approach: 
• We have a posterior 𝑝𝑡(𝜃)
• Solution: compute new posterior 𝑝𝑡+1(𝜃) usando 𝑝𝑡(𝜃) come prior (bayesian 

sequential update)
• Approximation: the posterior will be approximated, which will introduce errors 

over time

• Optimization approach: 
• Find a suitable approximation ሚℒ𝑜𝑙𝑑 𝜃  for ℒold 𝜃
• Optimize ሚℒ𝑜𝑙𝑑 𝜃 + ℒnew (𝜃)
• The approximation will use local information about loss at the current 

solution 𝜃𝑡 , which is a minima for old experiences
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The Optimization Approach

• We can use Taylor to approximate ℒold around the previous 
solution 𝜃𝑡

ℒold (𝜃) ≈ ℒold (𝜃𝑡) + ∇ℒold 𝜃𝑡
𝑇(𝜃 − 𝜃𝑡) +

1

2
(𝜃 − 𝜃𝑡)𝑇𝐻𝑓(𝜃𝑡)(𝜃 − 𝜃𝑡)

• This approximation provides a surrogate loss that we can 
estimate without the old data

• The loss for the old experiences with parameters 𝜃 is 
approximated with a quadratic loss function
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The Optimization Approach

ℒold (𝜃) ≈ ℒold (𝜃𝑡) + ∇ℒold (𝜃𝑡)(𝜃 − 𝜃𝑡) +
1

2
(𝜃 − 𝜃𝑡)𝑇𝐻𝑓(𝜃𝑡)(𝜃 − 𝜃𝑡)

When we minimize the surrogate loss:

• 𝜃𝑡 is the previous solution and it’s constant. ℒold (𝜃𝑡) is a constant that we can ignore

• 𝜃𝑡 is a minimum of ℒold (𝜃𝑡). Therefore ∇ℒold 𝜃𝑡 ≈ 0, ∇ℒold 𝜃𝑡
𝑇 𝜃 − 𝜃𝑡 ≈ 0 and we can 

ignore it

• We will use a diagonal approximation of 𝐻𝑓(𝜃𝑡)

The result is a loss of the form σ𝑖 ℎ𝑖  (𝜃
𝑖

− 𝜃𝑡
𝑖)2

Now we «only» need to find a good approximation for the (diagonal) of the hessian.
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Regularization as Importance

• Our loss is σ𝑖 ℎ𝑖  (𝜃
𝑖

− 𝜃𝑡
𝑖)2

• This is a weight decay
• Centered around the previous solution

• Non-uniform

• The coefficients ℎ𝑖  are the curvature of the loss around 𝜃𝑡

• Informally, we can think of ℎ𝑖 as the importance of parameter 𝑖

• Keep in mind that this is only a local approximation
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Forgetting and Parameter Importance

DNNs are overparameterized:

• For each task, we expect that only few parameters are 
important (high ℎ𝑖)

• The loss penalizes changes in the important parameters (high 
curvature) while leaving the unimportant ones free to adapt to 
the new task



𝑖

ℎ𝑖  ( 𝜃𝑖 − 𝜃𝑡
𝑖) 2
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Regularization as Distance between Solutions

• Can we measure the distance 
between the old and new solution?

• What is a good distance measure?

𝐿 𝜃 = 𝐿𝑛𝑒𝑤 𝜃 + 𝐷 𝜃, 𝜃𝑜𝑙𝑑
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Bayesian Sequential Udpate

• Can we compute the posterior?
• Not really with DNN…

• Can we at least approximate it?
• Yes, with some «brutal» approximations

• The approximation will cause some forgetting over time

• It may still be the best that we can do

• If we have an approximate posterior, we can use a sequential 
bayesian update:

log 𝑝(𝜃 ∣ 𝒟) = log 𝑝 𝒟𝑛𝑒𝑤 ∣ 𝜃 + log 𝑝 𝜃 ∣ 𝒟𝑜𝑙𝑑 − log 𝑝 𝒟𝑛𝑒𝑤
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Recap

• Our goal is to find a good approximation of loss for the past 
data

• In order to do that we need some information, such as
• The curvature of the loss and a good minima

• A distance metric between solution

• An importance measure for the model’s parameters

• The posterior of the weights

• PROBLEM: We still need to find an effective approximation for 
these quantities
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Fisher Information
Measuring distances in the probability space
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Distance between solutions

• We can think of our loss σ𝑖 ℎ𝑖  (𝜃
𝑖

− 𝜃𝑡
𝑖)2 as a distance measure 

between two models: 𝜃 and 𝜃𝑡

Is it a good distance measure?

• Yes, if ℎ𝑖 are a good approximation of the curvature of the loss

• Can we find other good importance measures that are easy to 
compute?

• Can we use the l2 distance σ𝑖(𝜃
𝑖

− 𝜃𝑡
𝑖)2 ?

• IDEA: we don’t really care about the parameters, we care about the 
distance between the probability distributions 𝑓(. , ; 𝜃) and 𝑓(. ; 𝜃𝑡)
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Kullback Leibler Divergence

• KL divergence measures the distance between two probability 
distributions

𝐷KL(𝑃 ∥ 𝑄) = න
−∞

∞

𝑝(𝑥)log
𝑝(𝑥)

𝑞(𝑥)
d𝑥

• It can be computed in closed-form for simple distributions

• Otherwise, we can estimate it using the data

• 1D gaussian: 𝐾𝐿 𝜇1, 𝜎1, 𝜇2, 𝜎2 = log
𝜎2

𝜎1
+

𝜎1
2+ 𝜇1−𝜇2

2

2𝜎2
2 −

1

2
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Side note: KL is not symmetric

• 𝐷KL(𝑃 ∥ 𝑄) = ∞−

∞
𝑝(𝑥)log

𝑝(𝑥)

𝑞(𝑥)
d𝑥

• In the examples below P is a bimodal distribution, while Q is unimodal

• We minimize the forward and reverse KL by fixing P and optimizing Q

Images from Variational Bayes and The Mean-Field Approximation | Bounded Rationality (bjlkeng.io) 16

«forward KL» KL(P || Q) 
• Q will take the average mode
• Q(Z) is known as zero-avoiding
• minimizing forward-KL stretches your 

variational distribution Q(Z) to cover 
over the entire P(Z)

«reverse KL» KL(Q || P) 
• Q will take a single mode
• If p(Z)=0, we must ensure that the weighting function q(Z)=0 

wherever denominator p(Z)=0, otherwise the KL blows up.
• This is known as "zero-forcing«
• reverse-KL "squeezes" the Q(Z) under P(Z).

https://bjlkeng.io/posts/variational-bayes-and-the-mean-field-approximation/


Example – 1D Gaussians

• All the plots have the same l2 
distance in the parameter space 
(=1) but are very different in the 
«function space»

• The KL-divergence computes 
the distance between the two 
distributions

• 1D gaussian: 𝐾𝐿 𝜇1, 𝜎1, 𝜇2, 𝜎2 =

log
𝜎2

𝜎1
+

𝜎1
2+ 𝜇1−𝜇2

2

2𝜎2
2 −

1

2
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Example – 1D Gaussians

• If we make a small change to 
the blue distribution, in the 
top-right picture we get a 
much bigger change in KL 
distance

• We want to:
• take into account the «local 

geometry» during SGD
• Try to change only the 

parameters that won’t increase 
the KL distance wrt the previous 
model too much
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Fisher Information

• Fisher Information

F(𝜃∗) = E
𝜕

𝜕𝜃
ln 𝑓(𝑋; 𝜃∗)

2

• The (True) Fisher information is equivalent to the curvature of 
the 𝐾𝐿 𝜃 𝜃∗)

• The Fisher information F(𝜃) measures how sensitive the 
distribution is wrt changes to each parameter
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Fisher Information

• Fisher Information:F(𝜃∗) = E
𝜕

𝜕𝜃
ln 𝑓(𝑋; 𝜃∗)

2

• The KL is not the loss function, but it’s a good distance measure 
and often close to the loss function (e.g. crossentropy)

• Easy to compute: we only need the gradients

• In our setting, the expectation is taken by sampling 𝑝 𝑥  from 
the data and 𝑝 𝑦 𝑥  from the model (not the data!)
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How to compute the Fisher Information

• True Fisher Information:
• Fς𝑛 𝑝𝜃(𝑥,𝑦)(𝜃) = 𝑁𝔼𝑥,𝑦∼𝑝(𝑥)𝑝𝜃(𝑦∣𝑥) ∇𝜃log 𝑝𝜃(𝑦 ∣ 𝑥)∇𝜃log 𝑝𝜃(𝑦 ∣ 𝑥)𝑇

• x sampled from the true distribution, 𝑝𝜃 𝑦 ∣ 𝑥𝑛  is the model’s output distribution
• We don’t know 𝑝 𝑥  so we can’t compute this quantity

• Fisher Information:
• Fς𝑛 𝑝𝜃 𝑦∣𝑥𝑛

(𝜃) = σ𝑛 𝔼𝑦∼𝑝𝜃 𝑦∣𝑥𝑛
∇𝜃log 𝑝𝜃 𝑦 ∣ 𝑥𝑛 ∇𝜃log 𝑝𝜃 𝑦 ∣ 𝑥𝑛

𝑇

• x sampled from the dataset, 𝑝𝜃 𝑦 ∣ 𝑥𝑛  is the model’s output distribution
• we can compute this and it is the quantity most frequently used by method that require the Fisher 

information

• Empirical Fisher Information:
• ෨F(𝜃) = σ𝑛 ∇𝜃log 𝑝𝜃 𝑦𝑛 ∣ 𝑥𝑛 ∇𝜃log 𝑝𝜃 𝑦𝑛 ∣ 𝑥𝑛

𝑇

• Here, 𝑥𝑛, 𝑦𝑛 are both sampled from the dataset
• This is easier to implement but it is not a good approximation of the curvature of the KL (see slide 28 

for an example)
• It is not a Monte Carlo estimate of the Fisher Information

A word of advice: most code on github computes the empirical Fisher (and it is often wrong in other 
subtle ways)

Kunstner, Frederik, Philipp Hennig, and Lukas Balles. "Limitations of the empirical fisher approximation for natural gradient

descent." Advances in neural information processing systems 32 (2019).
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Information Geometry Applications

• The Fisher information provides information about the local 
geometry of the statistical manifold of probability distributions 
represented by our model

• We know which parameters are more sensitive to infinitesimal 
changes (measured by the KL distance)

• We can use this information for
• Speed up training with Natural Gradient Descent

• Prevent forgetting with Elastic Weight Consolidation

22



Natural Gradient Descent
Fast and stable SGD for statistical manifolds
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SGD Distance Metric

• SGD step: 𝜃𝑖 = 𝜃𝑖−1 − 𝛼∇𝐿(𝜃𝑖−1)

• When we do a descent step, the learning rate is the same for 
every parameter
• Basically, we can think of SGD as using the L2 distance to measure 

distances between parameters

• However, we know that same parameters are more sensitive 
than others (in the KL distance)

• Can we account for the KL distance when we do a SGD step?
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SGD with KL Distance

• We can reframe SGD as a constrained optimization problem:

Δ𝜃∗ = arg 𝑚𝑖𝑛
Δ𝜃

ℒ(𝜃 + Δ𝜃)

s.t. 𝐷𝐾𝐿 𝑝𝜃 ∥ 𝑝𝜃+Δ𝜃 = 𝑐

• Now, we are ensuring that SGD steps consider the KL distance

• NOTE: this is equivalent to SGD if we use the l2 distance in the 
constaint instead of the KL
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SGD with KL Distance

• To solve the constrained optimization problem we use the Lagrangian approximating 
both the loss and the KL with their Taylor expansion:

Δ𝜃∗ = arg 𝑚𝑖𝑛
Δ𝜃

ℒ(𝜃) + ∇𝜃ℒ(𝜃)Δ𝜃 +
1

2
𝜆Δ𝜃⊤ℐ(𝜃)Δ𝜃 − 𝜆𝑐

• Remember: the hessian ℐ 𝜃 is the Fisher information!

• By computing the gradient w.r.t. ∆θ and setting it to zero:

∇𝜃ℒ(𝜃) + 𝜆ℐ(𝜃)Δ𝜃 = 0

Δ𝜃∗ =
1

𝜆
ℐ(𝜃)−1∇𝜃ℒ(𝜃)

• We can ignore the factor 1/λ, which will become the learning rate in our method.
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Natural Gradient Descent (NGD) 

• Natural Gradient Descent update: 

𝜃 = 𝜃 − 𝜂 𝐹(𝜃)−1∇𝜃ℒ(𝜃)

• 𝜂 is the learning rate

• 𝐹(𝜃)−1 the inverse of the Fisher Information Matrix

• The update steps considers the local curvature of the KL

• Intuitively, more sensitive parameters are moved less, while less 
sensitive parameters are moved more (we multiply by the inverse)
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Example: linear regression

• Simple linear regression problem (see notebook for implementation)

• SGD follows the gradient of the loss with a constant learning rate, ignoring the 
differences between the two parameters (weight and bias)

• NGD converges much faster
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NGD is more stable

• Compared to the previous slide, we only increased the learning 
rate from 0.15 to 0.5

• NGD is also more stable
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Training Stability

• The previous example may look like a toy 
example but it’s actually much easier than 
DNN training

• In practice, DNN optimization looks much 
worse than this problem

• Few parameters have high fisher info
• Most parameters have a low fisher info

• We can plot the (diagonal of the) Fisher and 
look at its distribution

• «flat distribution»: a good parameterization, 
where naive SGD will be as good as NGD

• «skewed distribution»: some parameters are 
more important and SGD will be slower or less 
stable than NGD depending on the chosen 
learning rate

• Bottom figure: fisher diagonal after learning 
on Task 1 of SplitMNIST (see notebook)
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Fisher vs Empirical Fisher

Kunstner, Frederik, Philipp Hennig, and Lukas Balles. "Limitations of the empirical fisher approximation for natural gradient

descent." Advances in neural information processing systems 32 (2019). 31



How to compute the Fisher Information

• True Fisher Information:
• Fς𝑛 𝑝𝜃(𝑥,𝑦)(𝜃) = 𝑁𝔼𝑥,𝑦∼𝑝(𝑥)𝑝𝜃(𝑦∣𝑥) ∇𝜃log 𝑝𝜃(𝑦 ∣ 𝑥)∇𝜃log 𝑝𝜃(𝑦 ∣ 𝑥)𝑇

• x sampled from the true distribution, 𝑝𝜃 𝑦 ∣ 𝑥𝑛  is the model’s output distribution
• We don’t know 𝑝 𝑥  so we can’t compute this quantity

• Fisher Information:
• Fς𝑛 𝑝𝜃 𝑦∣𝑥𝑛

(𝜃) = σ𝑛 𝔼𝑦∼𝑝𝜃 𝑦∣𝑥𝑛
∇𝜃log 𝑝𝜃 𝑦 ∣ 𝑥𝑛 ∇𝜃log 𝑝𝜃 𝑦 ∣ 𝑥𝑛

𝑇

• x sampled from the dataset, 𝑝𝜃 𝑦 ∣ 𝑥𝑛  is the model’s output distribution
• we can compute this and it is the quantity most frequently used by method that 

require the Fisher information

• Empirical Fisher Information:
• ෨F(𝜃) = σ𝑛 ∇𝜃log 𝑝𝜃 𝑦𝑛 ∣ 𝑥𝑛 ∇𝜃log 𝑝𝜃 𝑦𝑛 ∣ 𝑥𝑛

𝑇

• Here, 𝑥𝑛, 𝑦𝑛 are both sampled from the dataset
• This is easier to implement but it is not a good approximation of the curvature of the 

KL (see slide 28 for an example)
• It is not a Monte Carlo estimate of the Fisher Information

Kunstner, Frederik, Philipp Hennig, and Lukas Balles. "Limitations of the empirical fisher approximation for natural gradient

descent." Advances in neural information processing systems 32 (2019).
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Adam

• In Adam, ො𝑣𝑡 is an 
approximation to the 
diagonal of the Fisher 
information matrix 
(Pascanu & Bengio, 2013)

• Adam’s preconditioner 
(like AdaGrad’s) is more 
conservative than NGD by 
preconditioning with the 
square root of the inverse

Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014). 33



Recap

• The Fisher Information provide a local distance measure for our 
model

• We can exploit it to make the gradient descent faster and more 
stable

NGD and the Fisher information appear everywhere in ML models:

• Many methods employ some form of NGD under the hood

• Others using the natural parameters, a parametrization where we 
don’t need the Fisher info (unfortunately, we don’t have this luxury 
with DNNs)
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Elastic Weight Consolidation
Using the Fisher Information to prevent forgetting
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Importance-Based Methods

• An example of prior-focused method: 
Model loss function of previous tasks 
with surrogate losses.

• IDEA: important weights should not 
change. We can change unimportant 
weights only.
• Deep networks are overparameterized. This 

means that we should have a lot of free 
capacity.

• Each task should have a small number of 
important weights.

• PROBLEM: how do we find the important 
weights? Fisher Information!

Overcoming catastrophic forgetting in neural networks, Kirkpatrick et al, PNAS 2017. 36



EWC – Setting

• Large batches

• We know task boundaries

• We have enough data to find a good 
model (i.e. the model at the 
boundaries is optimal for the 
current task)

• Designed for task labels, but can 
work without them

37



Elastic Weights Consolidation (EWC)

Key Idea: after training, store tuple of 

< 𝜃𝑖−1, 𝐹𝑖−1 >

• 𝜃𝑖−1 model after training

• 𝐹𝑖−1 Fisher info at 𝜃𝑖−1 estimated with data 𝐷𝑖−1

At the end of each experience: 

• Store model

• Compute Fisher info

During Training:

• Add EWC loss to the total loss

Overcoming catastrophic forgetting in neural networks, Kirkpatrick et al, PNAS 2017. 38



Elastic Weights Consolidation (EWC)

EWC loss is like the l2 loss with:

• 𝐹𝑖−1, the Fisher diagonal coefficients as 
weights for each parameter

• The previous weights 𝜃𝑖−1 as the “center” of 
the loss (i.e. zero loss point)

Elastic: weights are pulled towards the 
previous solution (like the l2 decay), weighted 
by their importance.

Overcoming catastrophic forgetting in neural networks, Kirkpatrick et al, PNAS 2017. 39



Elastic Weights Consolidation (EWC)

How many importance values do you need to 
keep?

• separate: One tuple < 𝜃𝑖−1, 𝐹𝑖−1 > for each 
task. 
• Linear cost, i.e. as much as keeping a separate 

model for each experience.

• online: Online estimate of the Fisher, where 
the previous Fisher is updated with an 
average or an exponential moving 
average(EMA) of the fisher values
• It corresponds to the sequential Bayesian update

• Very sensitive to regularization strength 𝜆

Overcoming catastrophic forgetting in neural networks, Kirkpatrick et al, PNAS 2017. 40



EWC – Laplace Approximation

• We can also think of the Fisher as an 
approximation of the posterior when using the 
sequential bayesian update scheme where the 
posterior becomes the new prior

log 𝑝(𝜃 ∣ 𝒟) = log 𝑝 𝒟𝑛𝑒𝑤 ∣ 𝜃 + log 𝑝 𝜃 ∣ 𝒟𝑜𝑙𝑑 − log 𝑝 𝒟𝑛𝑒𝑤

Laplace Approximation:

• True posterior 𝑝 𝜃 ∣ 𝒟𝑜𝑙𝑑  is intractable

• We approximate it with a gaussian with mean 𝜃𝑡 
(MAP solution) and covariance 𝐹 𝜃𝑡

Image source: wikimedia 41



Importance weights follow a logarithmic distribution

Continuous Learning in Single-Incremental Tasks, Maltoni & Lomonaco, Neural Networks, 2019. 42

This is a good news for us because having few important parameters 
means that we can use a strong regularization coefficient for them 
while having enough free capacity to learn new tasks.



Recap

• EWC provides a good proxy loss for past experiences

• Computing the Fisher requires only the gradients (computed at 
boundaries)

Problems:

• Needs task boundaries and large batches, which makes it 
useless in online settings

• In «separate» mode it has a linear cost in the number of tasks 
(one Fisher and one model stored for each task)
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Synaptic Intelligence
Online estimate of the curvature of the loss with Synaptic Intelligence
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Online CL – Importance-based Methods

• EWC requires a trained model (i.e. 
after convergence) to estimate the 
Fisher Information.
• We need task boundaries

• We need enough data to guarantee 
convergence

• Only applicable to batch scenarios.

• We need an online importance 
estimate.

45



Synaptic Intelligence (SI)

KEY IDEA: a parameter importance is proportional to its 
contribution to the loss decrease over the entire training 
trajectory

• How do we measure it? The change in the loss is 
approximated using the gradient (for small steps)

• 𝜃 𝑡 weights at time t, 𝛿(𝑡) change in weights, 𝑔𝑘 𝑡 gradient 
for weight k

Continual Learning Through Synaptic Intelligence, Zenke et al, 2017.
Continuous Learning in Single-Incremental Tasks, Maltoni & Lomonaco, Neural Networks, 2019.
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Synaptic Intelligence (SI)

• The total contribution to the loss change is the sum of weight 
changes, weighted by the gradient, over the entire training curve 
(equation below)

• 𝜃′(𝑡) weight change

• 𝜔𝑘
𝜇

importance of weight k for task 𝜇

Continual Learning Through Synaptic Intelligence, Zenke et al, 2017.
Continuous Learning in Single-Incremental Tasks, Maltoni & Lomonaco, Neural Networks, 2019.
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Synaptic Intelligence (SI)

• The loss penalize changes for 
important parameters

• Similar to EWC with different 
importance values

• 𝑐 regularization strength

• Δ𝑘
𝜈 ≡ 𝜃𝑘 𝑡𝜈 − 𝜃𝑘 𝑡𝜈−1  is the distance between 

the parameter 𝑘 after exp. 𝜈 and 𝜈 − 1

• 𝜉 is a small number in the denominator 
that avoids numerical issues

Continual Learning Through Synaptic Intelligence, Zenke et al, 2017.
Continuous Learning in Single-Incremental Tasks, Maltoni & Lomonaco, Neural Networks, 2019.
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Synaptic Intelligence (SI)

KEY IDEA: a parameter importance is 
proportional to its contribution to the 
loss decrease over the entire training 
trajectory

• efficient online computation

• As with EWC, hyperparameters may 
be difficult to calibrate

Continual Learning Through Synaptic Intelligence, Zenke et al, 2017.
Continuous Learning in Single-Incremental Tasks, Maltoni & Lomonaco, Neural Networks, 2019.
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Take-Home Messages

• In replay-free CL, the key issue is the approximation of the loss for the old 
experiences without direct access to their data

• We can approximate it with a quadratic loss using the previous model and 
an estimate of the curvature

• EWC: distance in the “information geometry” manifold

• Synaptic Intelligence: online approximation of the curvature of the loss 
function

• Prior-based methods are quite effective with 
• Small drifts (like some domain-incremental scenarios)
• Pretrained models

• In many scenarios (e.g. class-incremental), the assumptions of prior-
based methods (flat minima, linear approximations) are too strong and the 
method fail to beat naïve finetuning
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Next Lecture

More regularization methods

• CL and SGD bias

• Sparsity

• Knowledge distillation

• CL as constraints
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