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Lecture Outline

• Refresher on Probability and Statistics
• Fundamental principles and definitions
• Common random variables and probability distributions
• Some useful rules and concepts

• Statistical hypothesis testing
• Methods for testing hypotheses
• Drawing conclusions from data

• Statistical dependence and correlation
• Linear correlation
• Mutual information
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Probability and Statistics Refresher
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Probability

• Intuition
• Probability as a measure of uncertainty

• Sample Space, Events, and Outcomes
• All possible outcomes in a scenario

• On the use of probability in AI
• Handling uncertainty
• Making informed decisions
• Learning distributions and generative processes

• Your classical frequentist estimate of discrete probabilities 

𝑃 𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
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Healthcare Scenario 
Example

• Healthcare Scenario
• Predicting whether a patient will 

develop a particular condition

• Sample Space
• Includes all possible outcomes 

(e.g., "develops condition" vs. 
"does not develop condition")

• Probability Understanding
• Each outcome has a probability
• Quantifies the uncertainty in 

predicting patient's health
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Random Variables (RV)

• Definition
• Variables whose outcomes are determined by chance
• A function describing the outcome of a random process by assigning unique values to all possible 

outcomes of the experiment 
X: Ω → ℝ where Ω is the sample space

• Types of Random Variables
• Discrete Random Variables: X = 𝑥𝑖 where (i = 1, 2, ..., n)
• Continuous Random Variables: X ∈ [𝑎, 𝑏]

• Use uppercase to denote a RV, e.g. 𝑋, and lowercase to denote a value (observation), e.g. 𝑥

• A RV models an attribute of our data
• Systolic blood pressure as a continuous random variable
• Number of patients developing a condition as a discrete random variable
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Probability Functions 

• Discrete Random Variables 
• A probability function 𝑃(𝑋 = 𝑥) ∈ [0, 1] measures the probability of a RV 𝑋 attaining the value 𝑥

• Subject to sum-rule σ𝑥∈Ω 𝑃(𝑋 = 𝑥) = 1

• Continuous Random Variables 
• A density function 𝑝(𝑡) describes the relative likelihood of a RV to take on a value 𝑡

• Subject to sum-rule ׬Ω

𝑡
𝑝(𝑡)𝑑𝑡 = 1

• Defines a probability distribution, e.g. 𝑃(𝑋 ≤ 𝑥) = ∞−׬

𝑥
𝑝(𝑡)𝑑𝑡

• Shorthand 𝑃(𝑥) for 𝑃(𝑋 = 𝑥) or 𝑃(𝑋 ≤ 𝑥)
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Common Distributions

• Binomial Distribution
• Models positive response to a new drug
• Each patient has a certain probability of responding 𝑝, with 𝑘 patients responding positively over a population 

of 𝑛 subjects
𝑃 𝑋 = 𝑘 =

𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

• Generalized to C different outcomes by the multinomial distribution
• Poisson distribution

• Models the number of (independent) events occurring within a fixed interval of time or space
• Modelling the number of patients 𝑋 admitted to the ER in a given time

𝑃 𝑋 = 𝑘 =
𝑒−𝜆𝜆𝑘

𝑘!  
• With 𝜆 average number of arrivals (e.g. patients/hour)

• Normal Distribution
• Models continuous data such as height or weight of patients
• Data tends to cluster around a mean value 𝜇 with a spread 𝜎2

p(𝑥) = 1

𝜎 2𝜋
 𝑒

−
𝑥−𝜇 2

𝜎2
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If a discrete random process is described by a set of RVs 𝑋1, . . . , 𝑋𝑁, then the 
joint probability writes 

𝑃(𝑋1 = 𝑥1, . . . , 𝑋𝑁 = 𝑥𝑛) = 𝑃(𝑥1 ∧ · · · ∧ 𝑥𝑛)

The joint conditional probability of 𝑥1, . . . , 𝑥𝑛 given 𝑦

𝑃(𝑥1, . . . , 𝑥𝑛|𝑦)

measures the effect of the realization of an event 𝑦 on the occurrence of 
𝑥1, . . . , 𝑥𝑛

A conditional distribution 𝑃(𝑥|𝑦) is actually a family of distributions 

• For each 𝑦, there is a distribution 𝑃(𝑥|𝑦)

Joint and Conditional Probabilities 
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Chain Rule

Definition (Product Rule a.k.a. Chain Rule)

𝑃 𝑥1, … , 𝑥𝑖 , … , 𝑥𝑛 𝑦 = ෑ

𝑖=1

𝑁

𝑃(𝑥𝑖 ቚ 𝑥1, … , 𝑥𝑖−1, 𝑦) 

Definition (Marginalization)

Using the sum and product rules together yield to the complete

probability

𝑃(𝑋1 = 𝑥1) = ෍

𝑥2

𝑃 𝑋1 = 𝑥1 𝑋2 = 𝑥2 𝑃(𝑋2 = 𝑥2)
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Given hypothesis ℎ𝑖 ∈ 𝐻 and observations 𝒅

• 𝑃(ℎ𝑖) is the prior probability of ℎ𝑖

• 𝑃(𝒅|ℎ𝑖) is the conditional probability of observing 𝒅 given that 
hypothesis ℎ𝑖 is true (likelihood). 

• 𝑃(𝒅) is the marginal probability of 𝒅

• 𝑃(ℎ𝑖|𝒅) is the posterior probability that hypothesis is true given the 
data and the previous belief about the hypothesis

Bayes Rule

𝑃 ℎ𝑖 𝒅 =
𝑃 𝒅 ℎ𝑖 𝑃(ℎ𝑖)

𝑃(𝒅)
=

𝑃 𝒅 ℎ𝑖 𝑃(ℎ𝑖)

σ𝑗 𝑃(𝒅|ℎ𝑗)𝑃(ℎ𝑗)
𝑃 ℎ𝑖 𝒅 =

𝑃 𝒅 ℎ𝑖 𝑃(ℎ𝑖)

𝑃(𝒅)
𝑃 ℎ𝑖 𝒅 =

𝑃 𝒅 ℎ𝑖 𝑃(ℎ𝑖)

𝑃(𝒅)
𝑃 ℎ𝑖 𝒅 =

𝑃 𝒅 ℎ𝑖 𝑃(ℎ𝑖)

𝑃(𝒅)
𝑃 ℎ𝑖 𝒅 =

𝑃 𝒅 ℎ𝑖 𝑃(ℎ𝑖)

𝑃(𝒅)
𝑃 ℎ𝑖 𝒅 =

𝑃 𝒅 ℎ𝑖 𝑃(ℎ𝑖)

𝑃(𝒅)
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Expectation of a Random Variable

• The expectation (or expected value) is the long-term average or mean value of a 
random variable over many trials or instances.

• Represents the 'center of mass' of a probability distribution
• Discrete Random Variables

𝐸𝑥 ~𝑃[𝑋]  =  ෍

𝑥∈Ω

𝑥 ⋅ 𝑃(𝑋 = 𝑥)

• Continuous Random Variables

𝐸𝑥 ~𝑃[𝑋]  = න
𝑥∈Ω

𝑥 ⋅ 𝑝 𝑥 𝑑𝑥

• Expectation is a linear operator and works on functions of RVs

𝐸𝑥 ~𝑃[𝑓(𝑋)]  =  ෍

𝑥∈Ω

𝑓(𝑥) ⋅ 𝑃(𝑋 = 𝑥)
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Example – Expectation of Discrete RV

Example: Number of Patients Arriving at an ER per Hour
• Let X represent the number of patients arriving at an ER.
• Possible outcomes: 𝑥 = 0, 1, 2, … , 5

• Probabilities: 𝑃(𝑋 = 𝑥) = {0.1, 0.2, 0.3, 0.25, 0.1, 0.05}

• Calculation of 𝐸[𝑋]:
0 ∗ 0.1 + 1 ∗ 0.2 + 2 ∗ 0.3 + 3 ∗ 0.25 + (4 ∗ 0.1) + (5 ∗ 0.05) = 2.2

• Interpretation: On average, 2.2 patients are expected to arrive at the ER 
per hour
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Example – Expectation of Continuous RV

Example: Blood Pressure Distribution
• Let X represent systolic blood pressure in a population.
• Assume X follows a normal distribution with:

• μ = 120 (mean), σ² = 15² (variance)

• Expected Value for a normal distribution: E[X] = μ

• Interpretation: the average systolic blood pressure in this 
population is 120 mmHg
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Statistics Refresher

• Tool for data analysis and inference

• Types of Statistics
• Descriptive statistics
• Inferential statistics

• Example in Clinical Study
• Descriptive: Summarize average age, gender distribution, 

baseline health
• Inferential: Draw conclusions about treatment 

effectiveness based on data from a sample of participants

• Role in AI
• Summarizing data
• Drawing conclusions
• Learning is inference
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Descriptive Statistics

• Measures of Central Tendency

• Mean: Average value of data ⇒ ҧ𝜇  = 1

𝑁
σ𝑖=1

𝑁 𝑥𝑖 with sample size 𝑁

• Median: Middle value when data is sorted
• Mode: Most frequent value

• Measures of Variability
• Range: Difference between highest and lowest values
• Variance: Measure of data spread as squared difference from mean 

 𝜎2 = 1
𝑁 ෍

𝑖=1

𝑁

𝑥𝑖 − ҧ𝜇 2

• Standard Deviation: Measure of data dispersion (square root of variance)

• Example: Patient Ages in Hospital Ward
• Mean age indicates central tendency
• Variance and standard deviation show age spread
• Helps tailor healthcare to demographic
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Inferential Statistics
• Making inferences about a population from a sample

• Importance of sampling (size and coverage) and estimation
• Example: Evaluating a new drug

• Testing on a sample of patients
• Using inferential statistics to draw conclusions about the drug's 

effectiveness
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Statistical Hypothesis Testing
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• Confidence interval
• Interval which is expected to contain the quantity being estimated

ҧ𝜇 ∓ 𝑧
𝜎

𝑁
with 𝑧 being a (critical) value associated to the expected confidence level (e.g. for 95% 𝑧 =
1.96)

• Hypothesis testing 
• Testing assumptions about data: does a test statistics of the population fall into the 

confidence interval I expect under my hypothesis?
• In healthcare: assessing effectiveness of new treatment vs. existing one

Statistical Significance

Error margin
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Hypothesis Testing

• Statistical hypothesis: a statement about the parameters describing a 
population

• Null Hypothesis vs. Alternative Hypothesis
• Null hypothesis 𝐻0 : e.g. no difference in effectiveness between treatments
• Alternative hypothesis 𝐻1 : e.g. new treatment is more effective

• P-value
• Probability of obtaining a result as extreme as the one observed, assuming the null 

hypothesis is true
• A very small P-value means that such extreme observed outcome will be highly unlikely 

under the null hypothesis
• Else said: P-value less than threshold indicates statistical significance of the alternative 

hypothesis
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Testing Statistical Hypotheses in Brief

Region of  𝐻0 acceptance

Reject 𝐻0Reject 𝐻0

Hypothesis testing with significance level 𝛼 = 0.05
(critical values for 1 − 𝛼/2)

1. Define a test statistic (numerical 
summary) that can be 
computed from observed data

2. Derive the distribution of the 
test statistics under the null 
hypothesis (e.g. a Normal)

3. Select a significance level 𝛼
defining the maximum 
acceptable false positive rate 
(e.g. 5%) and map this to values 
of the test statistic (critical 
values)

4. Compute the test statistic for 
the data and check in which 
regions it falls (acceptance or 
critical/rejection regions)

p-value

𝑝 = 2 ∗  𝑚𝑖𝑛 𝑃 𝑇 ≥ 𝑡 𝐻0 , 𝑃 𝑇 ≤ 𝑡 𝐻0
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Power of a Statistical Test
The test power 1 − 𝛽 is the probability that 
the test correctly rejects the null 
hypothesis when the alternative 
hypothesis is true

(Image credit to Wikipedia)

Probability to 
reject 𝐻0

Probability to 
not reject 𝐻0

If 𝐻0 is true  𝛼 (significance) 1 − 𝛼

If 𝐻1 is true 1 − 𝛽 (power) 𝛽

Statistical power measures the sensitivity 
of hypothesis testing to detect a true effect
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Statistical Dependence and Correlation
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Understanding Correlation and Dependence

Correlation measures the strength and 
direction of a linear relationship 
between two random variables.

Dependence explores how one 
random variable changes in relation to 
another, capturing non-linear 
relationships.

Both are essential in healthcare for 
analyzing relationships between 
variables such as symptoms, 
biomarkers, and outcomes
We will see further in the course probabilistic 
models specialised to represent dependence 
between relevant RVs
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Independence and Conditional Independence in 
Probability

• Two RV 𝑋 and 𝑌 are independent if knowledge about 𝑋 does not change 
the uncertainty about 𝑌 and vice versa 

𝐼 𝑋, 𝑌 ⇔ 𝑃 𝑋, 𝑌 = 𝑃 𝑋 𝑌 𝑃 𝑌

             = 𝑃(𝑌|𝑋)𝑃(𝑋) = 𝑃(𝑋)𝑃(𝑌)

• Two RV 𝑋 and 𝑌 are conditionally independent given 𝑍 if the realization of 
𝑋 and 𝑌 is an independent event of their conditional probability distribution 
given 𝑍

𝐼 𝑋, 𝑌 𝑍 ⇔ 𝑃 𝑋, 𝑌 𝑍 = 𝑃 𝑋 𝑌, 𝑍 𝑃 𝑌 𝑍

                                              = 𝑃(𝑌|𝑋, 𝑍)𝑃(𝑋|𝑍) = 𝑃(𝑋|𝑍)𝑃(𝑌|𝑍)

• Shorthand 𝑋 ⊥ 𝑌 for 𝐼(𝑋, 𝑌) and 𝑋 ⊥ 𝑌|𝑍 for 𝐼(𝑋, 𝑌|𝑍)
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Measuring Correlation 
and Dependence

• Linear correlation analysis uses Pearson's 
correlation coefficient for quantitative data.

• Mutual information quantifies shared 
information between random variables.

• Conditional mutual information measures 
the dependence of two variables given a 
third (or more).
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Linear Correlation Analysis

• Pearson's correlation coefficient ranges from -1 to +1
• Positive values indicate a direct relationship
• Negative values indicate an inverse relationship

• Ratio between the covariance of two variables 𝑋, 𝑌 and the product of their standard 
deviations

𝜌𝑋,𝑌 =
𝔼𝑥,𝑦~𝑃[ 𝑋 − 𝜇𝑥 𝑌 − 𝜇𝑦 ]

𝜎𝑥𝜎𝑦

• For sample data it becomes the infamous 𝑟 coefficient (for its friends) 

𝑟𝑥𝑦 =
σ𝑖=1

𝑛 𝑥𝑖 − 𝜇𝑥 𝑦𝑖 − 𝜇𝑦

σ𝑖=1
𝑛 𝑥𝑖 − 𝜇𝑥 σ𝑖=1

𝑛 𝑦𝑖 − 𝜇𝑦

• Example: Analyzing the relationship between blood pressure (X) and cholesterol levels (Y)

You can combine 
correlation analysis with 
confidence intervals and 

hypothesis testing to 
assess uncorrelation
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Mutual Information

• Mutual information (MI) measures the information gained about one 
variable by knowing another

• For discrete RVs this writes as

𝑀𝐼 𝑋, 𝑌 = ෍

𝑥∈Ω𝑥,𝑦∈Ω𝑦

𝑃 𝑥, 𝑦 log
𝑃 𝑥, 𝑦

𝑃 𝑥 𝑃 𝑦

• Higher mutual information indicates more dependence between 
variables

• Example: Assess how a patient's age (X) influences disease presence 
(Y)
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Mutual Information - Visually
Mutual information can be interpreted as expectation

𝑀𝐼 𝑋, 𝑌 = ෍

𝑥∈Ω𝑥,𝑦∈Ω𝑦

𝑃 𝑥, 𝑦 log
𝑃 𝑥, 𝑦

𝑃 𝑥 𝑃 𝑦

𝑀𝐼 𝑋, 𝑌 = 𝔼𝑥,𝑦~𝑃 log P x, y − 𝔼𝑥~𝑃[log P x ] −𝔼𝑦~𝑃[log P y ]

Entropy 𝐻(𝑋) Entropy 𝐻(𝑌)

𝐻(𝑋) 𝐻(𝑌)

𝑀𝐼(𝑋, 𝑌)
𝑀𝐼 𝑋, 𝑌 is the intersection of 
information in X with information 
in Y

𝐻(𝑋, 𝑌)

𝐻(𝑋|𝑌) 𝐻(𝑌|𝑋)
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Estimating MI from a Sample
• Mutual information just like 

correlation can be estimated 
from observed data through 
statistical methods.

• Use empirical distributions 
derived from data samples.

𝑃(𝑋 = 0) = 0.2 + 0.3 = 0.5
𝑃 𝑋 = 1 = 0.2 + 0.3 = 0.5
𝑃(𝑌 = 0) = 0.2 + 0.2 = 0.4
𝑃(𝑌 = 1) = 0.3 + 0.3 = 0.6

Marginal probabilities
𝑀𝐼 𝑋, 𝑌 = ෍

𝑥∈Ω𝑥,𝑦∈Ω𝑦

𝑃 𝑥, 𝑦 log
𝑃 𝑥, 𝑦

𝑃 𝑥 𝑃 𝑦

𝑀𝐼 𝑋, 𝑌

= 0.2 ∗ log2

0.2

0.5 ∗ 0.4
+ 0.3 ∗ log2

0.3

0.5 ∗ 0.6
+ 0.2

∗ log2

0.2

0.5 ∗ 0.4
+ 0.3 ∗ log2

0.3

0.5 ∗ 0.6
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Conditional Mutual Information

• Quantifies the information shared between two variables, given a 
third variable

• For discrete RV X, Y and conditioning variable Z

𝑀𝐼 𝑋, 𝑌|𝑍 = ෍

𝑥∈Ω𝑥,𝑦∈Ω𝑦,𝑧∈Ω𝑧

𝑃 𝑥, 𝑦, 𝑧 log
𝑃 𝑥, 𝑦|𝑧

𝑃 𝑥|𝑧 𝑃 𝑦|𝑧

• Useful for controlling confounding factors
• Example: Understanding the relation between smoking and lung 

cancer while controlling for age
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Wrap-up
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Take Home Lessons

• Descriptive Vs inferential statistics are central to AI and to biomedical applications
• Describe population
• Allow to draw conclusions supported by the data

• Confidence Intervals
• Range of values within which a population parameter is expected to lie
• Provides an estimate of the uncertainty around the parameter

• P-Values
• Probability of obtaining test results at least as extreme as the observed results
• Used to determine statistical significance

• Statistical Significance
• Helps in deciding whether to reject the null hypothesis
• Influenced by confidence intervals and p-values
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Next Lecture Preview • Understand basic concepts of machine 
learning

• Differentiate between learning paradigms 
and tasks

• Discuss data types and their roles 

• Statistical Learning Theory

• How to evaluate a model and robustly 
assess its generalization
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