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 Data: quality, evaluation, scaling laws

* Models: Vision and Vision-Language Transformers

» Efficient Finetuning: Distillation, LoRA, Prompt Tuning

* Research: Model patching, model editing, explaining ICL



Large-Scale Pretraining



Training on a Web-Scale

“I’'m not the cleverest man in the world, but like they say in
French: Je ne suis pas un imbecile [I’m not a fool].

° We h ave a Ve ry b a d i n't u it i O n !n a mm.f-{!clctcd post from Aug. .I 6, :SclhciILE’i‘d, Tory candidate
in the riding of Joliette, wrote in French: "Mentez mentez,

a b O ut h OW m u C h d ive rS i'ty 't h e re i S 1':l[fr|lf'este:;a tuujt;i]_l'rs qu'elque chose.” \?hi,{‘:h translates as,
. ie lie and something will always remain.
in web-scale data

* In general, much more diversity

”r

“I hate the word ‘perfume,
in French: ‘parfum.’

Burr says. ‘It’s somewhat better

If listened carcfully at 29:55, a conversation can be heard
th an we eXpeCt between two guys in French: “-Comment on fait pour aller
de autre coté? -Quel autre coté?”, which mcans “- How
» There are examples of general do you get to the other side? - What sidc?”.
taSkS SUCh aS tranS|at|0n If this sounds like a bit of a stretch, consider this ques-

tion in French: As-tu aller au cinéma?, or Did you go to

° Ia n g u ag e p rovid eS the movies?, which literally translates as Have-you to go 1o

movics/theater?

.a ﬂ eXi ble Way tO SpeCify taS kS, ‘iﬂre_\fet §ans Garan?ie Du Gouvernement”, tranilatcd to
I n p uts, a n d O utp uts a I I aS a English: “Patented without government warranty™.
Seq Uen Ce Of Sym bOIS Tablc 1. Examples of naturally occurring demonstrations of En-

glish to French and French to English translation found throughout

- How do we use language to achieve thi WebText training set
few-shot and zero-shot learning?

A. Radford et al. “Language Models Are Unsupervised Multitask Learners.” 4



Few-Shot and Zero-Shot Learning

Given a large pretrained language model

* In-Context-Learning/Prompting: at inference time we give a
description of the task, (optionally) followed by a sequence of
examples

* No weights are updated

* Few-Shot: the model is given a few samples of the task as
conditioning

» One-Shot: a single example
« Zero-Shot: only the task description is given



Context —» Article:
Informal conversation is am important part of any business
relationship.Before you start a discussion, however,make
sure you understand which topics are suitable and which are
considered taboo in a particular culture. Latin Americans
enjoy sharing information about their local history, art
and customs.You may expect questions about your family,and
be sure to show pictures of your children.You may feel free
to ask similar questions of your Latin American friends.The
French think of conversation as an art form,amnd they emjoy
the value of lively discussions as well as disagreements.
For them,arguments can be interesting and they can cover
pretty much or amy topic —— as long as they occur in are
respectful and intelligent manner.
In the United States,business pecple like to discuss
a wide range of topics,including opinions about
work,family,hobbies,and politics. In Japan,China,and
Korea,however ,people are much more private.They do not
share much about their thoughts,feelings,or emotions because
they feel that doing so might take away from the harmonious
business relationship they’re trying to build.Middle
Easterners are also private about their personal lives and
family matters.It is considered rude,for example,to ask a
businessman from Saudi Arabia about his wife or children.
As a general rule,it’s best not to talk about politics
or religion with your business friends.This can get you
into trouble,even in the United States,where people hold
different religious views.In addition,discussing one's
salary is usually considersd unsuitable Sports is typically
a friendly subject in most parts of the world,although be
careful not to criticize national sport.Instead,be friendly
and praise your host's team.

Q: What shouldn’t you do when talking about sports with
colleagues from another country?

A: Criticizing the sports of your colleagues’ country.

Q: Which is typically a friendly topic in most places
according te the anthor?

A: Sports.

Q: Why are people from Asia more private in their
conversation with others?

A: They don't want to have their goed relationship with
others harmed by informal conversation.

Q: The author considers peolitics and religion . .

A:

Correct Answer —} taboo
Incorract Answer — cheerful topics
Incorrect Amswer — Tude topics

i

Incorrect Answer topics that can never be talked about

Figure G.1: Formatied dataset example for RACE-h. When predicting, we normalize by the
unconditional probability of each answer,

T. Brown et al. “Language Models Are Few-Shot Learners.” NeurlPS 2020 6



Examples of Prompts

Context — How to apply sealant to wood.

Correct Answer — Using a brush, brush on sealant onto wood until it is fully
saturated with the sealant.

Incorrect Answer — Using a brush, drip on sealant onto wood until it is fully
gaturated with the sealant.

Figure (.4: Formaltted dataset example for PIQA

T. Brown et al. “Language Models Are Few-Shot Learners.” NeurlPS 2020



LLMs are Few-Shot Learners

Setting NaturalQS  WebQS  TriviaQA
RAG (Fine-tuned, Open-Domain) [LPPT20] 44.5 45.5 68.0
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20] 36.6 44.7 60.5
T5-11B (Fine-tuned, Closed-Book) 34.5 374 50.1
GPT-3 Zero-Shot 14.6 14.4 64.3
GPT-3 One-Shot 23.0 25.3 68.0
GPT-3 Few-Shot 299 41.5 71.2

Table 3.2: Results on three Open-Domain QA tasks. GPT-3 is shown in the few-, one-, and
zero-shot settings, as compared to prior SOTA results for closed book and open domain settings.

TriviaQA few-shot result is evaluated on the wiki split test server.

Setting ARC (Easy) ARC (Challenge) CoQA DROP
Fine-tuned SOTA ~ 92.0¢ 78.5° 90.7°  89.14
GPT-3 Zero-Shot  68.8 51.4 81.5 23.6
GPT-3 One-Shot  71.2 532 84.0 343
GPT-3 Few-Shot  70.1 51.5 85.0 36.5

Table 3.3: GPT-3 results on a selection of QA / RC tasks. CoQA and DROP are F1 while ARC
reports accuracy. See the appendix for additional experiments. “[KKS120] *[KKST20] ¢[JZC*19]

4IN20]

T. Brown et al. “Language Models Are Few-Shot Learners.” NeurlPS 2020
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« Prompting requires rethinking the adaptation and finetuning of
models

* It's hard to evaluate LLMs zero-shot ability
« How can we ensure that the task is really unseen?

« Still hard to control the model or estimate uncertainty



Challenges in the Evaluation

 Github CoPilot memorized the solution
of many programming challenges

« Example: Project Euler #14

« A simple problem about the
convergence of Collatz sequences

How to get your solution

« Add a comment with the link to project
euler

 Press tab or enter until the code is
complete. Copilot will write the full

solution

import time

start = time.time()

longest_chain = @
longest_chain_start = ©

def collatz(n):
chain =1
while n != 1:
ifn%2==20:
n =n/2
chain += 1
else:
n =3* + 1
chain += 1
return chain

for i in range(1l, 1000000):
chain = collatz(i)
if chain > longest_chain:
longest_chain = chain
longest_chain_start = i

print(longest_chain_start)

print("--- %.2f seconds ---" %(time.time() -

start))

10




Data and Scaling Laws
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Model Scale

1000 72~

GPT-3 (175B)

100 i Megatron-Turing NLG (530B)

Megatron-LM (8.3B)

Model Size (in billions of parameters)

10
1
BERT-Large (340M)
0.1
ELMo (94M)
0.01
2018 2019 2020 2021 2022

image from https.//huggingface.co/blog/large-language-models 12



Training Large (Huge) Models

Training large models is very expensive
* You can train a single run (it cost MS)

* You would like to know the cost in advance, whether the
performance improvements are worth the cost

Problems:

« How do we do model selection?

« How do we choose the model size?
« How much data do we need?

* What error will we get?

13
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Model Selection

RYAATAN

* You can't do it. A training is a single run
* If models become unstable recover from previous checkpoints

 Needs to account for machine failures (the model is trained on
a cluster)

14



Chinchilla Scaling Law

RYAATAN

» Chinchilla Scaling Law: an empirical law that determines the
loss given
* N: number of parameters of the model
* D: number of tokens in the dataset
« Three components: model error, data error, irreducible loss

406.4 410.7

N0.34 T D0.28 T 1\@

N e’ N e’ irreducible

finite model finite data

L(N, D) =

J. Hoffmann et al. “Training Compute-Optimal Large Language Models.” 2022 15



Compute-Optimal Models
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Figure 3 | IsoFLOP curves. For various model sizes, we choose the number of training tokens such
that the final FLOPs is a constant. The cosine cycle length is set to match the target FLOP count. We
find a clear valley in loss, meaning that for a given FLOP budget there is an optimal model to train
(left). Using the location of these valleys, we project optimal model size and number of tokens for
larger models (center and right). In green, we show the estimated number of parameters and tokens
for an optimal model trained with the compute budget of Gopher.

J. Hoffmann et al. “Training Compute-Optimal Large Language Models.” 2022 16



Compute-Optimal Models

 Larger models are not always better, you also need larger data

* Given a fixed computational budget and a dataset, you can find
the optimal model size

* The optimality is wrt to the loss and training cost.

* Inference cost is ignored and it can be high due to the large model size
suggested by the Eq.

 Unclear if the scaling law will hold for larger models

17



How much data do we have?

If the trend continues
* high-quality language data will be exhausted soon; likely before 2026.

 low-quality language data and image data will be exhausted only much
later; between 2030 and 2050 (for low-quality language) and between
2030 and 2060 (for imaaes).

T 100, :
—— Extrapolation based on compute — Extrapolation based on compute | = Extrapolation based on compute
—— Extrapolation from trend === Sxtiapoiation froim trenc | — Extrapolation from trend
101 Stock of data (90% CI) Stock of deta (90% Cr) 101 Stock of data (90% CI)
. Stock of data (median) 2 gl [ | Stodicof data (median) : v Stock of data (median)
_10V4 = : =
g g g
£ 10 g g
g
: £19 E 101
5 s | 5 |
5 100 g ¥
3 H £ 104
101 =
1 1000}
05y ledian date Med:
edia {Median date data is exhausted data Median date Median date
jata | LS \-.‘f!iﬁdld is exhausted (compute extr.) (tren data is exhausted; data is exhausted
100 itrend {{compute extr ) i ! 10* Ci {tr v
2025 2030 2035 2040 2045 2050 2022 2023 2024 2025 2026 2025 2030 2035 2040 2085 2050 2055 2060
Year Year Year
(a) Projections for low-quality (b) Projections for high-quality (c) Projections for vision data

language data language data

Fig. 1: Projections of data usage. Each graph shows two extrapolations of data usage, one from past trends and one from compute availability
estimations plus scaling laws. Both projections are constrained to be lower than the estimated data stock. In all three cases, this constraint
causes a slowdown in data usage growth.

P. Villalobos et al. “Will We Run out of Data? An Analysis of the Limits of Scaling Datasets in Machine Learning.” 2022 18



Model

Stock of data (ffwords)

Growth rate

1.46el17
Recorded speech
[3.41el6; 4.28¢17]
2.0lel5
Internet users
[6.47¢14; 6.28el5]
44l1el4
Popular platforms &
[1.21e14; 1.46¢e15]
i 3
CommonCraw! Saaa
|4.45e13; 2.84e14]
Indexed websites s
[5.16e13; 6.53e15]
7.41el4

Aggregated model
e [6.85¢13; 7.13¢16]

5.2%
[4.95%; 5.2%]
8.14%

[7.89%; 8.14%]
8.14%

[7.89%:; 8.14%]|
16.68%

[16.41%; 16.68%]

NA

7.15%
[6.41%; 17.49%]

Largest  training
dataset (datapoints)

Domain Doubling time median and
CI (months)

Language 15.8 [11.2; 20.9]

Vision 41.5 130.4; 48.3]

2el2
3e9

TABLE [: Trends in training dataset size for vision and

language models.

Data source

Social media conversations
Filtered webpages

Books (English)

GitHub (code)

Wikipedia (multilingual)

Component Raw Size
Pile-CC 227.12GiB
PubMed Central 90.27 GiB
Books3' 100.96 GiB
OpenWebText2 62.77 GiB
ArXiv 56.21 GiB
Github 95.16 GiB
FreelLaw 51.15GiB
Stack Exchange 3220 GiB

USPTO Backgrounds 2290 GiB
PubMed Abstracts 19.26 GiB
Gutenberg (PG-19) 10.88 GiB
OpenSubtitles’ 12.98 GiB

(a) Composition of
Pile (left), PalLM
(bottom-right)

ments

News (English)
Disk Size Docu

MassiveWeb 1.9TB
Books 21TB
C4 0.7S TB
News 2.7TB
GitHub 3.1TB
Wikipedia 0.0017TB

604M
4M
361M
1.1B
142M
6M

high-quality datasets: The
MassiveText

(top-right),

10+

{ —— Recorded speech
; Internet users

10'® —— Popular platforms
Indexed websites
@ // CommonCrawl
S 10"
8
o 1 =
= 10 e ——— o
b T———F
3 /
8
£ 10 /
z
1014
13

2020 2030 2040 2050 2060 2070 2080
Year

(a) Comparison of the different data stock
models.

P. Villalobos et al. “Will We Run out of Data? An Analysis of the Limits of Scaling Datasets in Machine Learning.” 2022 19



Vision Transformer

20



 MultiHead(Q, K,V) = Concat( head 4, ..., head ,)W?
 head; = Attention(QW;%, KWK, vw}”)
* Transformers use multiple heads, each transformed by different linear projections

T
» Attention(Q, K, V) = softmax (%) |4

* Scaled dot-product attention
* Qquery

* Kkeys

* Vvalues

21
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Vision Transformer

Vision Transformer (ViT) Transformer Encoder

MLP
Head

Transformer Encoder

|

|

|

|
1

|

|

1

- dddgdgtete | |5

|

[ 1

|

|

|

* Extra learnable X K .
[class] embedding Linear Projection of Flattened Patches ]

SEE I

e ] 1 B T L

Wﬁﬂ Egbegdcd
atches

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

A. Dosovitskiy et al. "An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale.” 2021 22




Embedding Image Patches

* Split images in 16x16 patches

« Add positional embedding
 Learnable 1D embeddings
* Needed because attention is invariant to the patch position

* Once we have the 1D embeddings, we can use the Transformer
like we do for text

23
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« MSA: Multiheaded Self-Attention « E€ ]R%(PZ'C)XD,Epos e RW+LxD
* LN: Layer Normalization  E projects embedding into latent
 GELU nonlinearity space

* |Image HxWxC
* 2y = [Xclass s X5 B X2E; - XNE| + E s |° E?Tih I;ZC (flgjctened. patch)
. B . atent size dimension
* 2y = MSA(LN(z-1)) + 20, = 1.1 |, X ass IS @ learned embedding
* 2z, = MLP(LN(z;)) +z), £=1..L and provides the final image
.y = LN(ZO) representation at the last layer
L (equivalent to BERT [class]

token)

24
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L g ViT-L/16 - ViT-B/32 = ResNet50x1 (BiT)
0 - ViT-L/32 ViT-b/32 -®ResNet152x2 (BiT)

Linear 5-shot ImageNet Topl [%]

10M 30M 100 M 300 M
Number of JFT pre-training samples

Figure 4: Linear few-shot evaluation on Ima-
geNet versus pre-training size. ResNets per-
form better with smaller pre-training datasets
but plateau sooner than ViT, which performs
better with larger pre-training. ViT-b is ViT-B
with all hidden dimensions halved.

A. Dosovitskiy et al. 2021. "An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale.”
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« With LLM we can do zero-shot training with prompting

« We want to exploit language to encode visual information
« Language encodes a high-level understanding of images

« We have lots of captioned images that provide much more information
than using the image alone

* We need to combine vision and language models

27



Vision-Language Pretraining with CLIP

* pre-training task: learn to map text captions with visual images

« zero-shot transfer: natural language is used to reference
learned visual concepts (or describe new ones)

(1) Contrastive pre-training (2) Create dataset classifier from label text

5 | o7 | 0T | nT| o |oTy

L | LT | LT LT L LTy

I LT LT LTy . LTy
e [ i > mace > I
4 ! | | - Encoder

Iy | |IvTy | IyTy [ BeTa| - BTy

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training

cxamples. At test time the learned text encoder synthesizes a zero-shot lincar classifier by embedding the names or descriptions of the
target dataset’s classes.

A. Radford et al. 2021. “Learning Transferable Visual Models From Natural Language Supervision.” 28




Contrastive Learning

 Objective: learn a latent representation
space that is semantically meaningful (for
downstream tasks)

« Example: in a downstream classification Qusov

problem, we would like the examples to g , \W q[\ $Gﬂo§er
Hlies

be linearly separable
- IDEA: similar images are close to each o7
other, diverse images are far
- contrastive learning: compare and
contrast pairs of images during training to
learn good representations



Contrastive Pretraining

 Supervised training is inefficient if we try to learn from
<caption, image> pairs
» There is too much diversity in the possible images and captions
* It is very difficult to predict the exact image/captions of the current pair

 Solution: contrastive training

 Given a batch of <caption, image> pairs, predict which text caption
maps with which image among the NxN possibilites

 Learns a multi-modal embedding space where text and images are
aligned

A. Radford et al. 2021. “Learning Transferable Visual Models From Natural Language Supervision.” 30



CLIP Pretraining

#
E:
#
#
E:
#
=

image_encoder - ResNet or Vision Transformer (1) Contrastive pre-training
text_encoder - CBOW or Text Transformer

I[n, h, w, c] - minibatch of aligned images P
Tl 1] - minibatch of aligned texts S,
W_ild_i, d_e] - learned proj of image to embed 3 1
w_t[d_t, d_e] - learned proj of text to embed Depper the |
t - learned temperature parameter

aussie pup — I

xtract feature representations of each modality - : k4 h L 4 L d
= image_encoder(I) #[n, d_i] o
= text_encoder(T) #[n, d_t] R T

— H

e
e
-f

=]

([ |

nt multimodal embedding [n, d_e]
12 _normalize(np.dot(I_f, W_1), axis=1) |
12 _normalize(np.dot(T_f, W_t), axis=1) » L Ll | LT | I'Ts — | I Ty

— H
™ [

# scaled pairwise cosine similarities [n, n]

logits = np.dot(I_e, T_e.T) * np.exp(t) —» I LT | BT | hT; o iy

Image »

s : I} 13'T1 I;'Tj 13'T3 i fI}'T_};

labels = np.arange(n)

loss_i = cross_entropy_loss(logits, labels, axis=8)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss i + loss t)/2

# symmetric loss function

[
Figure 3. Numpy-like pseudocode for the core of an implementa- » Iy LiTp | LyTh ReTy| o |
tion of CLIP. : ‘ Al € |

A. Radford et al. 2021. “Learning Transferable Visual Models From Natural Language Supervision.” 31



Zero-Shot Image Classification

« Given a number of classes {«dog,
«cat», ... }

 Create prompts: «this is an image of
{class}»

 For each image, find the closest
prompt
* You can encode the text prompt and

use its embedding to get a linear
classification head

StanfordCars +28.9
Country211
Food101
Kinetics700
SST2
SUN397
UCF101
HatefulMemes
CIFAR1O
CIFAR100
STL10
FER2013 |§+2.8
Caltech101 jj+2 .0
ImageNet
OxfordPets |§+1.1
PascalvOC2007 J+0.5
- Birdsnap
MNIST
FGVCAircraft
RESISC45
Flowers102
DTD
CLEVRCounts
GTSRB
PatchCamelyon
KITTI Distance
EuroSlAT :

-40 -30 -20 -10 O 10 20 30 40

A Score (%)
Zero-Shot CLIP vs. Linear Probe on ResNet50

Figure 5. Zero-shot CLIP is competitive with a fully super-
vised baseline. Across a 27 dataset eval suite, a zero-shot CLIP
classificr outperforms a fully supervised linear classifier fitted on
ResNet-50 features on 16 datasets, including ImageNelt.

A. Radford et al. 2021. “Learning Transferable Visual Models From Natural Language Supervision.” 32



Zero-Shot Image Classification

« Ensembling: You can use multiple
prompts for the same class:
* «a photo of a small {class}»
 «a photo of a big {class}»

* Prompt Engineering: different prompts
can have ditferent results

« E.g. «{class}» vs «a photo of {class}»

 Paper Results: (on ImageNet)

« ensemble 80 different context prompts
(+3.5%) w.r.t. single default prompt

« prompt engineering and ensembling
Improve (+5%)

* In general, ensembling and prompt
engineering have a big impact

StanfordCars
Country211
Food101
Kinetics700
SST2

SUN397
UCF101
HatefulMemes
CIFAR1O
CIFAR100

STL10
FERZ013 l+2.8
Caltech101 jj+2 .0

ImageNet i|+1.9

OxfordPets |§+1.1
PascalvOC2007 J+0.5

- Birdsnap

MNIST
FGVCAircraft
RESISC45
Flowers102
DTD
CLEVRCounts
GTSRB
PatchCamelyon
KITTI Distance
EuroSlAT :

-40 -30 -20 -10 O 10 20 30 40

A Score (%)
Zero-Shot CLIP vs. Linear Probe on ResNet50

Figure 5. Zero-shot CLIP is competitive with a fully super-
vised baseline. Across a 27 dataset eval suite, a zero-shot CLIP
classificr outperforms a fully supervised linear classifier fitted on
ResNet-50 features on 16 datasets, including ImageNelt.

A. Radford et al. 2021. “Learning Transferable Visual Models From Natural Language Supervision.” 33




CLIP Pretraining is More Sample-Efficient

L
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L
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—&— Bag of Words Prediction
—&— Transformer Language Model

Zero-Shot ImageNet Accuracy
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L
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# of images processed

Figure 2. CLIP is much more efficient at zero-shot transfer
than our image caption baseline. Although highly expressive,
we found that transformer-based language models are relatively
weak at zero-shot ImageNet classification. Here, we sce that it
learns 3x slower than a baseline which predicts a bag-of-words
(BoW) encoding of the text (Joulin et al., 2016). Swapping the
prediction objective for the contrastive objective of CLIP further
improves efficiency another 4x.

A. Radford et al. 2021. “Learning Transferable Visual Models From Natural Language Supervision.” 34



Robustness to Dataset Shift

ImageMet Zero-Shot

100 r- ResNet101 CLIP L Score
== Ideal robust model {y = x] - (&
954 @ Zarc-Shot CUF ,."'1—"-. I - - lr )
# Standard Imageblet training - "o | = L) S = ' -] q
90 1 @  Exisiting robustness technigues ,"" ImageNel “"" . = . 2 : ¥ 76.2 76.2 0%
B — f

ImageNety2 64.3 701 +5.8%

ImageNet-R 37T 889 +512%

326 723 +39.7%

ImageNet |/

2R 2 60.2 35.0%
Sketch T

Average on 7 natural distmbution shift datasets {top-1, %)

20 B T T
€5 70 75 80 83 S0 95 10

Avarage on class subsampled ImageMet {top-1, %)

, ImageNet-A BEVE 27 774 +74.4%

Figure 13. Zero-shot CLIP is much more robust to distribution shift than standard ImageNet models. (Left) An ideal robust model
(dashed linc) performs equally well on the ImageNet distribution and on other natural image distributions. Zcro-shot CLIP models shrink

this “robustness gap” by up to 75%. Linear fits on logit transformed values are shown with bootstrap estimated 95% confidence intervals.

(Right) Visualizing distribution shift for bananas, a class shared across 5 of the 7 natural distribution shift datasets. The performance of
the best zero-shot CLIP model, ViT-L/14@336px, 1s compared with a model that has the same performance on the ImageNet validation
set, ResNet-101.

A. Radford et al. 2021. “Learning Transferable Visual Models From Natural Language Supervision.”
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Distillation - Alpaca

We can use large models to create Stanford

data to train the smaller models

7B model trained from GPT3.5 Alp aCda

inputs

Cheap to train
e 3 hours on 8 80GB A100s
« <6008 cloud cost &) Loy

Text-davinci-003

- o ) j

S

1l ¥ -
Supervised w .

Finetuning Alpaca 7B

i Sta rt fro m L La M A (7 B L L M) 175 Self- Modified Self-instruct Instructiii-Kfollowing
. . Instruct Instruction Generation examples
* Finetune with seed tasks
* 175 human-written instruction-
Ou‘tpu‘t pan’s Example seed task Example Generated task
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Prompt Tuning — Learning To Prompt (L2P)

» For classification problems, the
prompts are fixed embeddin 5 DN A S —
batching‘,/ : Model N ‘

Query EPrumpt : !nstruc?
> : —>—> Model 0
/

vectors that we compare to the g o IS
image embedding
Figure 1. Overview of the L2P framework. Compared with typical

° C a N We I e a n th e p ro m p't? methods that adapt entire or partial model weights to tasks sequen-

tially with a rehearsal buffer to avoid forgetting, L2P uses a single

° Learningzprompt: backbone model and learns a prompt pool to instruct the model

conditionally. Task-specific knowledge is stored inside a prompt

° Contlnual Iearnlng method pool, thus a rehearsal bu.ffer is no longer mandatory to mitigate
. . forgetting. L2P automatically selects and updates prompts from
° F|Xed pretra“']ed baCkbone the pool in an instance-wise fashion, thus task identity is not re-

quired at test time. Notably, our largest prompt space is smaller

¢ Keep d prompt pOOI Wlth <key, Value> than the size of one 224 x 224 image.
pairs

» Uses the key to select the prompt

Z Wang et al. “Learning to Prompt for Continual Learning.” CVPR 2022. 38



L2P - Prompt Selection

Prompt pool
(a shared memory space)

Prepend selected prompts

)

A

) ”F

1
}\
=i ®

Input J

Query function

é

( Pretrained Embedding Layer )

I |
P e -9

’

Ay ’
-

i

Matched pairs

[

Pretrained Transformer Encoder

N

/ AvgPool

=0

( Clas‘siﬁer )

A key-value pair

Prediction

Figure 2. Illustration of L2P at test time. We follow the same procedure at training time: First, L2P selects a subset of prompts from a
key-value paired prompt pool based on our proposed instance-wise query mechanism. Then, L2P prepends the selected prompts to the
input tokens. Finally, L2P feeds the extended tokens to the model, and optimize the prompt pool through the loss defined in equation 5.
The objective is learning to select and update prompts to instruct the prediction of the pre-trained backbone model.

Z Wang et al. "Learning to Prompt for Continual Learning.” CVPR 2022.
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L2P - Prompt Selection

* K, = argmin Y., y(q(x), ks,) Prompt Selection
{si}L,S[1.M]
« q(x) pretrained feature extractor gets query features
* kg, key
« v scoring function that matches image and prompts

. m{i)gﬁ (gd, (fravg (xp)) ,y) + A2k, y(q(x), kSl.) Optimization Objective

« £7V8 ViT encoder
* g¢ Classifier

Z Wang et al. “Learning to Prompt for Continual Learning.” CVPR 2022. 40



Efficient Finetuning — Low Rank Adaptation (LoRA)

» We can finetune only a small part

of the model
* Represent the finetuned models as featalice
. . Weights
d, + Ad with small (in memory -
size) AD O
* This allows us to easily train and .
store hundreds of finetuned models X[ )
¢ LOW'Rank Parameter Update Figure 1: Our reparametriza_
* h =Wyx + AWx = Wyx + BAx tion. We only train A and B.

e WithBe R, A e Rk r « d

41



Continual Pretra
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Continual Pretraining

Continual Pre-Training Stream

 Continual Pretraining
is the problem of
efficiently updating a
large pretrained model

 Forgetting Control
Task: we don't want to

forget general Forgetting Control Task Downstream Task

knowled ge (Sentiment Analysis) . (Document Classification)

 Downstream Task: we
want to improve on
domain-specific tasks

Cossu, A, et al. "Continual Pre-Training Mitigates Forgetting in Language and Vision." 2022. 43



Pretraining Results

Evaluation on the
Forgetting Control Task

1

Table 2: Accuracy on the entire dataset of

sentiment analysis

with RoBERTa model. Continual

pre-training has been performed sequentially over each experience of scientific abstracts.
Base refers to the model pre-trained on Wikipedia, while NT refers to the model with vocabulary

expansion.

RoBERTa Accuracy l-epocwcuracy a dafpat?[i on
Base 93.40 92.40

Exp. el e2 e3 ed g3 | el e2 e3 ed e5

Pretr 93.40 93.15 9335 9320 |92.90|| 9240 91.80 9230 91.85 92.20

Pretr. NT 9375 93.70 93.75 93.60 |94.10(| 91.75 91.15 92.00 9230 9245

Forgetting is limited even with finetuning.
Dynamic vocabulary expansion (NT) slightly
improves the performance.

Self-supervised pretraining is more
robust than supervised methods
(result for vision in the paper)

Cossu, A, et al. "Continual Pre-Training Mitigates Forgetting in Language and Vision." 2022.
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Self-Supervised CL

« Distillation loss maps

‘CS SL F~-~TTTTTTsssssmS ['SSL cross-c;rrelatlon

old representations in a Y cmm T (e L
new projected space ) e — T

. f!— 1 (w) fi (m) Bac;:)one Bac;t;one
« SSL tricks such as heavy 1 : '

augmentations and SSL
losses
[ 1
. . . [~— Figure 1. Self- ised continual learning with Projected Func-
e Linear probing @ I i meo o cmaning tasos s

. directly between the previous task backbone and the new one, we
eva I u at I O n Figure 2. Overview of the CaSSLe framework. use a learned temporal projection between the two feature spaces.

y ; J Twins
ﬂ.{g O O o  Augmentations P24l Len
: _Dislonlon
—

Images | =z .

A. Gomez-Villa et al. “Continually Learning Self-Supervised Representations With Projected Functional Regularization,” CLVISION 22

E. Fini et al. “Self-Supervised Models Are Continual Learners.” CVPR 22 45



CaSSLe - Self-Supervised CL

 We can also use KD to train SSL models

« SSL loss on new data + KD loss on old
embeddings

L= Lgs(24,28) + L) (zA,éA)

= Lgsi.(24,2°) + Lss, (Q(ZA)' éA)-

* Aand B images, z4,z8 embeddings of new model

 z”% embedding of old model
» L¢q; is used as the distillation loss

g is a projection network that maps from the new
representation to the old ones

. J,[AF]IIows to update the representations and change
em

CaSSlLe 2112.04215 (arxiv.org)

L£ggp, p---=-mc-rmcmnnn- Lgst.
H Predictor g(z) 0—\{
Frozen Current
MNetwork Metwaork
f (=) f'()

{

O () o  Augmentations

|

Figure 2. Overview of the CaSSLe framework.
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Large-Scale Pretraining

» self-supervised pretraining provides very general knowledge
about large domains (vision, language)
« We can adapt them to solve new tasks with few (or zero) examples
« They are more robust compared to supervised models
« They are even more robust than finetuned models

47



Model Patching
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WLDWNG MODELS LIKE

Commun\’rtj—o\eveloPeo\ and Conﬂnuallg—'\mProveo\ rmodels
- \ncremental and chea‘altj—commun‘\cable updates

- Herﬁ'\nﬁ rmodels

- VQ’r’r’\ﬂg commun'\’rtj contributions

- Versioning and backward com‘aaﬂb‘\l‘\‘r&

- Hoo\uiar‘\ftj and distribution

O Model — Fine-tuning Merging Intermediate
Pre-trained Downstream
Pre-trained  Intermediate  Downstream O O

h++Ps://connra€€e|.com/bloa/a-cau-+o—bu‘uo\—moo\e|s—|‘\ke-we-bu‘ud-o(oen—source-so€+ware.h+m|




Model Patching

GOAL: we want to consolidate two pretrained models

* Given two models fy. and fy, trained on tasks T1 and T2
- Find a model fy,, that solves both T1 and T2

* The two models can have different architectures, initialization,
training algorithm, tasks...

50



(nonlinear) Mode Connectivity

Mode Connecﬂv'\fa\x the models (modes) are connected
btj a low-loss e .

* we construct continuous paths between minima of
recent ne“ural network architectures on C\FRRI0 and
C\FRR400.

e "Wwe observe the Lollowing frend: The deeper and
wider an architecture, the lower are the saddies
between minima until the essenﬁalhj vanish for
curren’r—o\aa O\ee(a architectures,

* The more complex dataset C\FAR400 raises the
barriers,

e AUtoMER method for connecﬂnﬁ mMinimna £rom
molecular statistical mechanics

F. Droxfer et i 'Essenﬁa//y o Barriers in Meursl Metwork Energy tandscape,”

Linear interpolation

Our path

51




Simple Model Patching

Linear Mode Connectivity:

» Naive average: 0" = %(91 + 6?)

- Weighted average: 8} = «;6} + (1 — a;)07

How do we find the weights?

* (normalized) Fisher diagonal
* (normalized) gradients

« Optimizing on a validation set

52



Patching Vision-Language Models

Patching on SUN397

- oPen—vocabularﬁ models are characterized bﬁ their a‘o'\l’ﬁﬁ to
perform any '\maﬂe classification task (example: CLIP)

- based on fext descriptions of the classes

PANT also allows a singe model to be \sa’rcheo\ on mul‘r'\\ole tasks
and improves with mode! scale. Furthermore, we ‘\o\enﬂ?ﬁ cases of
broad transfer, where Pa’rch'mﬁ on one task increases accuracy

SUN397 Accuracy

on other tasks T . .
0.5 0.6 0.7
ImageNet Accuracy

Step 1. Fine-tune 6,5 on training data from Dpycn to produce a model with weights 0.

Step 2. For mixing coefficient « € [0, 1], linearly interpolate between 6, and 6y to produce
Opatch = (1 — @) - 0,5 + « - O. The mixing coefficient is determined via held-out validation
sets for Dyypp and Dpaien. We refer to the resulting model as Opqich.

a. Iharco et Al @?afch/ry oPGn—vocabu/ary models by /nferpo/aﬁry weghfs " peuriPS 2022 53



* \DEA we can exploit DN symmetries to fnd a «better al\f)nmen+>>
between the models that alows to Pa’rch them via we‘\ﬂth averaﬁ‘\nﬁ
(remember no barriers in loss)

* DN Unite can be Permu’reo\ without chanﬁ'\n the DL output:

w,=pPwP P b, =pPb"

e ait-Rebasin €ind the best unit permutations b{j ma’rch'\nﬁ we'\ﬁh’rs or
activations, Then, we can rerge with the naive average.

Ainsworth, S, K, et ol 'Git Re-Basin: Merging Modlels modlulo Permutation Symmetries . 54



What are we missing?

RYAATAN

Necessary conditions for mode connectivity are unclear
initialization?
- Pretrained models are the best choice -> if the first part of the training
is shared patching becomes much easier.

- Same init is better. Different init works for simple datasets?

- Width and depth? Wider is better, but is it always enough? How wide
should it be? How quickly is it growing with dataset complexity?

- Optimizer? Adaptive vs non-adaptive
- Architecture? Transformers, residual connections, batchnorm...
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Are Transformers Meta-
Learning Methods?



In-Context Learning

« What is in-context learning (ICL) and why does it work so well?
* Is ICL even learning?

* Is it just an emergent property of large
pretraining/data/architecture?

 IDEA: If ICL is a learning algorithm, then pretraining is a «<meta-
learning» algorithm

57



Motivation — Learning to Learn

» Meta-learning: Can we optimize the learning algorithm to solve
novel tasks (transfer, low-shot and fast adaptation,
hyperparameter search)? a.k.a. Learning to learn

¢ AMETA(D,, ..., Dy} = A", A DYIN — gl +1
« Example: Optimization-based meta learning (MAML)

+ 9" = minEpr, | Ly (Ui (6,07%7), DI )]
 Learn the best init

58



Hypothesis: ICL is a form of SGD

» “we suggest that trainin% Transformers on auto-regressive objectives is closely

related to gradient-based metalearning formulations”

- “trained Transformers become mesa-optimizers i.e. learn models by gradient
descent in their forward pass.

» The paper provides a constructive proof of this behavior for regression problems

« Note that this means that maybe ICL is not a consequence of large-scale training, but of
the Transformer architecture

P Find 6 [t (Tauery ) — Gradient descent
B/ o Jolz) W t 0.2 1 + Trained Transformer
= {Eﬁl 3 'Eill! 2 8.k, tﬂ{:rl,'ll Yy D ] i~ y.“_-:-r'.' m
WL SRR TN —_— : I 5
K — Transformer 0-1
IJ:_'? 1 ) . M ,J"‘ ~
AN W : 4 I i " ! )
\ / . . . 0.0~ ; ;
@ Find § context ] B = e
at. (W — VwL(D™)) fo(@rent) & rest | pcon Tquery GD Steps [ Transformer Layers

Figure 1. Illustration of our hypothesis: gradient-based optimization and attention-based in-context learning are equivalent. Lefr:
Learning a neural network output layer by gradient descent on a dataset D™, The task-shared meta-parameters  are obtained by
meta-learning with the goal that after adjusting the neural network output layer, the model generalizes well on unseen data. Center:
INlustration of a Transformer that adjusts its query prediction on the data given in-context i.e. tg(Tguery; D*™™'). The weights of the
Transformer are optimized to predict the next token yyuery. Right: Our results confirm the hypothesis that learning with K steps of gradient
descent on a dataset D™ (green part of the left plot) matches trained Transformers with K linear self-attention layers (central plot) when
given D"™" as in-context data D",

Von Oswald, Johannes, et al. "Transformers learn in-context by gradient descent." International Conference on Machine Learning. PMLR, 2023. 59



Hypothesis: ICL is a form of SGD

« “We reverse-engineer Transformers trained on simple sequence modeling tasks, and find
strong evidence that their forward {)a.ss_ implements two-step algorithms: (i) early self-
attention layers construct internal training datasets by grouping and copying tokens, and
therefore implicitly define internal objective functions, (ii) deeper layers optimize these
objectives to genérate predictions.

1
8 |- -
1_,| | Autoregressive Transformer f
8 |
' ‘ (i) Create mesa-dataset (ii) Define mesa-objective (iii) Mesa-optimize
@ [ - select input-output pairs = learn internal model - improves over sequence
5 | predictive of the future based on D™ length and layer depth
I"’ i
Ls a:Em' T, N AL Qe
‘__ A | !E ] g £ o B TR \ e,
e :. —1 u!% 1 E ‘.-:"‘--._
| . AR -
| ‘ — Ay Ay Ay Ey 4 i
‘ : 1 20 40
| &t’_l > MEsE { I'IHI-“;I T T . mesa '
—‘ D = {0, - e} L (D, W) Wi = argming Ly (D5 W)
L A
)

L’[ér-- ji= f“i‘(slzﬁwf ﬂ

|
A

Figure 1: Illustration of our hypothesis: Optimizing the weights # of an autoregressive Transformer
fo gives rise to mesa-optimization algorithms implemented in the forward pass of the model. As a
sequence of inputs s, ..., s; is processed up to timestep £, the Transformer (i) creates an internal
training set consisting of pairs of input-target associations, (ii) defines an internal objective function
through the resulting dataset, used to measure the performance of an internal model with weights W,
(iif) optimizes this objective and uses the learned model to generate a prediction 5, of the future.

von Oswald, Johannes, et al. "Uncovering mesa-optimization algorithms in transformers." arXiv preprint arXiv:2309.05858 (2023). 60



Conclusion
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Take-Home Messages

e scale matters

* Be careful about the evaluation
* It's easy to evaluate on the training set
« companies are not sharing many details about the models (evaluation,
training data, number of parameters)

« methods that we saw in the course are used (is slightly different
forms)

« distillation to reduce the size of the model
« zero-shot and few-shot techniques (e.g. prompting)
« finetuning (e.g. LoRA)
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