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Outline

Regularization Methods

• Motivations

• Classic regularization: weight decay, lr, sparsity

Regularization methods in CL:

• Functional Regularization: knowledge distillation and LwF

• Constraints: GEM
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Regularization – Motivations 

• Sometimes, we cannot store the data for replay

• Even if we can, the limited buffer does not contain all the 
information about the previous experiences

Goals for this lecture:

• Can we model forgetting as a constraint to the new training 
step?

• Can we use the old model to rehearse the old experiences?

3



Regularization – Categories

• Constrained: 
• Find a mathematical definition of 

forgetting as an optimization constraint

• Prior-focused (previous lecture):
• Model loss function of previous tasks 

with surrogate losses.
• Bayesian CL: prior used to model previous 

tasks

• Functional/Data Regularization:
• Replicate the behavior of the old model 

on the previous tasks while learning the 
new ones

A continual learning survey: Defying forgetting in classification tasks. De Lange et al, TPAMI 2021. 4



Classic Regularization
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Early-Stopping, L1 & L2, Dropout

• Parameters such as early stopping, 
l1/l2 weight decay and dropout can 
mitigate forgetting

• The more you regularize
• -> the less the model is changing
• -> the model has less forgetting

• In practice, these hyperparameters 
alone are not enough to prevent 
forgetting

• See the ref for experimental results on 
the impact of activation functions, 
different optimizers and L2/L1 & 
Dropout regularizations

An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks, Goodfellow et al, 2015. 6



Early-Stopping, L1 & L2, Dropout

Example: Big Brother Experiment

• 7 finalists who stayed in the 
house for 55 days

• Violet-Jones to detect faces

• Adjustable learning rate based 
on thresholds

• In general, custom lr schedules 
can work well

• We can recognize distribution 
drifts using the instantaneous 
loss and adjust the learning rate 
based on them

Comparing Incremental Learning Strategies for Convolutional Neural Networks, Lomonaco et al, ANNPR 2016. 7



CL – An Optimization Perspective

• In offline training, the model 
optimizes a single loss 𝐿(𝐷, 𝜃) 
that is constant during the 
entire training loop

• In replay-free CL, the model 
optimizes 𝐿 𝐷𝑡 , 𝜃 , while the 
true objective is σ𝑡 𝐿(𝐷𝑡 , 𝜃)

• We need to ensure that the new 
minima remains a good 
solution for the old experiences

Image: H. Li et al. 2018. “Visualizing the Loss Landscape of Neural Nets.” NIPS 2018 8



CL and Curvature

• Given the Taylor approximation around the solution

ℒold (𝜃) ≈ ℒold (𝜃𝑡) + ∇ℒold 𝜃𝑡
𝑇(𝜃 − 𝜃𝑡) +

1

2
(𝜃 − 𝜃𝑡)

𝑇𝐻𝑓(𝜃𝑡)(𝜃 − 𝜃𝑡)

• We argued that we can use the curvature to model the loss on 
past data around the solution

• DNN losses have multiple minima, each one with a different 
local curvature

• IDEA: Can we find a minima with a flat curvature? Even without 
any regularization, flat minima should mitigate forgetting
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CL Training Regimes

The choice of optimizer, lr, 
scheduling, and batch size are critical

• First experience: needs to learn a 
stable solution
• This is a strong motivation for 

pretraining whenever it’s feasible

• Later: incremental steps must not 
destroy previously learned 
knowledge

• The two requirements are quite 
different.

Understanding the Role of Training Regimes in Continual Learning, Mirzadeh et al. 2020. 10



CL Loss Approximation

The geometry of the loss landscape matters: 

• 𝑤1
∗ solution after exp.1, 𝑤2

∗ solution after exp2, Δ𝑤 = 𝑤2
∗ −𝑤1

∗

• If the new solution is close enough, we can linearly approximate 
the loss on the previous experiences (second-order Taylor 
expansion)

• the wider the curvature of the first task, the less the forgetting
• This depends on eigenvalues of the hessian at 𝑤1

∗

Understanding the Role of Training Regimes in Continual Learning, Mirzadeh et al. 2020. 11



CL Loss Approximation

The geometry of the loss landscape matters: 

• If the new solution is close enough, we can linearly approximate 
the loss on the previous experiences
• IDEA1: try to change the model as little as possible

• IDEA2: try to learn as much as possible in the first task

• the wider the curvature of the first task, the less the forgetting
• IDEA3: try to guide the optimization trajectory towards flatter minima

Understanding the Role of Training Regimes in Continual Learning, Mirzadeh et al. 2020. 12



Learning Rate, Batch Size, Scheduling

By setting the SGD hyperparameters 
appropriately, we can guide the 
algorithm towards better solution
• It’s a form of inductive bias of the 

SGD
General Rule: learning rate, batch size, 
and optimizer
• start with a high initial learning rate 

for the first task to obtain a wide and 
stable minima. 

• for each subsequent task, slightly 
decrease the learning rate but also 
decrease the batch-size

• prefer SGD to Adam

Understanding the Role of Training Regimes in Continual Learning, Mirzadeh et al. 2020. 13



Benefits of Sparsity

• Sparse representations have several helpful 
properties for CL

• Separate different task into independent 
subnetworks
• Independent => no interference => zero forgetting
• High level of sparsity make it possible to store 

many networks even with limited memory

• The goal is to activate different subnetworks 
for each task to reduce interference

• Biologically plausible: 1012 neurons in the 
brain and 1015 synapses ≈ 1000 
connections for each neuron

Image from Supermasks in Superposition, Wortsman et al. 2020. 14



Types of Sparsity

• Weight sparsity:
• Small sparse networks for each task help to design 

cheap ensemble models
• A single (weight) sparse network for all the tasks 

does not help

• Activation sparsity:
• Sparse representation should be more orthogonal 

with each other and interfere less

• Gradient/update sparsity:
• Sparse gradients should be more orthogonal and 

interfere less

• NOTE: sparsity is also concerned with 
stability, not plasticity. Often, sparse methods 
will also reduce forward transfer

Image from Supermasks in Superposition, Wortsman et al. 2020. 15



Sparsity in CL Methods

• Two approaches: 
• Implicit: regularization method that 

implicitly force sparsity (today)

• Explicit: architectural methods that 
explicitly build sparse subnetworks (next 
lecture)

• Regularization methods can 
implicitly force sparsity
• l1 encourages sparsity |𝜃|

• l2 encourages small weights (not 
sparsity) 𝜃 2
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Lp norm unit circles
Source: Wikipedia



LWTA – Local Winner Take All

• WTA: competition mechanism 
where only the highest activated 
is propagated
• Losers are masked to zero

• L: Local competition. Each layer 
is divided into separate blocks.

• Sparsity induced by WTA

• Competition is a biologically 
plausible mechanism

Srivastava, Rupesh K, et al.. “Compete to Compute,” NIPS 2013
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Sparsity

Srivastava, Rupesh K, et al.. “Compete to Compute,” NIPS 2013
18

Subnetwork: The set of units that activate for a particular task/class
Two observations:
- Similar digits have similar subnetworks
- Subnetwork are less similar after training than before => Competition helps 

learning specialized and separate subnetworks



Functional Regularization
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Functional Regularization

• we have access to a model 𝑓𝑖−1
𝐶𝐿  (the 

previous model) that learned 
experiences 𝑆𝑡𝑟𝑎𝑖𝑛[1: 𝑖 − 1]

• IDEA: let’s replicate the old model 
behavior and update it only on the 
new examples

• PROBLEMS:
• What objective do we use?

• What data do we use?
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Equations in a Multi-Task Scenario
𝑥=input
𝑘=task label
𝑖=task label for new task
𝑓𝐸𝑥𝑝=model for new task

First Eq: copy old CL model on the first i-1 tasks
Second Eq: copy new model on the new task



Knowledge Distillation (KD)

KD: Offline training method to replicate the output of a pretrained model

• Teacher: frozen pretrained model

• Student: the new model that we want to train

KD is a general method with many applications outside CL:

• Example: Reducing the size of a model:
• Example teacher: ResNet101 pretrained on ImageNet
• Example student: ResNet18 trained with KD

Why does it work?

• Supervised training provides hard targets (i.e. the correct class)

• KD provides soft targets, which are more informative
• Example: soft targets encode similarities between classes
• Informally called «dark knowledge»
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KD Objective – KL-Divergence and MSE

• The KL-Divergence measures the similarity between two probability 
distributions (teacher and student)
• We are measuring the distance between the pdf of the teacher and the 

student

• ො𝑦 teacher, 𝑦 student

• Alternative: MSE between the logits || ො𝑦 − 𝑦||2
2

• Often more robust in CL

• Another alternative: KD + crossentropy
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Learning Without Forgetting (LwF)

LwF implements functional regularization 
with:

• Objective: knowledge distillation

• Data: current data

Key Aspects

• Straightforward application of KD in CL

• Originally designed for Task-Incremental 
settings then extended to single task.

• Efficient: requires only an additional 
forward pass with the teacher.

• Easy to implement and commonly used

Learning without Forgetting, Li et al, TPAMI 2017
Distilling the knowledge in a neural network, Hinton et al, 2015.

Continuous Learning in Single-Incremental Tasks, Maltoni & Lomonaco, Neural Networks, 2019.
23



LwF in Task-Incremental CL

• Multihead: separate output layer 
for each task.

• KD computed on the old head 
using the new data (𝐿𝑜𝑙𝑑)

• CE computed on the new head 
using the new data (𝐿𝑛𝑒𝑤)

Learning without Forgetting, Li et al, TPAMI 2017 24



LwF in Class-Incremental CL

• Single Head: a single output layer.
• We distinguish between new units, old 

units, and all units.

• KD computed on the old units using the new 
data (𝐿𝑜𝑙𝑑)

• CE computed on all the units using the new 
data (𝐿𝑛𝑒𝑤)

• Many alternatives are studied in the literature

Continuous Learning in Single-Incremental Tasks, Maltoni & Lomonaco, Neural Networks, 2019. 25

Single head in single incremental tasks.
New and old units have different losses.



Distillation in Practice

• Even outside CL, KD is 
surprisingly competitive

Implementation «tricks»

• Long aumentation pipelines

• Long training Schedules

• Consistent teacher and student 
inputs (i.e. same augmentation 
for both)

Beyer, Lucas, et al. "Knowledge distillation: A good teacher is patient and consistent." CVPR. 2022. 26



KD as Function Matching

KD is a function matching problem

• For any input, we know exactly what 
output we want
• The data is much less important in this 

problem than in a typical ML problem
• Having diverse data close to the domain 

of interest helps but it’s not a necessity

• KD works with any inputs (with 
different convergence speeds)
• The teacher training data
• Out-of-domain-data with augmentations
• A new task data (like in LwF!!!)

Beyer, Lucas, et al. "Knowledge distillation: A good teacher is patient and consistent." CVPR. 2022. 27



Weight vs Functional Regularization

• Prior-based methods require that the new models don’t move «too 
far» from the previous solutions
• We need a large model or a pretrained one to satisfy this requirement
• It’s only an approximation of the real objective

• Functional regularization is much less restrictive
• The weights can change, as long as the output for the previous units is the 

same
• The output of new units is completely unconstrained
• The previous model provides the exact outputs that we want (no 

approximation)
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KD with a Single Image

Asano, Yuki M., and Aaqib Saeed. "Extrapolating from a single image to a thousand classes using distillation." arXiv preprint (2021). 29



Single image in CL

Carta, Antonio, et al. "Projected Latent Distillation for Data-Agnostic Consolidation in Distributed Continual Learning." arXiv preprint (2023). 30



LwF

• We need task boundaries to know when to store the previous 
model

• The data that we use for KD (new data) is different from the one 
we used to train the teacher (old data) 

• Augmentations help KD, even when they distort the image

31



KD with Replay

Dark Experience Replay:

• Save tuples 𝑥, 𝑧 of <inputs, logits> in the 
buffer (class-balanced reservoir sampling)

• Rehearse with MSE loss on logits (KD):

• 𝑟𝑒𝑔 ← 𝛼 𝑧′ − ℎ𝜃 𝑥𝑡
′

2

2

Buzzega, Pietro, et al. "Dark experience for general continual learning: a strong, simple baseline." NeurIPS 2020 32



KD with Replay

Dark Experience Replay:

• Doesn’t require a teacher. We save the 
logits of the current teacher without 
updating them.

• Alternative: save also the label 𝑦 and 
rehearse on KD loss + crossentropy loss

• Very competitive results and low 
computational cost

Buzzega, Pietro, et al. "Dark experience for general continual learning: a strong, simple baseline." NeurIPS 2020 33



KD in Continual SSL

• We can also use KD to train SSL models

• SSL loss on new data + KD loss on old 
embeddings

ℒ = ℒ𝑆𝑆𝐿 𝒛𝐴, 𝒛𝐵 + ℒ𝐷 𝒛𝐴, 𝒛
¯ 𝐴

= ℒ𝑆𝑆𝐿 𝒛𝐴, 𝒛𝐵 + ℒ𝑆𝑆𝐿 𝑔 𝒛𝐴 , 𝒛
¯ 𝐴 .

• A and B images, 𝑧𝐴, 𝑧𝐵 embeddings of new model 

• 𝒛
¯
𝐴 embedding of old model

• ℒ𝑆𝑆𝐿 is used as the distillation loss

• 𝑔 is a projection network that maps from the new 
representation to the old ones

• Allows to update the representations and change 
them 

CaSSLe 2112.04215 (arxiv.org) 34

https://arxiv.org/pdf/2112.04215


Constraints
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Regularization Constraints

• Compute interference explicitly 
with a mathematical definition

• Modify learning step to remove 
interference

• Gradient-based definition of 
interference based on the cosine 
similarity

Lopez-Paz, David, and Marc’Aurelio Ranzato. “Gradient Episodic Memory for Continual Learning.” NIPS 2017 36

𝑔𝑜𝑙𝑑

𝑔𝑛𝑒𝑤

𝑔𝑜𝑙𝑑

𝑔𝑛𝑒𝑤

Negative cosine similarity: interference
Loss on the old task will increase.

Positive cosine similarity: positive 
backward transfer. The loss on the 
old task will increase.



Regularization Constraints

Gradient-based definition of 
interference based on the cosine 
similarity

• Compute gradient for the old and new 
task

• Compute cosine similaritiy between 
the gradients

• Negative: interference!

• Positive: positive backward transfer

• Zero: orthogonal tasks without 
interference

Lopez-Paz, David, and Marc’Aurelio Ranzato. “Gradient Episodic Memory for Continual Learning.” NIPS 2017 37

𝑔𝑜𝑙𝑑

𝑔𝑛𝑒𝑤

𝑔𝑜𝑙𝑑

𝑔𝑛𝑒𝑤

Negative cosine similarity: interference
Loss on the old task will increase.

Positive cosine similarity: positive 
backward transfer. The loss on the 
old task will decrease.



Estimating Gradient Interference

• Setting: Online Continual Learning with known task 
boundaries

• Episodic Memory: keep a balanced buffer
• Sample from the buffer and compute gradients for the old 

tasks
• We compute a separate gradient for each task

• Interference: compute the cosine similarity between 
gradients of the new task and old tasks
• Positive: backward transfer!
• Negative: interference

Lopez-Paz, David, and Marc’Aurelio Ranzato. “Gradient Episodic Memory for Continual Learning.” NIPS 2017 38



Removing Interference

• Given the interference as the cosine similarity between gradients 
of the new task and old tasks
• Positive: backward transfer!
• Negative: interference

• We want to remove the component of the new gradient that 
interferes with previous tasks

• Solution: Project the gradient s.t. the constraint is satisfied for all 
the tasks.
• Quadratic programming (QP) problem solved with off-the-shelf methods.
• 𝑔 current gradient, 𝑔𝑘 gradient for old task 𝑘

Lopez-Paz, David, and Marc’Aurelio Ranzato. “Gradient Episodic Memory for Continual Learning.” NIPS 2017 39



Gradient Episodic Memory (GEM)

• At each iteration:
• Update the memory with new data

• Sample from memory

• Compute gradient for each old task

• Compute current gradient

• Project gradient the remove the interference

• Update the model

40



Gradient Episodic Memory

Lopez-Paz, David, and Marc’Aurelio Ranzato. “Gradient Episodic Memory for Continual Learning.” NIPS 2017 41



GEM

Pros:
• Constraint formulation of forgetting
• Assuming the gradient estimate is correct (we only use few samples 

to estimate it) we can completely remove interference

Cons:
• Slow due to QP problem at every iteration
• Requires samples!
• The QP problem may not have a solution

• This will happen at some point because the more tasks we have, the more 
constraints we will have to add to the model

• GEM constraints reduce plasticity by constraining some update directions

42



Applications of Constraints

• Interference is a meta-objective
• We can optimize directly, as in GEM

• We can design a method that implicitly reduces the gradient 
interference

• Meta continual learning: minimize task interference explicitly 
with a loss or implicitly via MAML-like loop

• Online approximations of GEM constraints

43



Take-Home Messages

• Thinking about the effect of CL on the optimization trajectory 
allows to design methods that explicitly counteract forgetting, 
even without the previous data

• Knowledge distillation provides a general purpose tool for 
knowledge transfer 
• in our case, transfer from the old to the new model

• Very effective in many different problems

• Constraint formulation of forgetting
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Next Lecture

Architectural methods

• Task-Incremental methods

• Modular Architectures

• Sparsity
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