Machine Learning — Linear
Models
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Lecture Outline

* Linear regression models
* Formalization and interpretation
* Training and closed form solutions
* Regularization

* Logistic regression models
* Binary classification
* Training and gradient descent

e Towards neural networks
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Basic Supervised (Linear) Models
Learny = f(x) mapping

Continuous Categorical
Y =13.45, 73, 9.5, ... Y =red, green, blue, .....
A
0 . A A
@ M A A A
O O OO 8\\\ A
e®
Linear Regression Logistic Regression
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Linear Regression
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Simple Linear Regression Setting

* Given a collection of samples D = {(x1,y1); ... (xV,y")} learn the unknown
mapping y = f(x) using a model hy
 One or more input/free variables: i.e. x™ =[x, ..., xL, ..., xp] € RP
* One output/response variable y

* The simplest possible hg for the job (high inductive bias) assumes input and

output variables to be bound by a linear relationship .

hg >y =0y+0:x,+0,x,+ -+ 0px, +€= 0,x, + €
k=1
* Model parameters: 8 = [0, 04, ..., 0; ] with bias 8, (the parameter
corresponding to an input fixed to 1)

* (The mystical) Error term: e~N'(0,0%) (a.k.a. Normally distributed with 0
mean and fixed variance d?)
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Understanding
Linear
Regression
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Matching conditions

* Fitting a linear
regressor without
considering the
influence of gender

weight = 0 * height + 6,

weight

* = male
« = female

155 160 165 170 173 180

height
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Matching conditions

weight

80

50

weight = 0 * height + 0, * gender

155

160 165 170 175

height
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A first approach would
add genderas a
dummy variable which
determines the
intercept of the linear
regression (slope is
not affected)

* = male
« = female



Matching conditions

weight =~ 6 x height * gender + 0, * gender * Make both intercept
and slope dependent
on the categorical
variable describing the
condition to be

<
_g matched
=
-
T . e = male
: . « = female
| | | I | |
155 160 165 170 175 180
height
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Vectorized Linear Regression

We can collate all inputs and responses of the dataset into matrices/vectors to
obtain a more compact formulation

-x% x,%- _yl_ 9, |
X=1: =~ y=1: 0=]|:
_Xiv XIICV_ _yN_ Hk

Vectorized formulation of the linear regression on dataset D
y=X0+¢€

with € now being a column vector of normally distributed values
€ =[e}...,eN]T and e~N(0,0%)
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One more step of vectorization

If we are predicting M response variables, we a have system of linear equations

( D
Y1 = 2 O xy + €1 i
- o1
k=1 1
3 with 6 = |
D _QI%
Ym = z On Xy, + €y
\ k=1

Which is vectorized for the whole dataset becomes
Y = X0 + €

where € is a matrix of errors and Y a matrix of responses
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Training a linear regression model

* Assume a single response variable and define a loss for the model
* Mean squared error (MSE

E(hglD) =+ 2 L(ho(x),y") =+ Z (v -

(x‘ (X‘
* Measures the difference between predicted y' = x 9 and actualyi
values (the error €')

* Learning amounts to finding the minimum of the error function with
respect to model parameters

argmln— Z (y — X 0)

(xLy
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Ordinary Least Squares (LS) Solution

For a linear model with quadratic loss there exist a closed form solution for the
error minimization problem

argminl Z (y' - xie)z = argminl(y — X0)?
6 N £a 6 N
(xy"h)
Minimize squared regression error by taking the derivative

d(e)? d(y—Xx6) _
= ap = ==2X"y) +2(X"X0) =0

Yields the ordinary least square solution
0=[X"X)""X"]y

\ J
Y

Pseudo-inverse
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What can possibly go wrong?

* The objective in machine learning is to find those parameters that
allow generalizing predictions to unseen data (avoiding overfitting)

* To achieve this, we need to control model complexity

* Regularized linear regression
* L2 Regularization (Ridge)
* L1 Regularization (Lasso)
* Elastic Net (Combination of L1 & L2)
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Ridge Regression (L2)

1 . .
argmin z (y' — x‘H)Z +2116I15

Al

0,

(xtyh)

Minimize cost

* Adds squared weight
penalties

16 112= z(ek)z
k

° - * Helps when data contains
)</\ 1 correlated features

Minimize penalty

Minimize cost + penalty
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Least Square Solution to Ridge Regression

A modified version of the ordinary LS

1 . .
argmin — z (y' — x‘B)Z + 21015
(xyY)
Yields to a slightly different solution
0 =[X"X+2AD"1X"]y

Stabilizes numerically the solution by adding some A weight to the
diagonal of the (moment) matrix to be inverted
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Lasso Regression (L1)

.1 - P
argmgnﬁz(xi,yi)(y‘ - x'0)" +210 1,

0,

\\

(6, = 0)

O
%ze cost + penalty
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* Adds absolute value
penalties

16 1,= ) 16l

k
* Encourages sparsity

e Useful for feature
selection in biomedical
datasets
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ElasticNet — Best of both worlds

1 i i )2 2
argmemﬁ z (y — X 0) + A 1011 +4, 1 6 115

(xlyh)

Elastic-net applies both the L2 norm
and L1 norm at the same time, so the
constraint is somewhere in the middle.

It reduces larger weights while making
unimportant weightto O
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Alternative Loss Functions

* We can compute the loss using the absolute value yielding to the
Mean Absolute Error (MAE)

E(hglD) = Z L(ho(x), ) = 3 Z ! -

(x‘ (xLy
"« Differentiable and '+ Not (everywhere)
closed form solutions differentiable and.no
MSE J ¢ Penalizes larger errors MAE - closed form solutions
more heavily due to * Treats all errors equally
squaring * Less sensitive to
_* Sensitive to outliers _ outliers
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More on Regression Error Metrics

o MSE — Z?:l(yi_j'\i)z

e MAE = Z%\I=1|lil’i_5’\i|

e RMSE = \VMSE > Root Mean Squared Error

« MAPE =22 x YN
N

Yi—Yi
Vi

| —— Mean Absolute Precision Error
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Confidence Intervals on Errors

Confidence intervals can be straightforwardly estimated for simple
(1D) linear regression
Cl=y+z-err 14
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Confidence Intervals on Errors

Confidence intervals can be straightforwardly estimated for simple

(1D) linear regression
Cl=y+z-err

* z i1s the critical value corresponding to the expected confidence
level a (e.g. @ = 95%) assuming a Student distribution with N-2
degrees of freedom

Z=11_gN-2

DAVIDE BACCIU - AID COURSE
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Student Distribution

Simply put: the generalization of

a Normal distribution
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Confidence Intervals on Errors

Confidence intervals can be straightforwardly estimated for simple
(1D) linear regression
Cl=y+z-err

* 7 Is the critical value corresponding to the expected confidence
level a (e.g. @ = 95%) assuming a Student distribution with N-2
degrees of freedom

Z=11_gN-2

e erris the standard estimate of error
1 X — [l.)?
erT = MSE(—+ N( br) 2)

V N Zi:]_(xi T .ux)
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Logistic Regression
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Logistic regression setting

Binary classification task: given an input x assign aclassiny € {0,1}
according the unknown function y = f(x) using a model hg

e Usualdataset D = {(xt,y1); ... (xN,yM)}
* Input/free variables: i.e. x™ = [x], ..., xZ, ...,xp] € RP

* Output/response variable y features class
Xo X X . Xp y
xX |1 01 04 .. -03]1
xX2 {1 -03 05 . 1010
samples 1
xXV 11 04 05 .. -081|0
x| 1 12 -08 .. -031|1

DAVIDE BACCIU - AID COURSE
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Understanding Logistic Regression

Learns a decision boundary separating two classes

* Assigns aninput xto the
probability of being in class
1,i.e. P(y = 1|x)

* We check on which side of
the boundary the sample 2
falls into and assign the
class accordingly

* Distance from the boundary
affects the probability
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Building the logistic regression

We start again from a linear model

D

Ideally

* 0, > 0:the feature "is related to" class 1
* 0, <0:the feature "is related to" class 0
* 0;, =0: the feature is irrelevant

We sum the features weighted by the parameters.
* Positive result: | assign class 1.
* Negative result: | assign class 0.

DAVIDE BACCIU - AID COURSE
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In practice..

* Things are a bit more complex
* Logistic regression assigns a probability to each sample:

* Avalue in the range (0,1)
* 1.l am certain input x belongs to class 1
* 0: | am certain input x does not belong to class 1
* Everything in between represents the degree of confidence in class 1

* Problem: | need to squash the x0 (unbound) regression in [0,1]
respecting the sum-to-1 constraint of probabilities. How?

DAVIDE BACCIU - AID COURSE
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The Sigmoid

Defined as . : P
oX)= 1+e™*

Behaviour: 0:5

ex=>26-0(x)=1

e x<—-6-0Xx) =0

e x=0->0(x)=0.5 6 -2 -2 0 2

So, we can have: - -
Summarizing our logistic

e |If x0 is very positive, o(x0) = 1 regression model is
* If x0 is very negative, g(x0) = 0 hg(x) = a(x0)

DAVIDE BACCIU - AID COURSE

30



Training the logistic regression
Choose a suitable loss: the binary cross-entropy (BCE)
L(hg(x),y) = —ylog(hg(x)) — (1 — y) log(1 — hy(x))

0.0 0.2 0.4 0.6 0.8 1.0

predicted probability
DAVIDE BACCIU - AID COURSE
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A Gradient Based Approach

* The gradient is the vector of partial derivatives of the loss function
with respect to the weights 0

[oL L1
k=1.p 1901 084

* The gradient tells us how to modify the parameters in a way that
Increases the loss.

Vgl = —

* To decrease the loss, we need to update the parameters in the
opposite direction of the gradient
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Gradient Descent

Cost

A
L

Learning step

Minimum

Random | >
initial value 9 H
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BCE Gradient

For Binary Cross-Entropy (BCE), the gradient is given by
VoL = x(hg(x) — y)
Interpretation:

* (hg(x) — y) is the error made when predicting y with the current
parameters 6

* x(hg(x) — y) is the contribution of each feature to the error

DAVIDE BACCIU - AID COURSE
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Gradient Descent Algorithm

* Gradient Descentis an iterative algorithm used to find the minimum of any function.
 We use it to update the parameters @ in a way that progressively reduces the loss.

Steps of the Algorithm
1.Initialize @ with random values.
2.Compute the loss using the assigned 0 (callit 8,;4)
3.Compute the gradient of the loss

VoL = x(hg(x) —y)
3.Update 0 using the rule

Onew = Oo1qa — VgL
5.Repeat until reaching the minimum of the loss function.

Step Size (n - Learning Rate)
*n (learning rate) controls how big the update step is
e|t is usually <1 to ensure stable convergence

DAVIDE BACCIU - AID COURSE
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Gradient Descent on a Loss Landscape

we are here with random value 0,0,

«Start with some 0,0,

» Keep Changing e(”el to reduce L(hgl’gz (x),)/)

3~

2~

N until we hopefully end up at a
L(hepez (.X'), y) ]

- minimum
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Training Algorithm Summary

For a certain number of iterations (epochs), the algorithm updates
the parameters O based on the training data D4, -

For each training pair (x%, ¥') € Dirqin:
1.Compute the prediction hg(x') = o (x'8)
2.Compute the loss L of the prediction hy(x') compared to the true label y'
3.Compute the gradient of the loss VyL

4.Update the parameters 8,,,,, = 0 —nVylL
5.Use the updated parameters in the next iteration 8 = 8,,,,,,

This process repeats for multiple epochs, allowing the model to
progressively minimize the loss and improve its predictions
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What if | add some regularization?

* Need to update the learning equations (descends again
from taking the derivative of the error)

* Weight update with L1 (LASSO)
Onew = 0 —n(VolL + A sign(0))
* Weight update with L2 (Ridge)
Hnew =0 — 7’](V9L + 2/19)

DAVIDE BACCIU - AID COURSE
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Limitations of Logistic Regression

The decision boundary of logistic regression is linear (literally, a
plane that separates the two classes).

* |f the classes are linearly separable, logistic regression works perfectly.
 What if the classes are not separable?

inseparable

W linear W non-linear ¥
F F &
N (=] + + -||_I3+
. + + :
: |:||'| ) -'-+ _I_ 'l— D.
Wi L AL i
o T B+ —Og fo; m B Bg
. ~Hg I & + +-8@a _ @
+T|__ m B DDE' '|_'I__ _|_"-.|:|:I Du IJIIEI =] II:' D_.'I_El:l
++"a " g - |++ T 4y Peg glF E'-IDI'I:LI'J
SR SO | }_+‘|'+l:| “og B B4 P gy
R ehen LRSET Y @ 842 na 5, "
I_.Iu:| I'IDLi m I:l-l |:||:|:I ]
o oYp g oo ;
pEg 5o =)+
| | |
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Wrap-up
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Linear Regression towards Neural Networks

Input @ i 92 i £
Y @ -0
|
@ \ Summed over %

Parameters
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Logistic Regression towards Neural Networks

Input @EQZE £
Y 9 @ —-0



Take home lessons

Linear models as your first ML method
* Parameters are coefficients of the linear combination
* Have a (potentially misleading) interpretation n terms of input feature importance
* Not so far from a neural network

Regularization into action as parameter value penalties
* Ridge (L2-norm)-Smoothens collinearity issues; closed form learning solutions

* Lasso (L1-norm) - Promotes feature sparsity; typically, gradient-based learning
* ElasticNet - Best of both worlds

Logistic Regression as first binary classifier providing with a probability of
class membership

* Widely used in early biomedical applications

Model losses: MSE, MAE, BCE, ...

DAVIDE BACCIU - AID COURSE
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Next Lecture

e Lab tutorials

* |Introduction to neural networks (next week)

* Modeling the artificial neuron
* Artificial neural networks and the multilayer perceptron

* Layered structure
* Activation functions

e Qutputs and losses

* Training Artificial neural networks
* Backpropagation algorithm

* Loss optimization

DAVIDE BACCIU - AID COURSE

44



	Diapositiva 1: Machine Learning – Linear Models
	Diapositiva 2: Lecture Outline
	Diapositiva 3: Basic Supervised (Linear) Models
	Diapositiva 4: Linear Regression
	Diapositiva 5: Simple Linear Regression Setting
	Diapositiva 6: Understanding Linear Regression
	Diapositiva 7: Matching conditions
	Diapositiva 8: Matching conditions
	Diapositiva 9: Matching conditions
	Diapositiva 10: Vectorized Linear Regression
	Diapositiva 11: One more step of vectorization
	Diapositiva 12: Training a linear regression model
	Diapositiva 13: Ordinary Least Squares (LS) Solution
	Diapositiva 14: What can possibly go wrong?
	Diapositiva 15: Ridge Regression (L2) 
	Diapositiva 16: Least Square Solution to Ridge Regression
	Diapositiva 17: Lasso Regression (L1) 
	Diapositiva 18: ElasticNet – Best of both worlds
	Diapositiva 19: Alternative Loss Functions
	Diapositiva 20: More on Regression Error Metrics
	Diapositiva 21: Confidence Intervals on Errors
	Diapositiva 22: Confidence Intervals on Errors
	Diapositiva 23: Student Distribution
	Diapositiva 24: Confidence Intervals on Errors
	Diapositiva 25: Logistic Regression
	Diapositiva 26: Logistic regression setting
	Diapositiva 27: Understanding Logistic Regression
	Diapositiva 28: Building the logistic regression
	Diapositiva 29: In practice..
	Diapositiva 30: The Sigmoid
	Diapositiva 31: Training the logistic regression
	Diapositiva 32: A Gradient Based Approach
	Diapositiva 33: Gradient Descent
	Diapositiva 34: BCE Gradient
	Diapositiva 35: Gradient Descent Algorithm
	Diapositiva 36: Gradient Descent on a Loss Landscape
	Diapositiva 37: Training Algorithm Summary
	Diapositiva 38: What if I add some regularization?
	Diapositiva 39: Limitations of Logistic Regression
	Diapositiva 40: Wrap-up
	Diapositiva 41: Linear Regression towards Neural Networks
	Diapositiva 42: Logistic Regression towards Neural Networks
	Diapositiva 43: Take home lessons
	Diapositiva 44: Next Lecture

