
Antonio Carta

antonio.carta@unipi.it

Continual Learning
Classifier Bias and Architectural Strategies

Outline

Classifier Bias

• How to train a CIL classifer

• How to fix CIL classifier bias

Architectural Methods

• Architectural Growth

• Sparsity

2

Image from Dall-e

Classifier Bias

3

RECAP: CNN in Computer Vision

In offline learning we observe these general phenomena:

• CNN Architecture: Input->(Conv->pool->relu)->FCN->softmax

• Low layers learn early and learn low-level features. They don’t change much
after the first epochs.

• High layers tend to be more task/domain-specific.

Q: How do we exploit this information in CL?

Image source: Data Analytics 4

Most Forgetting Happens in the Higher Layers

• Higher layers are the primary
source of catastrophic forgetting
(CIFAR10 2 tasks of 5 classes, top
row)

• Representational similarity (CKA)
scores between layers before and
after training on Task 2 indicate
that lower layers don’t change
much through training on task two,
while higher layers change
significantly (second row).

Ramasesh, Vinay V. et al.. “Anatomy of Catastrophic Forgetting: Hidden Representations and Task Semantics.” ICLR 2021 5

Most Forgetting Happens in the Higher Layers

• When freezing a contiguous block of
layers (starting from lowest) and
measuring accuracy during training on
Task 2, we observe lower layers can be
frozen with little impact (third row).

• Finally, after training on Task 2 we reset
contiguous blocks of layers to their
values before training and record the
resulting accuracy on Task 1 (bottom
row). We see a significant increase in
accuracy when resetting the highest N
layers (blue line) compared to resetting
the N lowest layers (gray line).

CONCLUSION: higher layers are
disproportionately responsible for
forgetting.

Ramasesh, Vinay V. et al.. “Anatomy of Catastrophic Forgetting: Hidden Representations and Task Semantics.” ICLR 2021 6

Finetuning the classifier

Simple tricks to mitigate
forgetting:

• Freeze lower layers after the
first learning experience

• Use a pretrained model

• Finetune the classifier,
possibly using a replay buffer
to avoid forgetting

Maltoni, Davide, and Vincenzo Lomonaco. “Continuous Learning in Single-Incremental-Task Scenarios.” Neural Networks 2019 7

Amount of weight changes by layer
and training batch in CaffeNet for

different approaches

Deep SLDA

• Deep: Start from a fixed pretrained model (e.g. a CNN pretrained
on ImageNet)

• SLDA: use Streaming Linear Discriminant Analysis to train the
classifier

• Extremely efficient compared to full backpropagation and
applicable to online scenarios even without replay

• No adaptation of the feature extractor

8

Pretrained
Feature

Extractor

Input
image

LDA
Classifier

SLDA – Streaming LDA

• Pretrained CNN
• G is pretrained

• F is an LDA classifier (learned online)

• Each class is modeled as a gaussian

• Estimate the mean for each class online (OML module)

9

SLDA – Streaming LDA

• Each class is modeled as a gaussian

• You can also estimate the covariance
• The full covariance adds 𝑛2 parameters

• If the online stream is small, it may be better to keep it fixed after the
first step, shared among classes, or use a diagonal approximation

10

LDA Classifier

• Linear classifier

• Weights defined using the estimated mean and covariance

11

Precision (inverse of covariance)
+ shrinkage for regularizationClassifier

Rows of W Bias of the classifier

Multi-Head Classifier

Multi-head architecture can be seen
a simple way to partition the
classifier:
• Great to specialize behaviour if the

notion of task is explicit
• Reduces the number of classes in

each classification head, making
them easier to learn

• Clear separation between shared
and task-specific parameters

• Not always applicable since it
needs task labels or task inference

12

Feature
Extractor

Input
image

T1

T2

T3

Single Head in Class-Incremental

• Sometimes it help to distinguish the
units even in class-incremental
settings

• Old/current/future units may be
treated differently

• Example in LwF:
• CE for NEW+OLD units
• KD for OLD units

• Other examples: masking
• If we know that some classes are not

available anymore, we can mask them to
zero probability to avoid wrong
predictions

13

Feature
Extractor

Input
image

Old
units

Current
units

Future
units

Classifier Bias

In the last layer of a DNN (the classifier) in a class-
incremental setting we see that new classes have weights
with a larger norm.

Hou, Saihui et al.. “Learning a Unified Classifier Incrementally via Rebalancing.” In CVPR 2019 14

Cosine Classifier

• To mitigate the bias, we normalize the
weights of the classifier

• Consider the weights of the last layer as
class embeddings 𝜃𝑗

• Normalize class embedding and
extracted features

• Compute cosine similarity

Hou, Saihui et al.. “Learning a Unified Classifier Incrementally via Rebalancing.” In CVPR 2019 15

Copy Weights with Re-Init (CWR)

• Incremental training of linear classifier
• 𝑐𝑤=consolidated weight, used for

inference
• 𝑡𝑤=temporary weight, used for training
• 𝑝𝑎𝑠𝑡𝑗 counter of patterns for each class
• 𝑤𝑝𝑎𝑠𝑡𝑗 scaling term

• Example of Dual Learning System:
• A system with fast and slow weights
• Renormalize c𝑤 weights after each

learning experience with a weighted sum
of all the learned weights

• Reset 𝑡𝑤 to zero after each learning step

• agnostic to the scenario (NI, NC, NIC)
and applicable with repetitions and
online settings.

Rehearsal-Free Continual Learning over Small Non-I.I.D. Batches. Lomonaco et al, CLVision Workshop at CVPR 2020. 16

Summing Up

• If we don’t have task labels and we encounter new classes over time,
and we don’t have replay, the DNN suffers from classifier bias

• Classifier bias is the biggest source of forgetting in a naive method

• We can counteract it by
• Replay

• Classifier Normalization (like LUCIR)

• Classifier finetuning/adaptation (like CWR)

• Training the classifier with algorithms that have less classifier bias (like LDA)
• Some prototype-based methods (remember ProtoNet?) are also more robust to

classifier bias

17

Architectural Methods

18

Modular Architectures

Idea:

• split the networks into several modules

• Connect modules to enable transfer

• Freeze/mask module to limit forgetting

Opportunities

• Explicit separation between task-specific and shared components

• Eliminate forgetting

Challenges

• Limiting memory growth

• Requirements of task labels

• Forward transfer

Conflicting requirements: a good method needs to balance memory
occupation, eliminate forgetting, promoting forward transfer.

19

Progressive Neural Networks (PNN)

A Basic Modular Architecture

• Column: Each new task adds its own
“column” of features to each layer

• Adapter: New columns are connected
to all the previous one via adapter

• Inference: task labels are used to
activate the correct columns

Progressive Neural Networks, Rusu et al. 2016. 20

PNN – Column

Column: Each new task adds its own
“column” of features to each layer
• Each column is connected to all the

previous ones
• After training the column is frozen
• Inference: use task labels to activate the

correct columns

Progressive Neural Networks, Rusu et al. 2016. 21

Connections to
previous columns

PNN Column

PNN Column

previous
columns

PNN – MLP Adapters

• MLP Adapter: takes as input a weighted concatenation of the
previous columns.

Progressive Neural Networks, Rusu et al. 2016. 22

Quadratic scaling of
memory occupation

PNN – Final Considerations

• Good forward transfer: each task can re-use previous columns

• Inhibits forgetting by freezing columns

• Poor scaling in memory size: quadratic due to adapters

• Requires task labels

Two open problems:

• How do we limit the memory growth?

• How do we choose which column to activate if don’t have task
labels?

23

Memory Growth: PNN Columns can be compressed

Progressive Neural Networks, Rusu et al. 2016. 24

Good news: most of the capacity is not used!
• We can reduce the size of new columns over time
• We can compress them (e.g. after training)

Task Inference

• Modular architecture + task inference to remove need for task
labels

• Task Inference: classifier that given an input predicts the task
label

• Often predicting the task label is easier than predicting the
class.
• Example: identifying a language (task inference) is easier than

predicting the next word of an incomplete sentence (solving the task).
• We can use a proxy signal: reconstruction error, pattern of activations,

…
• We can use a simple classifier, easier to train continually

25

Gated Ensemble

• Gate: a component that
enables/disable a module
of the network

• Given a task label
predictor, we can use it to
gate a modular network

• You need some form of
competition or
normalization between the
gates

Aljundi, Rahaf, Punarjay Chakravarty, and Tinne Tuytelaars. “Expert Gate: Lifelong Learning with a Network of Experts.”, CVPR 2017 26

Gates

Task
Predictor

Modular
Network

Expert Gate

IDEA: Modular network with gating
and task inference

• Expert: a module of the network
trained on a single task

• Gate: an undercomplete
autoencoder for each task

• Inference: use the expert model
associated with the most
confident autoencoder

Aljundi, Rahaf, Punarjay Chakravarty, and Tinne Tuytelaars. “Expert Gate: Lifelong Learning with a Network of Experts.”, CVPR 2017 27

Expert Gate: Gate

• Pretrained Input Features: input 𝑥
to the expert and autoencoder is
the output of the last CONV layer of
AlexNet pretrained on ImageNet

• Gate Architecture: standardization
+ an undercomplete autoencoder
for each task

• Inference: use the expert model
associated with the most confident
autoencoder
• 𝒆𝒓𝒊 reconstruction error for task 𝑖
• 𝒕 temperature

Aljundi, Rahaf, Punarjay Chakravarty, and Tinne Tuytelaars. “Expert Gate: Lifelong Learning with a Network of Experts.”, CVPR 2017 28

Expert Gate: Training the Experts

• Input: same as the AE

• Initialization: uses the most
related expert as initialization
• Task Relatedness Measure
• Not symmetric (AE_k, D_i) !=

(AE_i, D_k)

• Finetuning vs LwF:
• Training algorithm of the expert

depends on the task relatedness
• if relatedness is above 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

use LwF, else use finetuning

Aljundi, Rahaf, Punarjay Chakravarty, and Tinne Tuytelaars. “Expert Gate: Lifelong Learning with a Network of Experts.”, CVPR 2017 29

Expert

𝑬𝒓𝒂= reconstruction error for the new
task (𝒌) using autoencoder 𝒂

Task Relatedness

Expert Gate: Pseudocode

Aljundi, Rahaf, Punarjay Chakravarty, and Tinne Tuytelaars. “Expert Gate: Lifelong Learning with a Network of Experts.”, CVPR 2017 30

Expert Gate: Final Comments

• Example of task-agnostic
modular architecture

• Simple task inference
mechanisms

• Insights about the relationships
between transfer and task
relatedness

• Limitations:
• Requires pretrained network
• The reconstruction error is not

always a good task predictor.
Autoencoders are very good at
reconstructing unseen data.

31

Masking and Architectural
Sparsity

32

Masking – Motivations

increase the memory occupation
over time

• We know that deep networks are
overparameterized

• SOLUTION: use a fixed large
network and select a subset of
units for each task

• ADVANTAGES:
• Similar to modular networks but less

expensive
• Binary masks are easy to compress
• Induces sparsity

Image from Supermasks in Superposition, Wortsman et al. 2020. 33

Motivations – Lottery Ticket Hypothesis

WARNING: This is just a hypothesis, not a formal theorem

PROBLEMS:

• How do we optimize binary masks during continual learning?

• How do we do task inference?

Frankle, Jonathan, and Michael Carbin. “The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks,” ICLR 2019 34

HYPOTHESIS - Lottery Ticket Hypothesis:
dense, randomly-initialized, feed-forward networks contain subnetworks (winning
tickets) that—when trained in isolation–reach test accuracy comparable to the
original network in a similar number of iterations

How to Optimize Binary Masks with SGD

• Binary masks are discrete parameters
• We can’t compute gradients

• You cannot use a straightforward SGD

• We will see some examples but we will not study optimization
algorithms for discrete variables in details

• We will assume that they are available and solve the problem of
learning masks in CL

• Reference in the footnote if you really want to know more

Bengio, Yoshua, Nicholas Léonard, and Aaron Courville. “Estimating or Propagating Gradients Through Stochastic Neurons for
Conditional Computation.” ArXiv Preprint ArXiv:1308.3432, August 2013. http://arxiv.org/abs/1308.3432. 35

http://arxiv.org/abs/1308.3432

Weights Mask (Piggyback)

• fixed pre-trained model (backbone)
• Example: ResNet18 pretrained on

ImageNet

• Mask training: A binary mask for each
task. each weight, train float then
binarize

• Zero forgetting but also Zero
knowledge transfer

• Efficient: only a handful of KBs per
mask (1 bit per weight per task)

• Task-aware

Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights, Mallya et al. 2018. 36

PiggyBack – Forward Pass

• Separate mask for each
layer

• Binary value for each
weight

• Masked Feedforward Layer:

Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights, Mallya et al. 2018. 37

Piggyback – Training and Backward Pass

The binary mask 𝑚 is obtained from a real mask 𝑚𝑟

Training step:

• Binarize the real mask 𝑚𝑟 with the thresholding function

• Compute the forward pass with the masked layer

• Compute the gradient of the mask

• SGD step

Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights, Mallya et al. 2018. 38

Even though the hard thresholding function is non-
differentiable, the gradients of the thresholded mask
values 𝑚 serve as a noisy estimator of the gradients
of the real-valued mask weights 𝑚𝑟.

Thresholding

Masked layer

Masking with Pruning Methods

We can use pruning methods to find a mask

Magnitude Pruning

• Train a network

• Sort the weights in a layer by their absolute magnitude

• Cut the lowest p%

Variation: Iterative Magnitude Pruning (IMP), where the process
is repeated multiple times, each time pruning p% and retraining.

PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning, Mallya et al 2017. 39

PackNet

Magnitude Pruning, task-aware

• Model: masked layers

• Inference: use task labels to choose mask.

• Training:
• start from a Pretrained Model.
• for each task:

• Finetune: the weights of the dense network (unmasked) on the new task
• frozen parameters are fixed

• Pruning: prune away a certain fraction of the weights of the network, i.e. set them to zero
• Retrain: to regain accuracy after pruning (half epochs)
• Freeze: Task parameters are frozen.

PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning, Mallya et al 2017. 40

• 1.5× more expensive than simple finetuning
• What is the advantage compared to Piggyback?

• We can have forward transfer, because the weights are trained, while in Piggyback they
are kept fixed

Hard Attention to the Task (HAT)

IDEA: learn a soft attention mask over the
units for each task. Use the mask in
forward to mask units and in backward to
mask gradients

• Task-aware method

• Mask neurons instead of the weights

• Mask gradients during
backpropagation (soft masks -> weight
sharing)

Overcoming catastrophic forgetting with hard attention to the task, Serra et al. 2018. 41

HAT – Forward Pass

• Task embedding 𝑒𝑙
𝑡 for each layer 𝑙 and

task 𝑡

• Attention over units: 𝐡𝐥
′ = 𝐚𝐥

𝐭 ⊙𝐡𝐥
• attention coefficient: 𝐚𝐥

𝐭 = 𝜎 𝑠𝐞𝐥
𝐭

• Soft gates in 0,1
• Different from Piggyback and Packnext

which used hard gates (binary)

• 𝑠 scalar scaling parameter
• If 𝑠→0 then 𝑎→1/2.
• If 𝑠→∞ then 𝑎→ {0, 1}
• Higher 𝑠→ stronger binarization.

Regularates between uniform weights and
hard gates

• set 𝑠 = 𝑠𝑚𝑎𝑥 during testing, using 𝑠𝑚𝑎𝑥 ≫ 1 to
approximates hard gates

Overcoming catastrophic forgetting with hard attention to the task, Serra et al. 2018. 42

HAT – Backward Pass

• cumulative attention vector

• gradient masking

• 𝑔𝑙,𝑖𝑗 = gradient of weight matrix
layer 𝑙, weight 𝑊𝑖,𝑗

• INTUITION: scale down the gradient
for already used units.

• Anneal 𝑠 during training, inducing
a gradient flow

Overcoming catastrophic forgetting with hard attention to the task, Serra et al. 2018. 43

Keeps track of how much
each unit is used by the
previous task. Used units
should be protected from
large changes.

Supermasks in Superposition (SupSup)

• Hard masks + fixed backbone

• By now we know that we can find good
binary masks even from random weights
(Lottery Ticket Hypothesis)

SupSup adds two key contributions:

• If we use random weights we don’t even
need to store them. We save the random
seed and generate the weights on the fly

• Instead of using a single mask, we can
use a weighted sum of them
(superposition)
• Task inference becomes the problem of

finding the optimal weights!
• If we can do task inference we can use hard

mask + fixed weights even when we don’t
have task labels during inference or training

Supermasks in Superposition, Wortsman et al. 2020. 44

SupSup – Mask Training

• Masked layer:
• Same as Piggyback/Packnet

• W freezata dopo init, bias 0

• signed Kaiming constant init: +-c with
equal probability
• c=std of the kaiming normal initialization

• Edge-Popup algorithm to train the
masks (we won’t see it)

Supermasks in Superposition, Wortsman et al. 2020. 45

SupSup – Task Inference

• After training, we have one mask
(model) for each task

• In a task-agnostic setting, how do we
choose the task label?

• Good heuristic: select the most
confident model
• WARNING: Keep in mind that neural

networks may be highly overconfident,
so this method doesn’t always work

• We can use the entropy to measure
the confidence

Image source: wikimedia and SupSup paper 46

Entropy Eq:

The entropy measures
can be used to measure
the confidence. For
example, the entropy of
a coin flip is maximal
when p(H)= 0.5

SupSup – Naive Task Inference

NAIVE ALGORITHM:

• For each mask:
• Compute output: 𝐩𝐢 = 𝑓 𝐱,𝑊 ⊙𝑀𝑖

• Compute entropy 𝐻 𝑝𝑖

• Select output with smallest entropy

COMPUTATIONAL COST: require a
forward pass for each mask.

We want an algorithm that scales
better with the number of tasks

47

SupSup – Superposition

Superposition: a weighted sum of all the masks

• An approximation of the ensemble output

• 𝐩 𝛼 = 𝑓 𝐱,𝑊 ⊙ σ𝑖=1
𝑘 𝛼𝑖𝑀

𝑖

• Requires a single forward pass

ONE-SHOT TASK INFERENCE:

• (1) Compute 𝐩 𝛼

• (2) Compute gradient with respect to entropy
and do an SGD step on 𝛼

• (3) Choose the mask s.t. argmax 𝑖 −
𝜕ℋ 𝐩 𝛼

𝜕𝛼𝑖
• This is a single step of SGD
• You could optimize 𝛼 until convergence but one

step is sufficient

48

1 2 3

SupSup – Task-agnostic training

• in a task-agnostic scenario without
boundaries we don’t know the boundaries
between tasks
• we need a mechanism to decide when to start

training a new mask
• Again, we can use the superposition of mask

and the entropy

• IDEA: given the coefficients 𝛼 of the
superposition:
• if some coefficients dominate the others we

assume it is an old task
• If the coefficients are uniform the task is new

• ALGORITHM:
• compute 𝜈 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 −∇𝛼ℋ 𝐩 𝛼 with

optimized 𝛼

• If max
𝑖

𝜈𝑖 <
1+𝜖

𝑘
create a new mask

• o.w. Use mask 𝑖 with max
𝑖

𝜈𝑖

49

Masking and Transfer

Transfer: how a learned task affects learning other tasks (can be forward/backward,
positive/negative)

• Fixed weights + independent masks (Piggyback, SupSup)
• Zero forward transfer
• Zero forgetting
• A pure ensemble of models (very efficient in space occupation)

• Trainable weights + hard masks (Packnet)
• Forward transfer because new masks can reuse units learned on the previous tasks (in Piggyback

and SupSup the backbone is fixed at initialization)
• Zero forgetting
• Similar to PNN, but more efficient in space

• Trainable weights + soft mask (HAT)
• Forward transfer and possibly backward transfer since previously used units are not frozen.
• Forgetting is possible
• Soft gates may be harder to train (see HAT tricks about gradient flow)
• Requires more space than hard gates (32 bit vs 1 bit before compression)

50

Summary and Take-Home Messages

• Classifier Bias: in single-head models, most of the forgetting happens in the output layer,
especially in class-incremental settings.
• There are methods that address this problem
• Some of these methods assume a static feature extractor or very little changes (DSLDA, CWR*)
• Others are based on prototypes (cosine classifier) and try to regularize and control how the

prototypes evolve over time

• zero forgetting: Architectural methods provide a very good solution to forgetting by
selective freezing

• Modular expansion or selective masking provide different tradeoffs
• Modular networks are better at forward transfer
• Masking has a lower memory cost

• Strong assumptions about the scenario
• Task labels. Task inference (SupSup) exists but its performance highly depends on the domain
• Size of the experience: if we train each subnetwork independently we need enough data to reach a

good performance. They may be difficult to apply in online scenarios without hard task boundaries

• Interesting link with structural plasticity in biological learning systems

51

	Diapositiva 1: Continual Learning
	Diapositiva 2: Outline
	Diapositiva 3: Classifier Bias
	Diapositiva 4: RECAP: CNN in Computer Vision
	Diapositiva 5: Most Forgetting Happens in the Higher Layers
	Diapositiva 6: Most Forgetting Happens in the Higher Layers
	Diapositiva 7: Finetuning the classifier
	Diapositiva 8: Deep SLDA
	Diapositiva 9: SLDA – Streaming LDA
	Diapositiva 10: SLDA – Streaming LDA
	Diapositiva 11: LDA Classifier
	Diapositiva 12: Multi-Head Classifier
	Diapositiva 13: Single Head in Class-Incremental
	Diapositiva 14: Classifier Bias
	Diapositiva 15: Cosine Classifier
	Diapositiva 16: Copy Weights with Re-Init (CWR)
	Diapositiva 17: Summing Up
	Diapositiva 18: Architectural Methods
	Diapositiva 19: Modular Architectures
	Diapositiva 20: Progressive Neural Networks (PNN)
	Diapositiva 21: PNN – Column
	Diapositiva 22: PNN – MLP Adapters
	Diapositiva 23: PNN – Final Considerations
	Diapositiva 24: Memory Growth: PNN Columns can be compressed
	Diapositiva 25: Task Inference
	Diapositiva 26: Gated Ensemble
	Diapositiva 27: Expert Gate
	Diapositiva 28: Expert Gate: Gate
	Diapositiva 29: Expert Gate: Training the Experts
	Diapositiva 30: Expert Gate: Pseudocode
	Diapositiva 31: Expert Gate: Final Comments
	Diapositiva 32: Masking and Architectural Sparsity
	Diapositiva 33: Masking – Motivations
	Diapositiva 34: Motivations – Lottery Ticket Hypothesis
	Diapositiva 35: How to Optimize Binary Masks with SGD
	Diapositiva 36: Weights Mask (Piggyback)
	Diapositiva 37: PiggyBack – Forward Pass
	Diapositiva 38: Piggyback – Training and Backward Pass
	Diapositiva 39: Masking with Pruning Methods
	Diapositiva 40: PackNet
	Diapositiva 41: Hard Attention to the Task (HAT)
	Diapositiva 42: HAT – Forward Pass
	Diapositiva 43: HAT – Backward Pass
	Diapositiva 44: Supermasks in Superposition (SupSup)
	Diapositiva 45: SupSup – Mask Training
	Diapositiva 46: SupSup – Task Inference
	Diapositiva 47: SupSup – Naive Task Inference
	Diapositiva 48: SupSup – Superposition
	Diapositiva 49: SupSup – Task-agnostic training
	Diapositiva 50: Masking and Transfer
	Diapositiva 51: Summary and Take-Home Messages

