
Artificial Neural Networks

Artificial Intelligence for Digital Health (AID)

M.Sc. in Digital Health – University of Pisa

Davide Bacciu (davide.bacciu@unipi.it)

Lecture Outline

• Modeling the artificial neuron
• Artificial neural networks and the multilayer perceptron

• Layered structure
• Activation functions
• Outputs and losses

• Training Artificial neural networks
• Backpropagation algorithm
• Loss optimization
• Some basic tricks

Why Using Neural
Networks?
• They are universal function

approximators
• Non-parametric
• Scalable
• Heavily supported at SW and HW
• Fast solutions by Lego bricking

Neural Networks in Healthcare

Learn complex
patterns from noisy
and highly diverse

data

Handle vast
amounts of data in

a scalable way,
possibly in real time

Provide highly
accurate

predictions

When to be careful in using them?

• Stringent interpretability and
safety/security requirements

• Need to incorporate
background/prior knowledge
available

• Little-data (as opposed to Big-
Data)

Essentially in our biomedical setting!

Modeling the artificial neuron

The Biological Neuron

• Dendrites: Receive electrical signals
from other neurons

• Nucleus: Processes the electrical
signal and generates an output signal

• Axons: Transmit the output signal to
other neurons

The Neuron Metaphor

• Neurons receive information from
multiple inputs and transmit
information to other neurons

• Scale/enhance inputs
• Apply some activation function to

received input information

Looks like
something
we have
already
seen!

The Return of the Logistic Regression

⋮
⋮

The Artificial Neuron

• Input 𝒙

• Synaptic weights 𝜽
• Local potential

net(𝐱) =

𝑖=1

𝑘

𝜃𝑖𝑥𝑖

• Activation function 𝜑

• Output 𝒚

x1

x2

xk

…

θ1

θ2

θk

Σ 𝜑 y

𝑦 = 𝜑 𝑛𝑒𝑡 𝒙 = 𝜑

𝑖=1

𝑘

𝜃𝑖𝑥𝑖

McCulloch & Pitts,
1943

The Perceptron

x1

x2

xk

…

θ1

θ2

θk

Σ 𝜑 y

𝑦 = 𝜑 𝑛𝑒𝑡 𝒙 = 𝜑

𝑖=1

𝑘

𝜃𝑖𝑥𝑖

𝜑 𝑛𝑒𝑡 = ቊ
+1 𝑛𝑒𝑡 ≥ 0
−1 𝑛𝑒𝑡 < 0

Rosenblatt, 1953

The first learnable
neuron (the delta-
rule)

The Perceptron –> The Issue

𝑦 = 𝜑 𝑛𝑒𝑡 𝒙 = 𝜎

𝑖=1

𝑘

𝜃𝑖𝑥𝑖

Still too similar to a logistic regression

With its limitations

Artificial Neural Networks

Artificial neural networks – Interconnected
neurons

Each neuron following
the equation in previous
slides

Neurons organized in
layers (without cycles,
for now)

Multi-layer Perceptron
𝜽ℎ

𝜽𝑦
Note the
multiple set of
weights

Multi-Layer Perceptron (MLP)
Three main components (layers):
• Input layer: feeds the input 𝒙
• Hidden layer: transforms the input 𝒙 into a new (vectorial)

representation h 𝒙 (size of the number of hidden neurons) depending
on the hidden layer parameters 𝜽ℎ

• Output layer: generates the prediction 𝒚 (output) by combining the
intermediate representation of the input provided by the hidden layer
and the output layer parameters 𝜽𝑦

Two key aspects
• Can learn any decision boundary (even non-linear ones)
• Adaptable to any type of task by changing the output layer

MLP – Input Layer

• The input layer is simply a replica of the input data
• However, preprocessing is crucial for good performance
• Feature scaling (normalization or standardization)

• If features have different scales, normalization is needed to ensure stable
training.

• Handling categorical features
• Convert categorical variables into numerical form using one-hot encoding
• For large categories, embedding layers can be used instead

Categorical Features

• A categorical variable is a variable that can belong to one of k
discrete categories

• Categorical variables are usually encoded using 1-out-of-k coding
(one hot)
• E.g. for three colors: red = (1 0 0), green =(0 1 0), Blue =(0 0 1)
• I.e. the MLP above will have 3 input

• If we used red = 1, green = 2, blue = 3, then this type of encoding
imposes a representational bias which is not semantically
supported

• More recently dense embeddings have taken over (especially for
natural language)

Numerical Features
• A numerical variable (continuous, ordinal) can be directly fed to a

neural network
• However, it is good practice to normalize data so that the dynamic

range of inputs is limited
• Min-Max Scaling - Scales values to [0,1] or [−1,1]

𝑥′ = 𝑥−𝑥𝑚𝑖𝑛
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

 → 𝑥′ ∈ 0,1 or 𝑥′ = 2
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 − 1 → 𝑥′ ∈ [−1,1]

• Z-score Standardization- Centers data around mean 0 and std 1
𝑥′ = 𝑥−𝜇

𝜎

• Need also care in choosing w.r.t. whom you are normalizing population
or individual (especially in biomedical applications)

• Normalization is applied also in timeseries and graphs

MLP – Hidden Layer

The hidden layer transforms the input 𝒙 into another vector 𝒉 of arbitrary
size
• Size of 𝒉

• 𝒉 can be smaller or larger than 𝒙, depending on the complexity of the task
• More neurons → More capacity to learn complex patterns (but risk of overfitting)
• Fewer neurons → Simpler models, better generalization

• Helps solve the task by learning representations that make
classification, regression, or other tasks easier

• The transformation from 𝒙 to 𝒉 is governed by trainable parameters 𝜽ℎ

fitted during training
𝒉 = 𝑔𝜃ℎ 𝒙 with 𝑔𝜃ℎ ⋅ nonlinear

Hidden layer step-by-step (I)

• Input: A vector 𝒙 with 𝑘 = 2 features → 𝒙 ∈ ℝ2

• Output: A vector 𝒉 with s = 3 features → 𝒉 ∈ ℝ3

ℎ0 = 𝜑 𝜽0𝒙 = 𝜑 𝜃00𝑥0 + 𝜃10𝑥1

ℎ1 = 𝜑 𝜽1𝒙 = 𝜑 𝜃01𝑥0 + 𝜃11𝑥1

ℎ2 = 𝜑 𝜽2𝒙 = 𝜑 𝜃02𝑥0 + 𝜃12𝑥1

We transformed a 2D input vector into a
3D hidden representation by a linear
combination of 𝒙 features + an
activation function 𝜑

Hidden layer step-by-step (II)

• 𝜽 is a parameter matrix with k=2 rows and s=3 columns

𝜽 =
2 3 −1
2 6 −8

𝑇

• 𝒙 = −1 1 𝑇 is a sample input vector

ℎ0 = 𝜑 2 2
−1
1

= 𝜑 0

ℎ1 = 𝜑 6 3
−1
1

= 𝜑 −3

ℎ2 = 𝜑 −8 −1
−1
1

= 𝜑 7

𝒉 = 𝜑 0 − 3 7

Linear activation function
𝜑 𝜽𝒙 = 𝜽𝒙

It returns the input without changing it 𝒉 = 𝜑 0 − 3 7 = 0 − 3 7

Sigmoid activation function
𝜑 𝜽𝒙 =

1

1 + 𝑒−𝜽𝒙

Squashes the input in [0,1] → 𝜑 0 − 3 7 = 0.5 0.047 0.999

Hyperbolic tangent activation function

𝜑 𝜽𝒙 =
𝑒𝜽𝒙 − 𝑒−𝜽𝒙

𝑒𝜽𝒙 + 𝑒−𝜽𝒙

Squashes the input in [-1,1] → 𝜑 0 − 3 7 = 0 − 0.995 0.999

Rectified Linear Unit (ReLU)
𝜑 𝜽𝒙 = max(0, 𝜽𝒙)

Zeroes the negative components of the input vector, leaving the rest unchanged
→ 𝜑 0 − 3 7 = 0 0 7

MLP – Output Layer

The output layer transforms the hidden layer output 𝒉 into the
prediction 𝑦
• Provides the final prediction of the MLP
• The transformation from 𝒉 to 𝑦 is parameterized by 𝜽𝑦 which are

learned during training
• It implements a parameterized function 𝑦 = 𝑔𝜃𝑦 𝒉

• Computes similarly to the hidden layer, but it is associated to
activation functions which are task-specific and are linked to a
loss function

Output layer for binary classification
Goal: classify a sample 𝒙 into either
class y ∈ 0,1

• Linear combination of the inputs
• Followed by sigmoid activation

ො𝑦 = 𝜎 𝜽𝑦𝒉

Binary cross entropy loss
𝐵𝐶𝐸 ො𝑦, 𝑦 = −𝑦 log ො𝑦 + (1 − 𝑦) log(1 − ො𝑦)

Output layer for multiple binary classification
Goal: predict a d-dimensional vector 𝒚
of 0 and 1 for a sample 𝒙
• Output vector 𝒚 ∈ 0,1 𝑑

• Repeated application of the sigmoid
for the d-dimensions

ෝ𝒚 = 𝜎 𝜽𝑦𝒉

Average binary cross entropy loss

𝐵𝐶𝐸𝑚𝑢𝑙𝑡𝑖 ෝ𝒚, 𝒚 =
1

𝑑

𝑑

𝐵𝐶𝐸 ෞ𝑦𝑑 , 𝑦𝑑

Output layer for regression
Goal: predict a real value 𝑦 in response
to sample 𝒙
• Just a linear combination of the inputs
• Followed by linear (identity) activation

ො𝑦 = 𝜽𝑦𝒉

Mean squared error loss
𝑀𝑆𝐸 ො𝑦, 𝑦 = 𝑦 − ො𝑦 2

Output layer for multiple regression
Goal: predict a real valued vector 𝒚 ∈
ℝ𝑑 in response to sample 𝒙
• Multiple linear combination of 𝒉, one

for each component of 𝒚
• Followed by multiple application of

identity

Mean squared error loss

𝑀𝑆𝐸𝑚𝑢𝑙𝑡𝑖 ෝ𝒚, 𝒚 =
1

𝑑
σ𝑑 𝑀𝑆𝐸 ෞ𝑦𝑑 , 𝑦𝑑

Output layer for multiclass classification
Goal: assign a sample 𝒙 to one of d classes
{𝑐1, … , 𝑐𝑑}
• Output 𝒚 ∈ 0,1 𝑑 as a one-hot encoding

of the class
• Linear combination of 𝒉 followed by

identify
• Output generated by a softmax function

ො𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝜽𝑦𝒉

Cross-Entropy loss

𝐶𝐸 ෝ𝒚, 𝒚 = − σ𝑑 𝑦𝑑 log ෞ𝑦𝑑

?

Softmax function
• Transforms a (dense) vector in a categorical (discrete) probability

distribution
• Given a vector 𝒙 with 𝑛 components

𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑖 𝒛 =
𝑒𝑧𝑖

σ𝑗=1
𝑛 𝑒𝑧𝑗

In other words
• Take the exponentiation of each component of 𝒛
• Compute the sum of exponentiated components
• Divide each exponentiated component by the overall sum
• The resulting softmax vector will sum-to-1 (like a probability

distribution)
𝑠𝑜𝑓𝑡𝑚𝑎𝑥 −1 0 1 = [0.09 0.244 0.666]

MLP: putting things back together

• Transform 𝒙 into 𝒉 through the hidden layer 𝒉 = 𝑔𝜃ℎ 𝒙 = 𝜑 𝜽ℎ𝒙

• Transform 𝒉 into 𝑦 through the output layer 𝑦 = 𝑔𝜃𝑦 𝒉 = 𝜑(𝜽𝑦𝒉)

• The model is 𝑀𝐿𝑃𝜃(𝒙) = 𝑔𝜃𝑦 𝑔𝜃ℎ(𝒙) with 𝜃 = {𝜃ℎ, 𝜃𝑦} being learned
parameters

What do we need to build an MLP?

• Input preprocessing
• Size of the hidden layer 𝑠
• Hidden layer activation functions 𝜑
• Configuration of the output layer (guided by the task)

Model selection choices

Training an Artificial Neural Network

Let's recall logistic regression training

For a certain number of iterations (epochs):
For each training pair 𝒙𝑖 , 𝑦𝑖 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛:

1.Compute the prediction ℎ𝜃 𝒙𝑖 = 𝜎(𝒙𝑖𝜽)
2.Compute the loss L of the prediction ℎ𝜃 𝒙𝑖 compared to the true

label 𝑦𝑖

3.Compute the gradient of the loss 𝛁𝜽𝑳 = 𝒙(𝑦𝑖 − ℎ𝜃 𝒙𝑖)

4.Update the parameters 𝜽𝑛𝑒𝑤 = 𝜽 − 𝜂𝜵𝜽𝑳

5.Use the updated parameters in the next iteration 𝜽 = 𝜽𝑛𝑒𝑤

MLP training

For a certain number of iterations (epochs):
For each training pair 𝒙𝑖 , 𝑦𝑖 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛:

1.Compute the prediction 𝑀𝐿𝑃𝜃 𝒙𝑖

2.Compute the loss L of 𝑀𝐿𝑃𝜃 𝒙𝑖 compared to the true label 𝑦𝑖

3.Compute the gradient of the loss 𝛁𝜽𝑳

4.Update the parameters 𝜽𝑛𝑒𝑤 = 𝜽 − 𝜂𝜵𝜽𝑳

5.Use the updated parameters in the next iteration 𝜽 = 𝜽𝑛𝑒𝑤

Actually, it is a bit more articulated than that

MLP training, more realistically

For a certain number of iterations (epochs):
Shuffle 𝐷𝑡𝑟𝑎𝑖𝑛

For each subsample 𝐵 of pairs 𝒙𝐵 , 𝑦𝐵 extracted from 𝐷𝑡𝑟𝑎𝑖𝑛 :
1.Compute the prediction 𝑀𝐿𝑃𝜃 𝒙𝐵

2.Compute the loss L of 𝑀𝐿𝑃𝜃 𝒙𝐵 compared to the true labels 𝑦𝐵

3.Compute the gradient of the loss 𝛁𝜽𝑳

4.Update the parameters 𝜽𝑛𝑒𝑤 = 𝜽 − 𝜂𝜵𝜽𝑳

5.Use the updated parameters in the next iteration 𝜽 = 𝜽𝑛𝑒𝑤

The gradient of the loss needs to be computed w.r.t. all parameters,
including those from the hidden layer!

Minibatching
Mini-batching is a technique used to split the dataset into smaller subsets,
each containing B examples. Instead of updating the parameters after
processing all examples or after each single example, updates are done after
processing each mini-batch

1.Divide the dataset into multiple mini-batches of size B (batch size, hyperparameter)
2.Shuffle the dataset at the beginning of each epoch to avoid bias in training.
3.Update model parameters once per mini-batch.

• Why is Mini-Batching Useful? It is a compromise between:
• Stochastic Gradient Descent (SGD) (B = 1): Updates after each example → fast but noisy

updates.
• Batch Gradient Descent (B = n): Updates after the entire dataset → stable but slow

updates.
• Mini-batching provides a balance

• Faster convergence than full batch updates
• More stable updates than SGD
• Efficient computation by leveraging GPU parallelism

Gradient of the loss

We have different loss functions based on the output layer, and we can
compute their gradients as follows

We can update the output layer parameters (𝜃𝑦) using these gradients
However, we don't yet know how to compute the gradient for the hidden layer
parameters (𝜃ℎ)

Backpropagation at the rescue
Key Idea: We apply the Chain Rule to propagate the gradient from the output layer to the hidden layer
1. Compute the gradient for the output layer
• Example: For BCE, the gradient is

∇𝜃𝑦𝐿 = 𝑥(ො𝑦 − 𝑦)

2. Propagate the gradient back to the hidden layer
• Using the Chain Rule, the gradient for the hidden layer parameters 𝜃ℎ is:

∇𝜃ℎ𝐿 = ∇ℎ𝐿 ⋅ ∇𝜃ℎℎ

• ∇ℎ𝐿 is the gradient of the loss with respect to the hidden layer output 𝒉

• ∇𝜃ℎℎ is the gradient of 𝒉 with respect to 𝜃ℎ

3. Compute the gradient of 𝒉
• If the hidden layer transformation is:

𝒉 = 𝜑(𝜽ℎ𝒙)

• Then, using the chain rule:
∇𝜃ℎ𝐿 = ∇ℎ𝐿 ⋅ 𝜑′ 𝜽ℎ𝒙 ⋅ 𝒙

• Where 𝜑′ is the derivative of the activation function

Luckily for you
backpropagation is

automatically
handled by the NN

libraries

Convergence Criteria

• Learning is obtained by iteratively supplying shuffled training data
and adjusting by backpropagation
• Typically, 1 training set presentation = 1 epoch

• We need a stopping criteria to define convergence
• Validation for generalization performance: stop when generalization

performance reaches a peak

• Keep a hold-out validation set and assess accuracy after (every/some) epoch.

• Maintain weights for best performing network on the validation set and stop
training when error increases beyond this

• Always let the network run for some epochs before deciding to stop (patience
parameter), then backtrack to best result

No. of epochs

Error

Training error

Validation error

Early Stopping

Wrap-up

Take home lessons

• Artificial Neural Networks are universal function approximators that can learn complex
patterns from noisy and diverse data
• In healthcare they allow handling vast amounts of heterogenous data in a scalable way, providing highly

accurate predictions

• The artificial neuron is loosely inspired by biological neurons
• Artificial neurons receive and aggregate inputs, apply activation functions, and transmit outputs

• The MLP has a layered structure consisting of input, hidden, and output layers
• Capable of learning any decision boundary and adaptable to various tasks
• Several architectural/model selection choices need to be taken even for simple networks

• Training ANNs involves a specialized gradient descent algorithm (backpropagation)
• Optimization aspects needs to be carefully curated
• Stopping conditions are relevant as it is an iterative process

• Optimize neural networks from the start
• Applying the right weight initialization strategies significantly impacts effectiveness
• Needs to be tailored to the activation function

Next Lecture

• Laboratory tutorial
• Next week lecture

• Risk scoring and stratification for population health management
• Machine learning for risk stratification
• Identifying risk factors
• Assessment and validation of risk predictors
• Censoring and its impact in risk scoring

	Diapositiva 1: Artificial Neural Networks
	Diapositiva 2: Lecture Outline
	Diapositiva 3: Why Using Neural Networks?
	Diapositiva 4: Neural Networks in Healthcare
	Diapositiva 5: When to be careful in using them?
	Diapositiva 6: Modeling the artificial neuron
	Diapositiva 7: The Biological Neuron
	Diapositiva 8: The Neuron Metaphor
	Diapositiva 9: The Return of the Logistic Regression
	Diapositiva 10: The Artificial Neuron
	Diapositiva 11: The Perceptron
	Diapositiva 12: The Perceptron –> The Issue
	Diapositiva 13: Artificial Neural Networks
	Diapositiva 14: Artificial neural networks – Interconnected neurons
	Diapositiva 15: Multi-Layer Perceptron (MLP)
	Diapositiva 16: MLP – Input Layer
	Diapositiva 17: Categorical Features
	Diapositiva 18: Numerical Features
	Diapositiva 19: MLP – Hidden Layer
	Diapositiva 20: Hidden layer step-by-step (I)
	Diapositiva 21: Hidden layer step-by-step (II)
	Diapositiva 22: Linear activation function
	Diapositiva 23: Sigmoid activation function
	Diapositiva 24: Hyperbolic tangent activation function
	Diapositiva 25: Rectified Linear Unit (ReLU)
	Diapositiva 26: MLP – Output Layer
	Diapositiva 27: Output layer for binary classification
	Diapositiva 28: Output layer for multiple binary classification
	Diapositiva 29: Output layer for regression
	Diapositiva 30: Output layer for multiple regression
	Diapositiva 31: Output layer for multiclass classification
	Diapositiva 32: Softmax function
	Diapositiva 33: MLP: putting things back together
	Diapositiva 34: What do we need to build an MLP?
	Diapositiva 35: Training an Artificial Neural Network
	Diapositiva 36: Let's recall logistic regression training
	Diapositiva 37: MLP training
	Diapositiva 38: MLP training, more realistically
	Diapositiva 39: Minibatching
	Diapositiva 40: Gradient of the loss
	Diapositiva 41: Backpropagation at the rescue
	Diapositiva 48: Convergence Criteria
	Diapositiva 49: Early Stopping
	Diapositiva 50: Wrap-up
	Diapositiva 51: Take home lessons
	Diapositiva 52: Next Lecture

