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Today's Lecture

* Active learning: given a large unlabeled dataset, choose the
next sample to annotate

 Curriculum learning: given a dataset, find the optimal sampling
order to learn from it
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« Up to now, we assumed the data was given to us, without any
control

 This is not true in many applications
« We collect data over time (and we don’t throw the old one)
« We annotate data over time
« We can create a stream (curriculum) from a large dataset to improve
training
« Each step can be improved if we can
- Identify the best data to collect/annotate
« Identify the best data the model should use for training
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« We need to evaluate the impact of each sample on the resulting
model

« What are the properties of «important» samples?
* Not all samples are equal

» We need to estimate their importance
A priori
« Without labels




Example Forgetting in Offline/Joint Training

 forgetting event: sample x was classified correctly at iteration
t and incorrectly at iteration t + k

* Observations:
« certain examples are forgotten with high frequency (hard samples)
« some not at all (easy samples)

« easy samples generalize across neural architectures;
» They are a property of the data, not the specific model

« a significant fraction of (easy) examples can be omitted from the
training data set without hurting the final accuracy

M. Toneva et al. “An Empirical Study of Example Forgetting during Deep Neural Network Learning.” ICLR 2019
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Noisy Examples are Harder
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Figure 3: Distributions of forgetting events across training examples in CIFAR-10 when 20% of
labels are randomly changed. Left. Comparison of forgetting events between examples with noisy
and original labels. The most forgotten examples are those with noisy labels. No noisy examples
are unforgettable. Right. Comparison of forgetting events between examples with noisy labels and
the same examples with original labels. Examples exhibit more forgetting when their labels are
changed.

M. Toneva et al. “An Empirical Study of Example Forgetting during Deep Neural Network Learning.” ICLR 2019 6



Easy Samples Can Be Removed
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Figure 5: Left Generalization performance on CIFAR-10 of ResNet18 where increasingly larger sub-
sets of the training set are removed (mean +/- std error of 5 seeds). When the removed examples are
selected at random, performance drops very fast. Selecting the examples according to our ordering
can reduce the training set significantly without affecting generalization. The vertical line indicates
the point at which all unforgettable examples are removed from the training set. Right Difference
in generalization performance when contiguous chunks of 5000 increasingly forgotten examples are
removed from the training set. Most important examples tend to be those that are forgotten the most.

M. Toneva et al. “An Empirical Study of Example Forgetting during Deep Neural Network Learning.” ICLR 2019 7
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Active Learning
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« We are given a large set of
unlabeled data and a smaller
subset of labeled data

 We train a model

« We want to improve the model:
Which samples should we
annotate?

» After the new data is annotated,
retrain on all the data (new and
old samples)

M. Mundt et al. 2020. “A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten Lessons and the Bridge to Active and Open World Learning.” 9



Active Learning

 Acquisition function: the
method that chooses the

samples and labels them Q i \

* Inputs:

.
Add new Unlabelled pool or
i Current mOdeI { data stream X

 set of unlabeled samples

Labelled data
X, = {:EI'L . rz}
Y ={y ...y

—) {query M instancesJ

« Current set of labeled samples \ J
« Outputs: selected samples from e Gt
the unlabeled set R

Unlabelled subset
{oh .7}

« How do we design it? R | v

M. Mundt et al. 2020. “A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten Lessons and the Bridge to Active and Open World Learning.” 10
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Setup and Assumptions

« We have the entire (unlabeled)
dataset available from the
beginning

 Most methods can also be

generalized to continual data
collection

« Cumulative training on all the
data

{U;:;:?:fi;o;l”m} —> {query M instancesJ
 Unlike continual learning

methods, we reuse all the data n
seen up to now R
« We ignore computational cost

M. Mundt et al. 2020. “A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten Lessons and the Bridge to Active and Open World Learning.” 11
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Setup and Assumptions

Train \
OI'aC|e/Ann0tat0 rs Labelled data r
X5 = {:zl'b...:sg} ". Model

» perfect oracle: annotators don't V=t
make mistakes

also be the most difficult to
problems we ask multiple -

* In practical problems, human : \
annotators are imperfect
Add new Unlabelled pool or uery M instances
» The best samples to annotate may {“‘ J_’{ J
annotate (and more expensive)
« Example: in many practical
annotators when they may .
disagree (e.g. cancer data, R
translation)
M. Mundt et al. 2020. “A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten Lessons and the Bridge to Active and Open World Learning.” 12




Active Learning Methods

 Version space reduction: represent the entire subspace of
hypotesis consistent with your data (version space) and refine
it with the new data

 Uncertainty and heuristics: design measures to pick interesting
samples

 Coresets and representation learning: model the data
distribution and maximize coverage and diversity

13




Intuition based on Version Spaces

Version Space: the set of hypothesis (models) consistent with the training data
Learning with Version Spaces: restricting the space to solutions consistent with
the training data

Active learning with Version Spaces: Picking the samples with more
disagreement allows to find a smaller version space.

(b)

Figure 6: Version space examples for (a) linear and (b) axis-parallel box classifiers. All
hypotheses are consistent with the labeled training data in L (as indicated by
shaded polygons), but each represents a different model in the version space.

Settles, Burr. “Active Learning Literature Survey.” 14
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 Find a good measure of usefulness of the samples
 Using the current model
» That doesn't the targets

« Which samples are more useful?
« Hard samples
« Samples where the model is less certain

15



Heuristics — Uncertainty Sampling

. Create an 1nitial classifier

2. While teacher 1s willing to label examples

(a) Apply the current classifier to each unlabeled example

(b) Find the b examples for which the classifier 1s least certain of class membership
(¢) Have the teacher label the subsample of b examples

(d) Train a new classifier on all labeled examples

Figure 1. An algorithm for uncertainty sampling with a single classifier.

Lewis & Gale, “A Sequential Algorithm for Training Text Classifiers”, ACM-SIGIR 1994

16




Heuristics — Entropy e e

 query samples with largest entropy

H(X) := — > ,cxp(z)logp(z) = E[—log p(X)]

 Low entropy: [0.1, 0.1, 0.8]
« High entropy: [0.3, 0.3, 0.4]

« What is the drawback of uncertainty/entropy-based sampling?

McKay, “Information-Based Objective Functions for Active Data Selection”, Neural Computation 4, 1992 17



Heuristic — Tradeoff

» What are the most uncertain samples?
« Hard samples <- good, we want to label them

* Noise <- useless
<- maybe useful, probably not the best choice

 IDEA: the best samples are hard enough but not too hard that
may be noise/outliers

* It's a form of exploration/exploitation tradeoff. Too much
novelty is not always the best choice because the most novel
data is not always representative of the expected data

Joshi et al, “Multi-Class Active Learning for Image Classification”, CVPR 2009 18
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Model Calibration

» Model calibration: a model is calibrated if its probabilities are
calibrated. That is, if a model predicts a class with probability p, then
the prediction is correct p% of the time.

 Entropy-based heuristics assume that the output probabilities are
correcf and calibrated

* In general, DNNs are not calibrated

« During training, we push the probabilities to 0/1, without any care about
calibration

 The difference between p=0.02 and p=0.1 is probably not significant, but it
makes a big difference in entropy

19
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Model Calibration — Examples

Calibration plats

In the figure
» Top figure: calibration plot

* Bottom figure: histogram of
class probabilities

» Logistic regression is calibrated
* The others are not

» Naive Bayes is extremely
uncalibrated. The histogram
shows almost binary probabilites



https://scikit-learn.org/stable/modules/calibration.html#calibration

Heuristic — Best vs Second Best (BvsSB)

« Example: (a) has lower entropy

than (b)

* (a) is uncertain between two

classes

« (b) is confident on the best class

» Entropy is sensitive to:
* large number of classes

Discrete entropy = 1.34

045

025

Estimated probability

 Very low probabilities 008

» Uncalibrated models with a large
number of classes will have
unreliable probability values for

most classes

123456748010
Class

(a)

Joshi et al, “Multi-Class Active Learning for Image Classification”, CVPR 2009

RVARRN

Discrete entropy = 1.69
0.5

Estimated probability

12345678810
Class

(b)

21
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Heuristic — Best vs Second Best (BvsSB)

° Best-versus-Second-Best u_::DiscrEtE entropy = 1.34 u.:]]iscrer,e entropy = 1.69
difference between highest o o
probability and second best 21 =

« Alternative measure of Eox £
uncertainty Zord ol

* More robust to number of “ =
classes and smaller values for
unimportant classes class o

(a) (b)

Joshi et al, “Multi-Class Active Learning for Image Classification”, CVPR 2009 22



Empirical Results

Examples selected per round = 10
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Figure 4. Active learning on the Caltech-101 dataset.

Joshi et al, “Multi-Class Active Learning for Image Classification”, CVPR 2009 23
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Query by Committee

« Committee of models ¢ = {6, ..., 6O}
« Each votes on the labeling of new samples
* IDEA: pick the instances with most disagreement

(vi)
C

- Example of metric: Vote Entropy x;;; = argmax — ¥, V(g") log %
X

* V(y;) number of votes for label i
* C committee size

H.S. Seung et al. “Query by committee”. ACM Workshop on Computational Learning Theory, 1992. 24



Active Learning — Coresets

25
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 Uncertainty estimates are not robust against outliers and noise

 Uncertainty estimates may be inaccurate at the beginning of
training

* Different approach: try to annotate diverse samples

* Questions
 We need to model the labeled and unlabeled data distributions
» We need to pick the diverse samples from unlabeled data

26
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 We need to select a
bounded set of
representative samples

* Purely unsupervised
selection, based only on the
distances

O. Sener, S. Savarese. 2018. “Active Learning for Convolutional Neural Networks: A Core-Set Approach.” 27



K-center problem

Combinatorial optimization
problem

« Given n cities (samples)

« We want to build k warehouses
(selected samples)

* Minimize the maximum
distance between a city and a
wharehouse

In our case, we select
«representative samples»

https://en.wikipedia.org/wiki/Metric_k-center 28
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K-center problem

Formal definition:

e Input: asekaCX and a
parameter

e Output: a set C € V of k points.

e Goal: Minimize the cost
r¢(V) = max,ey d(v,C)

This is an NP-hard problem

https://en.wikipedia.org/wiki/Metric_k-center 29



K-center Greedy

« Approximate solution with

greedy algorithm Algorithm 1 k-Center-Greedy
: Input: data x;, existi I s and
« Repeat until you have enough budgot b e PO G
samples Initialize s = s’
- Given s current pool repeat A
. Find th di . U = arg MaX;e[n)\s Minjes A(Xq, X;)
ind the most distant point u s—sU{u}
« Add it to the pool until |s| = b+ [s”|

return s \ s'

0. Sener, S. Savarese. 2018. “Active Learning for Convolutional Neural Networks: A Core-Set Approach.” 30



CIFAR - 10 CIFAR - 100 SVHN
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Figure 3: Results on Active Learning for Weakly-Supervised Model (error bars are std-dev)
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Figure 4: Results on Active Learning for Fully-Supervised Model (error bars are std-dev)

O. Sener, S. Savarese. 2018. “Active Learning for Convolutional Neural Networks: A Core-Set Approach.”
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VAAL - Variation Adversarial Active Learning

* IDEA: pool-based semi-supervised active learning algorithm

that implicitly learns this sampling mechanism in an adversarial
manner

« does not depend on the performance of the task

* learns a latent space using a variational autoencoder (VAE) and
an adversarial network trained to discriminate between
unlabeled and labeled data

S. Samarth et al. “Variational Adversarial Active Learning.” 32



VAAL

Budget

Task learner

« VAE tries to trick the
adversarial network into
predicting that all data points
are from the labeled pool

* the adversarial network
Iearns hOW 'to d|SC[‘|m|nate Figure 1. Our model (VAAL) learns the distribution of labeled data

in a latent space using a VAE optimized using both reconstruction

between dlSSlm I | al’ltleS N the and adversarial losses. A binary adversarial classifier (discrimi-
Ia.t en.t Spa ce nator) predicts unlabeled examples and sends them to an oracle

for annotations. The VAE is trained to fool the adversarial net-
work to believe that all the examples are from the labeled data
while the discriminator is trained to differentiate labeled from un-
labeled samples. Sample selection is entirely separate from the
main-stream task for which we are labeling data inputs, making
our method to be task-agnostic

Discriminator

latent space

unlabeled set

S. Samarth et al. “Variational Adversarial Active Learning.” 33



VAAL - VAE Loss

* (X;,Y;) labeled set
* Xy unlabeled pool
* B-VAE
_ LYAE = Ellogpg (x; 1 2] = BDkL(a (2. | x1) 1| P(2))
+E[logpe(xy | zy)] — ,BDKL(CI¢>(ZU | xy) | P(Z))

* learns to encode both labeled and unlabeled data in the same latent space

* ¢ encoder py decoder p(z) prior

S. Samarth et al. “Variational Adversarial Active Learning.” 34
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VAAL - Adversial Loss and Discriminator

" [log (D (Q¢(ZL | XL)))] —E [log (D (Q¢(ZU | Xu)))]

» VAE tries to «fool» the discriminator, mapping labeled and unlabeled data in the same
class

e Total VAE loss LVAE = Alﬁ\t/IXjE + /121:\0;%{3

+ £ = = |log (D (450 1 %)) )| - E[log (1 - P (a9 G 1))

« Discriminator D learns to discriminate labeled data (left) from unlabeled (right)

S. Samarth et al. “Variational Adversarial Active Learning.” 35



VAAL - Training

Budget

Algorithm 1 Variational Adversarial Active Learning Tasklearmer
Input: Labeled pool (X, Y} ), Unlabeled pool (X ), Ini- m D

tialized mndels for HT, 9‘/ AE> and 9” labeled set L
Input: Hyperparameters: epochs, A1, Aa, a1, (g, (3 (¢, .Y, —— Discriminator

1: for e = 1 to epochs do

e * ,
2 sample (zr,yr) ~ (X, YL) dL\
: sample zr ~ Xp7 m IE VAE @m

Compute Li7¢. by using Eq.[i \é

latent space

3

4

s:  Compute L%, by using Eq.[3
6:  Lvyar + Alﬁggm + Agﬁ%ﬁ}d
7
8
9

unlabeled set

Update VAE by descending stochastic gradients:
0 ap < Ovae — a1 VLyAE
Compute Ly, by using Eq.[3

Figure 1. Our model (VAAL) learns the distribution of labeled data
in a latent space using a VAE optimized using both reconstruction
and adversarial losses. A binary adversarial classifier (discrimi-

10:  Update D) by descending its stochastic gradient: nator) predicts unlabeled examples and sends them to an oracle
11: If;”.D +0p —2VLp for annotations. The VAE is trained to fool the adversarial net-
12:  Train and update 7" work to believe that all the examples are from the labeled data
132 0 + Op — asVLyp while the discriminator is trained to differentiate labeled from un-
14: end for labeled samples. Sample selection is entirely separate from the
15: return Trained 07, Oy a5, 0p main-stream task for which we are labeling data inputs, making

our method to be task-agnostic

S. Samarth et al. “Variational Adversarial Active Learning.” 36
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VAAL - Sampling

« Sampling: We use the probability associated with the discriminator’s
predictions as a score
» collect b samples in every batch
« Select those where the discriminator has the lowest confidence

« Annotate them with the oracle.

Algorithm 2 Sampling Strategy in VAAL
I“pllt: b'._, X_r” XU

Output: X, X

Select samples (X ) with min, {6 (2 )}
Y, « ORACLE(X,)

(XL!I YL) ¢ (XL: YL} U (X-'i: },ﬂ)

XU — XU — Xﬁ

return X, X;;

UIJZ'-LQ[\J:—

S. Samarth et al. “Variational Adversarial Active Learning.” 37



VAAL - Reslults
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Figure 2. VAAL performance on classification tasks using CIFAR10, CIFAR100, Caltech-256, and ImageNet compared to Core-set [43],
Ensembles w. VarR [1], MC-Dropout [15], DBAL [14], and Random Sampling. Best visible in color. Data and code required to reproduce
are provided in our code repository

S. Samarth et al. “Variational Adversarial Active Learning.” 38



Curriculum Learning (CL)
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« Humans learn in curricula: from the

easier data to the harder data OOOOO
* Q: Can a DNN benefit from a o0
designed curricula?
 A: yes, but not always ;,2
« IDEA: Order data in experiences by aibset

difficulty

« OBJECTIVE 1: Improve final accuracy

@

(@)
&3
50
L 2%
@

larger & harder
subset

Q:

&
Model

B {
L=

° Om
| C’ " -~ .
NS “* Data
whole training
dataset
- 7)‘;
Qr="P Curriculum

« OBJECTIVE 2: Improve convergence

speed

X. Wang et al.“A Survey on Curriculum Learning.” TPAMI 2022

Training process

40
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Optimization perspective

. Thle J’(cask is hard to optimize and training in a single step results in a poor
solution

» CL guides towards better parameters by Iearningf easier subtasks first,
then generalizing them to the harder and general problem

« Examples: RL with sparse rewards, GAN training

Denoising Perspective

» Tasks is noisy, poor and uneven quality of the annotations, heterogenous
(e.g. cheap large-scale data)

 Learning on cleaner subsets first improve the early phase of training
« Examples: neural machine translation, unsupervised learning

41
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Definition - Curriculum Learning
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A curriculum is a sequence of training criteria over T training

StepSZ C = <Q1; <o ey Qt) JEIE QT>

 Each criterion Q; is a reweighting of the target training
distribution QtEZ) o Wi(2)P(2) V example z € training set D

X. Wang et al.“A Survey on Curriculum Learning.” TPAMI 2022 42
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Definition - Curriculum Learning (2)

Qi(2) o< Wi(2)P(z)

- The entropy of distributions gradually increases  H(Q;) < H(Qu1)
« Diversity and information should gradually increase
 Gradually introduce new/harder concepts

 The weight for any example increases W,;(z) < W;,(2) Vze D
« The training data grows over time
« 0ld samples remain available (cumulative training)

- The final weighting corresponds to the real distribution Qr(z) = P(2)
 Training ends on the real data distribution

X. Wang et al.“A Survey on Curriculum Learning.” TPAMI 2022 43
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Two components:
- Difficulty Measurer: decides the difficulty of each sample
* Training Scheduler: decides the sequence of data subsets

X. Wang et al.“A Survey on Curriculum Learning.” TPAMI 2022 44



Predefined Curriculum - Difficulty Measures

Difficulty Measurer Angle Data Type o Easy
Sentence length [86], [107] Complexity — Text —
Number of objects [122] Complexity Images —
e rre . # conj. [50], #phrases [113] Complexity Text —
leflCUIty MeaSUI'eI' IS hand'made Parse tree depth [113] Complexity = Text -
. .. Nesting of operations [131] Complexity Programs —
N (@) d ata-d riven d ecision Shape variability [6] Diversity Images -
Word rarity [50], [86] Diversity Text —
itv: i POS entropy [113] Diversity Text -
Com p I eXIty. St ru Ct u ra I CO m p I eX Ity Of Mahalanobis distance [14] Diversity Tabular —
th e sam p I es Cluster density [11], [31] Noise Images +
. Data source [10] Noise Images /
- Example: sentence length SNR/SND [7], [89] Noise Audo -
. o . . . Grammaticality [66] Domain Text +
DlverSIty tOO mUCh d IVel'SIty at Prototypicality [113] Domain Text +
Medical based [44] Domain X-ray film /
S a m p I e/g ro u p/e I e m e nt I evel Retrieval based [18], [82] Domain Retrieval /
e Exam p le: rare words. entro py Intensity [30]/Severity [111] Intensity Images +
! Image difficulty score [106], [114] Annotation Images —
Noise estimation: clean data is easier  Norm of word vector [68] Multiple  Text -

- Example: Different data collection
methods result in different noise levels  coordinating conjunctions.

* Abbreviations: POS = Part Of Speech, SNR = Signal to Noise Ratio, SND =
Signal to Noise Distortion, Domain = Domain knowledge, # conj. = number of

The “+" in o< Easy means the higher the measured value, the easier the data
example, and the “—" has the opposite meaning.

X. Wang et al.“A Survey on Curriculum Learning.” TPAMI 2022

45
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Predefined Curriculum - Training Scheduler

RVARTAW

* Discrete: update data after a fixed number of epochs or
convergence on the current subset

 Continuous: update data after each epoch

X. Wang et al.“A Survey on Curriculum Learning.” TPAMI 2022 46



Baby Step Algorithm

» Hand-made schedule Algorithm 1. The Baby Step Training Scheduler [12]

e lative traini Input: D: training dataset; C: the Difficulty Measurer;
umulative training Output: M*: the optimal model.

o 1: D' = sort(D,C);

Go.es to next step after 2: {Dl,D2,..(.,D3} =D where C(d,) < C(dy), d, € D',dy, € T,

a fixed number of Vi < g

epochs or convergence 3: D" —
4: fors=1---kdo
5: Dt‘rw&n _ Dt‘rum U ‘DS;
6 while not converged for p epochs do
7 train( M, D),
8: end while
9: end for

X. Wang et al.“A Survey on Curriculum Learning.” TPAMI 2022 47
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Automatic Curriculum

- Self-paced-learning (SPL): the students measures the difficulty
according to its loss

» Transfer Teacher: strong pretrained teacher measures the
difficulty

* RL Teacher: models curriculum design as a reinforcement
learning problem, using the student feedback as reward

RVARRN

X. Wang et al.“A Survey on Curriculum Learning.” TPAMI 2022 48
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Self-Paced Learning

 IDEA: at each step, train the model only on the p% easiest
examples

» Measure difficulty using the loss for each sample
* Increase the percentage of data over time

« Automatic:
» the difficulty is measured directly by the student
« Embeds the curriculum design in the learning objective
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Self-Paced Learning

* [; loss for sample i

* g(v; 1) self-paced regularizer
* v is a vector of weights for each sample
A the age coefficient

* Learning objective:

min_E(w,v; A)Z vl + g(; 2).

w;ve[0,1]N

« Example: |1 regularizer g(v; 1) = -AYY, v,
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Self-Paced Learning

gW;2) = =A%z, vi

 Training: Alternated optimization

» Optimize v keeping w fixed v;" = arg ’ L;)nl]vl-li + g(v;; A)
v )

l
» Convex objective. We can find the optimal solution

« Optimize w keeping v fixed w* = argmin 3N, v/,
w
» SGD step with backpropagation

» Solution for v/

(L L<a
t 710, otherwise

 Hard binary choice of samples
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SIS

Self-Paced Learning

Algorithm 2. Self-Paced Learning

Input: D = {z;,1;} : training dataset; f: the machine learning
model; T: the maximum number of iterations;

Output: w: the optimal parameters of f.

1: Inmitialize w, v, A = A\, £t = 0.

2: whilet # T do

3: t=1t+41;

4 Update v* by Eq. (9);

5 Update w* by Eq. (10);

6: Update A to a larger value; // to include harder data

7: end while
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Curriculum Order — Hard-to-Easy

RVARRN

|s «easy to hard» the best choice?
« Sometimes, the anti-curriculum (hard-to-easy) is better

« Related: Hard Example Mining (HEM)
« Sampling the harder examples can improve convergence rate
« We have seen some examples in self-supervised learning

 As always, the optimal solution depends on the domain

« Example: if your hard examples are too hard (e.g. sparse RL rewards)
the easy-to-hard curriculum helps
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— Training

—— Testing

— Model update / Finetune
Annotation path in AL
Sequence (seq.) of tasks

|

Training / Testing data

Unlabeled training data

Learner at step i in seq.
T Toa T T Ty

Traditional Machine Learning Transfer Learning Multi-task Learning

Specific leamner for task j

Expert \]
Annotator

TJH 1 TJ: +2 T:'i+ T Tl T"2 T‘n T
Meta-Learmning Continual Learning Active Learning Curriculum Learning

X. Wang et al.“A Survey on Curriculum Learning.” TPAMI 2022

54




SIS

Take-Home Messages

Often we can control the data acquisition

* Find the best examples to annotate
« Via uncertainty or difficulty
« By optimizing distribution coverage and diversity

 Craft better data orders

« Curricula to learn in complex optimization problems (GAN, RL)
* Improve convergence speed by

* removing easy samples

* |learning easy samples first

« mining hard examples
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References B

 Papers in the footnotes

* Open World Lifelong Learning
A Continual Machine Learning Course

« https://owll-lab.com/teaching/cl_lecture/

« Recordings are available
« The organization of these slides is partly based on this course

» More active learning methods:
https://lilianweng.github.io/posts/2022-02-20-active-learning/
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