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SIS

Today's Lecture

* O0OD Detection:

« Anomaly detection
 Estimating confidence and uncertainty

* Open World:

 Learning in an open world
« How to deal with unseen data at test time
« Knowing what you don't know



« In practical problem, we don’t always have a training data that
covers the entire test distribution

« We assume the model is unreliable for out-of-distribution (OOD)
samples

« We would like the model to be able to estimate the uncertainty
(of the data and its predictions) correctly
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 This is a fundamental issue for many applications

« Safety-critical domains

« A self-driving car should (safely) stop in uncertain conditions and give
control to the passenger

« Medical systems should give uncertainty estimate so that an expert
can determine the correct course of action

 Today, this is still an open issue

« Example: ChatGPT is often extremely confident, regardless of the
actual correctness of the output



Anomaly Detection / OOD Detection

Anomaly Detection 30 - @ Foint Anomaly
« Distinguish normal and abnormal behavior
« Examples: spam classification, intrusion 20

detection

 Usually modeled as an hi?hly imbalanced 30 -
binary classification problem

20 @® Contextual Anomaly
@® Contextual Normal

OOD Detection

» Detect a train/test drift and reject 25
uncertain outputs

» We don't necessarily know how the |
uncertain output looks like . | | | = Collective Anomaly
0 100 200 300 400 500

20 A

image from https://www.mdpi.com/1424-8220/23/5/2844 5



Open Set Recognition

Face Open Set

Multi-class Classification ) . Detection e
Verification Recognition

 All the methods we have seen up to il
now assume a closed world, even
when we had a train/test drift

* In domain adaptation, we still had
access to the unlabeled target

K

domain Closed | . Open
« In meta-learning we know that we | | | | >
have a new task and we get a small Training and Claimed One class, Multiple known
training set for the new task testing s?mples identity, ~everything else classes, many
« What happens when the model mownclisses  penostore ' negrive Urown
encounters unseen classes during
testing?

) , Fig. 1. Vision problems arranged in order of “openness”.
* \e/\\llg?]tkhnaopveehrzjsvvlft;(lréeurr?s?geerll g?aesssneg For some problems, we do not have knowledge of the

look like? entire set of possible classes during training, and must
account for unknowns during testing. In this article, we

develop a deeper understanding of those open cases.

W. J. Scheirer et al. 2012. “Towards Open Set Recognition.” IEEE TPAMI 6
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Statistical Dispersion

* In statistics, dispersion is a property
of a distribution measuring how
«stretched» it is

« Some measures: variance, standard
deviation, IQR
« Example: in a unimodal distribution

we can use the mean and dispersion
to identify uncertain samples

image from https://en.wikipedia.org/wiki/Statistical_dispersion
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Aleatoric vs Epistemic Uncertainty

STV

* Aleatoric Uncertainty of the data generating process
 Data distribution
* Noise in the measurements
* Irreducible

* Epistemic Uncertainty of the model
« How much the model is uncertain in its predictions
 e.g. how much variance do we have in the output distribution
« Can be reduced with more data



How do we detect OOD examples?

« OBSERVATION: Correctly classified examples tend to have
greater maximum softmax probabilities than erroneously

classified and out-of-distribution examples, allowing for their
detection (Hendrycks, 2017)

* SOLUTION:

« order data by max softmax probability
» Use a threshold to separate ID/OOD

* Only works in very simple settings

Hendrycks, Dan, and Kevin Gimpel. 2018. “A Baseline for
Detecting Misclassified and Out-of-Distribution Examples in
Neural Networks.”

10
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« OBSERVATION: temperature scaling and small perturbations to the
input can separate the softmax score distributions between in- and out-
of-distribution images. Improves (Hendrycks, 2017)

« Small perturbations decrease the softmax score

« If the input is in a “flat region” of the input space a small perturbation
shouldn’t decrease the probability too much

« We expect OOD samples to be more sensitive to small perturbations

» Temperature scales changing the softmax output distribution towards
more uniform (high T) or more peaked (low T) distributions

« ADVANTAGES: simple method and it can be added to any pretrained
supervised model

S. Liang et al. 2020. “Enhancing The Reliability of Out-of-Distribution Image Detection in Neural Networks.” arXiv:1706.02690 11



ODIN:

- Input perturbation: ¥ = x — esign(—V,log Sy (x; T))
« Make a small step away from the high probability inputs
exp(fi(x)/T)

Z?Ll exp(fj(x)/T)

* Make the distribution more or less peaked to control the True Positive Rate

» Temperature scaling: S;(x;T) =

S. Liang et al. 2020. “Enhancing The Reliability of Out-of-Distribution Image Detection in Neural Networks.” arXiv:1706.02690 12



- Softmax score: Sy (x; T) = mzaxsi (x;T)

* Select the max probability
1 fS;(BET)< S
0 ifSy(%T)>6

* Use a threshold on the score to discriminate ID/OOD samples

» Detector: g(x;96,T,¢) =

S. Liang et al. 2020. “Enhancing The Reliability of Out-of-Distribution Image Detection in Neural Networks.” arXiv:1706.02690 13
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ODIN:

- Input perturbation: ¥ = x — esign(—V,log Sy (x; T))

« Temperature scaling: S;(x;T) = Z’Vef zglc’i((;cf)(/’g)/ )
i

» Softmax score: S;(x; T) = maxS;(x; T)

l
1 ifSy(FT) <6
0 ifSy(FHT) >

* T, 6 selected via model selected to achieve a desired true
positive rate

- Detector: g(x;6,T, €) =

S. Liang et al. 2020. “Enhancing The Reliability of Out-of-Distribution Image Detection in Neural Networks.” arXiv:1706.02690 14



Published as a conference paper at ICLR 2018

Qut-of-distribution FPR Detection AUROC AUPR AUPR
dataset (95% TPR) Error In Out
1 4 T T T

Baseline (Hendrycks & Gimpel, [2017) / ODIN

TinylmageNet (crop) 34.7/4.3 10.0/4.7 95.3/99.1 96.4/99.1 93.8/99.1
TinylmageNet (resize) 40.8/7.5 11.5/6.1 94.1/98.5  95.1/98.6  92.4/98.5

2::;;31({] LSUN (crop) 39.3/11.4 102/7.2  94.8/97.9  96.0/98.0  93.1/97.9
: LSUN (resize) 33.6/3.8 9.8/44  954/992  96.4/99.3  94.0/99.2

Uniform 23.5/0.0 5305 96.599.0  97.8/100.0  93.0/99.0

Gaussian 12.3/0.0 47/02  97.5/100.0 98.3/100.0  95.9/100.0

TinyImageNet (crop) 67.8126.9  36.4/12.9  83.0/94.5  85.3/94.7  80.8/94.5

TinyImageNet (resize) ~ $2.2/57.0  43.6/227  70.4/855  71.4/86.0  63.6/848

Dense.sC  LSUN (crop) 69.4/18.6  37.2/97  83.7/96.6  86.2/96.8  80.9/96.5
CliAR 100  LSUN (resize) 833/58.0  44.11223  70.6/86.0 725871  63.0/84.8
Uniform 100.0/100.0  35.86/17.9  43.1/99.5  63.2/87.5  41.9/65.1

Gaussian 100.0/100.0  41.2/38.0  30.6/40.5  53.4/60.5  37.6/40.9

Table 2: Distinguishing in- and out-of-distribution test set data for image classification. All values are
percentages. 1 indicates larger value is better, and | indicates lower value is better. We use T° = 1000 for all
experiments. The noise magnitude £ was selected on a separate validation dataset, which is different from the
out-of-distribution test sets. On CIFAR-10 pretrained model, we use £ = 0.0014 for all QOD test datasets; and
= = 0.002 for CIFAR-100 pretrained model.

S. Liang et al. 2020. “Enhancing The Reliability of Out-of-Distribution Image Detection in Neural Networks.” arXiv:1706.02690

15




Limits of Uncertainty Estimation

1.4

* DNN are overconfident

e Supervised and generative
models are overconfident

* I|deally, we would like to use
bayesian models to estimate
uncertainty

e Often expensive and heavily
approximated
e Asimpler solution: Ensembles

Il CIFAR-10
| SVHN
||l CelebA
[l Imagenet32

=
[N}

=
=]

e
o
T

Empirical Distribution

Negative Bits Per Dimension

Figure 1. Density estimation models are not robust to OoD inputs.
A GLOW model (Kingma & Dhariwal, 2018) trained on CIFAR-
10 assigns much higher likelihoods to samples from SVHN than
samples from CIFAR-10. .

H. Choi et al. 2019. “WAIC, but Why? Generative Ensembles for Robust Anomaly Detection.” 16




Deep Ensembles

Combine predictions of M models

1

* Deep Ensembles
* (1) use a proper scoring rule as the / 1

training Criterion; Randomly Randomly Randomly
. . . Initialize & Initialize & |- Initialize &
* (2) use adversarial training to smooth TrainNet1 [l Train Net 2 Train Net M
the predictive distributions, and ~ ' ”
* (3) train an ensemble Randomly Shuffle Dataset M times
VN
|

Algorithm 1 Pseudocode of the training procedure for our method

1: > Let each neural network parametrize a distribution over the outputs, i.e. pg(y|x). Use a proper gt

scoring rule as the training criterion £(0,x,y). Recommended default values are M = 5 and

€ = 1% of the input range of the corresponding dimension (e.g 2.55 if input range is [0,255]).

Initialize 61,0, ..., 0y randomly

form=1: Mdo > train networks independently in parallel
Sample data point n,, randomly for each net > single n,,, for clarity, minibatch in practice
Generate adversarial example using X;, = X, + € sign (Vxnm (0, Xn,, ynm))
Minimize £(0pn, Xn,,» Yn,,) + €(Om,X;, Yn,, ) WLL Op, > adversarial training (optional)

A

S

Method: B. Lakshminarayanan. 2017. “Simple and Scalable Predictive Uncertainty Estimation Using Deep Ensembles.”

image from https://www.gatsby.ucl.ac.uk/~balaji/balaji-uncertainty-talk-cifar-dirl.pdf v



Uncertainty with Ensembles

Empirical observations:
 post-hoc calibration often fails

- marginalize over models (i.e. ensembles!) give surprisingly
strong results across a broad spectrum of tasks.

Y. Ovadia et al. 2019. “Can You Trust Your Model’s Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift.”

18
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Expected Calibration
Error (ECE) J, Measures
the correspondence
between predicted
probabilities and
empirical accuracy

08 -
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0.5 -
g
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< 03 1 Method
0.2 - [ Vanilla [ Dropout
3 4 5

I Temp Scaling /1 LLDropout

a
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@ 00 - . : .
g Test 1 2
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v]
s -
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shift intensity

Figure 2: Calibration under distributional shift: a detailed comparison of accuracy and ECE under
all types of corruptions on (a) CIFAR-10 and (b) ImageNet. For each method we show the mean on
the test set and summarize the results on each intensity of shift with a box plot. Each box shows the
quartiles summarizing the results across all (16) types of shift while the error bars indicate the min
and max across different shift types. Figures showing additional metrics are provided in Figures S4
(CIFAR-10) and S5 (ImageNet). Tables for numerical comparisons are provided in Appendix G.

Y. Ovadia et al. 2019. “Can You Trust Your Model’s Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift.”

19
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« We need to track aleatoric uncertainty (data) and epistemic
uncertainty (model)

« DNN are overconfident and their confidence estimates cannot
be trusted

 Post-hoc calibration can mitigate the issue but only in simple
settings

 Ensembles show much more consistent results

« At the price of increased computational cost (both training and
inference)

20
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Knowing in an Open World

« Known: in-distribution samples and predicted correctly with
high confidence (correct predictions)

« Known Unknowns: low-confidence samples, such as
successfully recognized anomalies (low confidence)

« Unknown Unknowns: out-of-distribution samples with highly
confident predictions (the model shouldn’t have high
confidence here)

* In general, if the test distribution drifts, it may become something
completely new. Effectively, the model doesn’t know what it doesn’t
know.

 PROBLEM: How do we identify unknown unknowns?

22



Open World Assumption

SIS

* Closed world assumption: the model «<knows what it needs to
know» such as which classes are present in the data
distribution

« Open world assumption: the model may encounter new data at
test time
« Example: unknown classes
« We don't expect the model to generalize to unseen classes
» Therefore, we would like to model to be able to recognize what it
doesn't know

- Did we see already some examples of open world
assumptions?

23



Open World Assumption

 Did we see already some examples of open-world assumptions? NO.

Examples:

» Continual learning: closed world. First, we train on new experiences,
then, we evaluate on them.

« We expect the model to be incrementally adaptable
« We don’t expect the model to recognize unknown unknowns
» Meta-learning: closed world. we meta-train and then we meta-test on
new tasks
 But again, the model trains on every task
« We expect the model to generalize (possibly few-shot) to novel tasks
« We don't expect it to recognize unknown unknowns

24



OWA in Formal Logic o

An example, in formal logic systems in classical Al:

* Closed-world means that any true statement is known to be
true

« Open-world means that a statement may be true but yet
unknown

» The logic needs to be adapted to deal with unknown truth values

Probably the first example of open world assumption in Al and
something you may have seen in previous courses (AlF)

25



Approaches

e CAP[131]
® OpenMax [67]

Meta- « Mahalanobis [132]
® OWR-Survey [15]

recognition| «cros [133]
® C2AE [156]

- Anomalies: detect out-of-distribution ‘bt 17 0
samples via anomaly detection

* Prior Knowledge: train the model to OPEN SET Prior ‘

« Confidence Calibration [139]
RECOG- Knowl-

recognize a «background» class Nition edge
* Open Set Recognition: model the

» Objectosphere Loss [141]
« S5CM [142]
» Discrepancy Loss [140]

space of «things you know» and g | il
« ODIN [148]
« OCGAN [150]

{  Softmax-Confidence [14]

never predict outside of it Predictive

Anoma-
lies
« BayesSegNet [146]
Uncer- o [mage Resynthesis [149]
taint ® Deep Generative Models [152]
aliy o Predictive Uncertainty under
Dataset Shift [153]

M. Mundt et al. “A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten Lessons and the Bridge to Active and Open World Learning.” 26



Prior Knowledge

27
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Background Class

Sometimes, we have access to a large set of «unknown
examples»

« Example: let’s say we have a supervised problem

 We have a small subset of classes we are interested in / have
already labeled

* The rest are «background classes», and they represent what the
model doesn't know

« We can use them for training as an additional explicit
«background class»

« Convert an open world problem into a closed world one

28
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Objectosphere

* Train with a background class

« OBSERVATION: magnitudes of features for unknown samples
in deep feature space are often lower than those of known
samples.

» Objectosphere loss explicitly optimize this objective
« known samples should have a magnitude above a specified minimum

» background samples should have magnitude of the features close to
Zero

A. R. Dhamija et al. 2018. “Reducing Network Agnostophobia.” NIPS 29



Objectosphere

Correct Classification Rate

it e e o

10000 {7 1o False Positive Rate : Total Unknowns 10032

1ou N 100 . wom] S
o .”AM [ R——— . ot 3 —— Softmax —— Dbjectosphere
ad e E: He Background OpenMax
0 R ;:Q&yl,p?ﬂ.’f e 1 B KON q p
P L sl 1 X . Entropic Open Set
45 01 03 03 04 45 08 07 08 08 10 WO U1 03 03 0% 05 0 07 08 09 10 05 01 02 0 04 0% 06 07 08 0% 10

(a) Softmax (b) Background (c) Objectosphere  (d) Open-Set Recognition Curve

Figure 1: LENET++ RESPONSES TO KNOWNS AND UNKNOWNS. The network inlia) was only trained
to classify the 10 MNIST classes (D..) using softmax, while the networks inm andm added NIST letters [I5]
as known unknowns (Dy) trained with softmax or our novel Objectosphere loss. In the feature representation
plots on top, colored dots represent test samples from the ten MNIST classes (D.), while black dots represent
samples from the Devanagarif28] dataset (D, ), and the dashed gray-white lines indicate class borders where
softmax scores for neighboring classes are equal. This paper addresses how to improve recognition by reducing
the overlap of network features from known samples D, with features from unknown samples D.,. The figures in
the bottom are histograms of softmax probability values for samples of D.. and D, with a logarithmic vertical
axis. For known samples D.., the probability of the correct class is used, while for samples of D, the maximum
probability of any known class is displayed. In an application, a score threshold 0 should be chosen to optimally
separate unknown from known samples. Unfortunately, such a threshold is difficult to find for either[(a) orl(b],
a better separation is achievable with the Objectosphere lossl(c). The proposed Open-Set Classification Rate
(OSCR) curve in[(d) depicts the high accuracy of our approach even at a low false positive rate.

A. R. Dhamija et al. 2018. “Reducing Network Agnostophobia.” NIPS

30
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» We can train the model to recognize the unknown
» The open world problem becomes a supervised learning problem

* But only because it is known (we have the background class)
« What if we don't have background classes?

31



Open Set Recognition
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Open Set Recognition

Face Open Set

Multi-class Classification Detection Recognition

Verification

Closed | | A g Open
T T I | ~
Training and Claimed One class, Multiple known
testing samples identity, everything else classes, many
come from possibility for  in the world is unknown
known classes impostors negative classes

Fig. 1. Vision problems arranged in order of “openness”.
For some problems, we do not have knowledge of the
entire set of possible classes during training, and must
account for unknowns during testing. In this article, we
develop a deeper understanding of those open cases.

W. J. Scheirer et al. “Towards Open Set Recognition.” TPAMI, 2012. 33



Unbounded Decision Boundaries

 All the classification models that
we used have unbounded decision
boundaries

« Example: a binary linear model
 Splits the space into two regions
* One side is positive, the other

negative -

o Fig. 2. The Open Set Recognition Problem explicitly
Regardless Of hOW far they a.re. assumes not all classes are known a priori. Square
from the boundary or the tralnlng images are from training, oval images are from testing.
data distribution The class of interest (“dog”) is surrounded by other

classes, which can be known (“frog”, “birds”), or unknown

1 (“owl”,“raccoon”, “?"). Plane A maximizes the SVM margin

¢ In an Open World Settlng' we need making “dog” a half-space — which is mostly open space.
to allow a reJeCt Optlon The 1-vs-Set machine adds a second plane 2 and defines

an optimization to adjust A and 2 to balance empirical
and open space risk.

W. J. Scheirer et al. “Towards Open Set Recognition.” TPAMI, 2012. 34
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Unbounded Decision Boundaries

"7
?? 7
Example: ] -
p 11 2 i | D;:Epam
« (left) decision boundary v
. . Closed ?
close to training oyl )
examples azlin ”
° (rlght) Zoomed Out, the E-inl::ﬁg;ﬂl;liiiur-{,ldhs I'H-I_.)dﬂl (b) Zooming out to show
point of view. some open space.

decision boundaries
discriminate OOD Figure 1: The issue of open space can be seen by zooming

. out from around the training data. Open space 1s the region
e?(ampleS. (Often with far from training samples. A traditional classifier, e.g., NCM
h IJ h COandence!) shown here, will label everything including the unknown 77

inputs. Even points infinitely far away are labeled.

T. E. Boult et al. 2019. “Learning and the Unknown: Surveying Steps toward Open World Recognition.” AAAL. 35



Distance-based Rejection

STV

 Reject samples that are too far

« We can change the softmax with
A distance-based classifier
And threshold the maximum distance

ik

line
'DDIN
B !iahalanobis

i

60
Sk 10K 20K 30K 40K 50K Sk 10K 20K 30K 40K S0K
(a) Small number of training data

 Mahalanobis Distance
* M(X) = mcax - (f(X) - ﬁc)Tf_l(f(X) - ﬁc)
* [i. class mean

« ¥ covariance matrix

 IDEA: how many standard deviations of
distance between x and the class mean

K. Lee et al. A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks.” NIPS18 36



OpenMax — OSR with Deep Networks

 IDEA: activation vectors can be

MODEL

used to perform open-set

Fooling

re CO g n it i O n i Hammerhead Shark
* Recognition of unknown inputs

Great White Shark

‘t—. OpenMax Open set B @ Softmax Opan set

Scuba Diver

o / Real Image
p—= ”
v — Fooling
2 O R N S
£ e » Adversarial Scuba Diver (from Hammerhead)

‘ 4
Fish Baseball

v 025
Thresholds.

Bendale, Abhijit, and Terrance E. Boult. 2016. “Towards Open Set Deep Networks.” In 2016 IEEE CVPR 37



Take-Home Messages oy

« Many real-world problem are much more «open» than the toy
examples we study and use to train our models

« Known unknowns can be accounted for during training
(background classes) to improve the rejection rate of unknown
objects

« Unknown unknowns require rethinking the training algorithm to
account for the risk of confident predictions on unknown data

« Still a largely unsolved problem for DNN

38
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 Papers in the footnotes

« Open World Lifelong Learning
A Continual Machine Learning Course
* https://owll-lab.com/teaching/cl_lecture/
» Recordings are available
« The organization of these slides is partly based on this course

39
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