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Lecture Outline

• Modeling the artificial neuron
• Artificial neural networks and the multilayer perceptron

• Layered structure
• Activation functions
• Outputs and losses

• Training Artificial neural networks 
• Backpropagation algorithm
• Loss optimization
• Some basic tricks



Why Using Neural 
Networks?
• They are universal function 

approximators
• Non-parametric
• Scalable
• Heavily supported at SW and HW
• Fast solutions by Lego bricking



Neural Networks in Healthcare

Learn complex 
patterns from noisy 
and highly diverse 

data

Handle vast 
amounts of data in 

a scalable way, 
possibly in real time

Provide highly 
accurate 

predictions



When to be careful in using them?

• Stringent interpretability and 
safety/security requirements

• Need to incorporate 
background/prior knowledge 
available

• Little-data (as opposed to Big-
Data)

Essentially in our biomedical setting!



Modeling the artificial neuron



The Biological Neuron

• Dendrites: Receive electrical signals 
from other neurons

• Nucleus: Processes the electrical 
signal and generates an output signal

• Axons: Transmit the output signal to 
other neurons



The Neuron Metaphor

• Neurons receive information from 
multiple inputs and transmit 
information to other neurons

• Scale/enhance inputs
• Apply some activation function to 

received input information

Looks like 
something 
we have 
already 
seen!



The Return of the Logistic Regression

⋮
⋮



The Artificial Neuron

• Input 𝒙

• Synaptic weights 𝜽
• Local potential

net(𝐱) = 

𝑖=1

𝑘

𝜃𝑖𝑥𝑖

• Activation function 𝜑

• Output 𝒚
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McCulloch & Pitts, 
1943



The Perceptron
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𝑦 = 𝜑 𝑛𝑒𝑡 𝒙 =  𝜑 

𝑖=1

𝑘

𝜃𝑖𝑥𝑖

𝜑 𝑛𝑒𝑡 = ቊ
+1 𝑛𝑒𝑡 ≥ 0
−1 𝑛𝑒𝑡 < 0

Rosenblatt, 1953

The first learnable 
neuron (the delta-
rule)



The Perceptron –> The Issue

𝑦 = 𝜑 𝑛𝑒𝑡 𝒙 = 𝜎 

𝑖=1

𝑘

𝜃𝑖𝑥𝑖

Still too similar to a logistic regression

With its limitations



Artificial Neural Networks



Artificial neural networks – Interconnected 
neurons

Each neuron following 
the equation in previous 
slides

Neurons organized in 
layers (without cycles, 
for now)

Multi-layer Perceptron
𝜽ℎ

𝜽𝑦
Note the 
multiple set of 
weights



Multi-Layer Perceptron (MLP)
Three main components (layers):
• Input layer: feeds the input 𝒙
• Hidden layer: transforms the input 𝒙 into a new (vectorial) 

representation h 𝒙 (size of the number of hidden neurons) depending 
on the hidden layer parameters 𝜽ℎ

• Output layer: generates the prediction 𝒚 (output) by combining the 
intermediate representation of the input provided by the hidden layer 
and the output layer parameters 𝜽𝑦

Two key aspects
• Can learn any decision boundary (even non-linear ones)
• Adaptable to any type of task by changing the output layer



MLP – Input Layer

• The input layer is simply a replica of the input data
• However, preprocessing is crucial for good performance
• Feature scaling (normalization or standardization)

• If features have different scales, normalization is needed to ensure stable 
training.

• Handling categorical features
• Convert categorical variables into numerical form using one-hot encoding
• For large categories, embedding layers can be used instead



Categorical Features

• A categorical variable is a variable that can belong to one of k 
discrete categories

• Categorical variables are usually encoded using 1-out-of-k coding 
(one hot)
• E.g. for three colors: red = (1 0 0), green =(0 1 0), Blue =(0 0 1) 
• I.e. the MLP above will have 3 input

• If we used red = 1, green = 2, blue = 3, then this type of encoding 
imposes a representational bias which is not semantically 
supported

• More recently dense embeddings have taken over (especially for 
natural language)



Numerical Features
• A numerical variable (continuous, ordinal) can be directly fed to a 

neural network
• However, it is good practice to normalize data so that the dynamic 

range of inputs is limited
• Min-Max Scaling - Scales values to [0,1] or [−1,1]

𝑥′ = 𝑥−𝑥𝑚𝑖𝑛
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

 → 𝑥′ ∈ 0,1  or 𝑥′ = 2
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 − 1  → 𝑥′ ∈  [−1,1]

• Z-score Standardization- Centers data around mean 0 and std 1
𝑥′ = 𝑥−𝜇

𝜎

• Need also care in choosing w.r.t. whom you are normalizing population
or individual (especially in biomedical applications)

• Normalization is applied also in timeseries and graphs



MLP – Hidden Layer

The hidden layer transforms the input 𝒙 into another vector 𝒉 of arbitrary 
size
• Size of 𝒉

• 𝒉 can be smaller or larger than 𝒙, depending on the complexity of the task
• More neurons → More capacity to learn complex patterns (but risk of overfitting)
• Fewer neurons → Simpler models, better generalization

• Helps solve the task by learning representations that make 
classification, regression, or other tasks easier

• The transformation from 𝒙 to 𝒉 is governed by trainable parameters 𝜽ℎ

fitted during training
𝒉 = 𝑔𝜃ℎ 𝒙  with 𝑔𝜃ℎ ⋅  nonlinear



Hidden layer step-by-step (I)

• Input: A vector 𝒙 with 𝑘 = 2 features → 𝒙 ∈ ℝ2

• Output: A vector 𝒉 with s = 3 features → 𝒉 ∈ ℝ3

ℎ0 = 𝜑 𝜽0𝒙 = 𝜑 𝜃00𝑥0 + 𝜃10𝑥1

ℎ1 = 𝜑 𝜽1𝒙 = 𝜑 𝜃01𝑥0 + 𝜃11𝑥1

ℎ2 = 𝜑 𝜽2𝒙 = 𝜑 𝜃02𝑥0 + 𝜃12𝑥1

We transformed a 2D input vector into a 
3D hidden representation by a linear 
combination of 𝒙 features + an 
activation function 𝜑



Hidden layer step-by-step (II)

• 𝜽 is a parameter matrix with k=2 rows and s=3 columns

𝜽 =
2 3 −1
2 6 −8

𝑇

• 𝒙 = −1 1 𝑇 is a sample input vector

ℎ0 = 𝜑 2 2
−1
1

= 𝜑 0

ℎ1 = 𝜑 6 3
−1
1

= 𝜑 −3

ℎ2 = 𝜑 −8 −1
−1
1

= 𝜑 7

𝒉 = 𝜑 0 − 3 7



Linear activation function
𝜑 𝜽𝒙 = 𝜽𝒙

It returns the input without changing it  𝒉 = 𝜑 0 − 3 7 = 0 − 3 7



Sigmoid activation function
𝜑 𝜽𝒙 =

1

1 + 𝑒−𝜽𝒙

Squashes the input in [0,1] → 𝜑 0 − 3 7 = 0.5 0.047 0.999



Hyperbolic tangent activation function

𝜑 𝜽𝒙 =
𝑒𝜽𝒙 − 𝑒−𝜽𝒙

𝑒𝜽𝒙 + 𝑒−𝜽𝒙

Squashes the input in [-1,1] → 𝜑 0 − 3 7 = 0 − 0.995 0.999



Rectified Linear Unit (ReLU)
𝜑 𝜽𝒙 = max(0, 𝜽𝒙)

Zeroes the negative components of the input vector, leaving the rest unchanged
→ 𝜑 0 − 3 7 = 0 0 7



MLP – Output Layer

The output layer transforms the hidden layer output 𝒉 into the 
prediction 𝑦
• Provides the final prediction of the MLP
• The transformation from 𝒉 to 𝑦 is parameterized by 𝜽𝑦  which are 

learned during training
• It implements a parameterized function 𝑦 = 𝑔𝜃𝑦 𝒉  

• Computes similarly to the hidden layer, but it is associated to 
activation functions which are task-specific and are linked to a 
loss function



Output layer for binary classification
Goal: classify a sample 𝒙 into either 
class y ∈ 0,1

• Linear combination of the inputs
• Followed by sigmoid activation

ො𝑦 = 𝜎 𝜽𝑦𝒉

Binary cross entropy loss
𝐵𝐶𝐸 ො𝑦, 𝑦 = −𝑦 log ො𝑦 + (1 − 𝑦) log(1 − ො𝑦)



Output layer for multiple binary classification
Goal: predict a d-dimensional vector 𝒚 
of 0 and 1 for a sample 𝒙
• Output vector 𝒚 ∈ 0,1 𝑑

• Repeated application of the sigmoid 
for the d-dimensions

ෝ𝒚 = 𝜎 𝜽𝑦𝒉

Average binary cross entropy loss

𝐵𝐶𝐸𝑚𝑢𝑙𝑡𝑖 ෝ𝒚, 𝒚 =
1

𝑑


𝑑

𝐵𝐶𝐸 ෞ𝑦𝑑 , 𝑦𝑑



Output layer for regression
Goal: predict a real value 𝑦 in response 
to sample 𝒙
• Just a linear combination of the inputs
• Followed by linear (identity) activation

ො𝑦 = 𝜽𝑦𝒉

Mean squared error loss
𝑀𝑆𝐸 ො𝑦, 𝑦 = 𝑦 − ො𝑦 2



Output layer for multiple regression
Goal: predict a real valued vector 𝒚 ∈
ℝ𝑑  in response to sample 𝒙
• Multiple linear combination of 𝒉, one 

for each component of 𝒚
• Followed by multiple application of 

identity

Mean squared error loss

𝑀𝑆𝐸𝑚𝑢𝑙𝑡𝑖 ෝ𝒚, 𝒚 =
1

𝑑
σ𝑑 𝑀𝑆𝐸 ෞ𝑦𝑑 , 𝑦𝑑  



Output layer for multiclass classification
Goal: assign a sample 𝒙 to one of d classes 
{𝑐1, … , 𝑐𝑑}
• Output 𝒚 ∈ 0,1 𝑑 as a one-hot encoding 

of the class
• Linear combination of 𝒉 followed by 

identify
• Output generated by a softmax function

ො𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝜽𝑦𝒉

Cross-Entropy loss

𝐶𝐸 ෝ𝒚, 𝒚 = − σ𝑑 𝑦𝑑 log ෞ𝑦𝑑  

?



Softmax function
• Transforms a (dense) vector in a categorical (discrete) probability 

distribution
• Given a vector 𝒙 with 𝑛 components

𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑖 𝒛 =
𝑒𝑧𝑖

σ𝑗=1
𝑛 𝑒𝑧𝑗

In other words
• Take the exponentiation of each component of 𝒛
• Compute the sum of exponentiated components
• Divide each exponentiated component by the overall sum
• The resulting softmax vector will sum-to-1 (like a probability 

distribution)
𝑠𝑜𝑓𝑡𝑚𝑎𝑥 −1 0 1 = [0.09 0.244 0.666]



MLP: putting things back together

• Transform 𝒙 into 𝒉 through the hidden layer 𝒉 = 𝑔𝜃ℎ 𝒙 = 𝜑 𝜽ℎ𝒙

• Transform 𝒉 into 𝑦 through the output layer 𝑦 = 𝑔𝜃𝑦 𝒉 = 𝜑(𝜽𝑦𝒉) 

• The model is 𝑀𝐿𝑃𝜃(𝒙) = 𝑔𝜃𝑦 𝑔𝜃ℎ(𝒙) with 𝜃 = {𝜃ℎ, 𝜃𝑦} being learned 
parameters



What do we need to build an MLP?

• Input preprocessing 
• Size of the hidden layer 𝑠
• Hidden layer activation functions 𝜑
• Configuration of the output layer (guided by the task)

Model selection choices



Training an Artificial Neural Network 



Let's recall logistic regression training

For a certain number of iterations (epochs):
For each training pair 𝒙𝑖 , 𝑦𝑖 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛:

1.Compute the prediction ℎ𝜃 𝒙𝑖 = 𝜎(𝒙𝑖𝜽) 
2.Compute the loss L of the prediction ℎ𝜃 𝒙𝑖  compared to the true 

label 𝑦𝑖

3.Compute the gradient of the loss 𝛁𝜽𝑳 = 𝒙(𝑦𝑖 − ℎ𝜃 𝒙𝑖 )

4.Update the parameters 𝜽𝑛𝑒𝑤 = 𝜽 − 𝜂𝜵𝜽𝑳

5.Use the updated parameters in the next iteration 𝜽 = 𝜽𝑛𝑒𝑤



MLP training

For a certain number of iterations (epochs):
For each training pair 𝒙𝑖 , 𝑦𝑖 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛:

1.Compute the prediction 𝑀𝐿𝑃𝜃 𝒙𝑖

2.Compute the loss L of 𝑀𝐿𝑃𝜃 𝒙𝑖  compared to the true label 𝑦𝑖

3.Compute the gradient of the loss 𝛁𝜽𝑳

4.Update the parameters 𝜽𝑛𝑒𝑤 = 𝜽 − 𝜂𝜵𝜽𝑳

5.Use the updated parameters in the next iteration 𝜽 = 𝜽𝑛𝑒𝑤

Actually, it is a bit more articulated than that



MLP training, more realistically

For a certain number of iterations (epochs):
Shuffle 𝐷𝑡𝑟𝑎𝑖𝑛

For each subsample 𝐵 of pairs 𝒙𝐵 , 𝑦𝐵  extracted from 𝐷𝑡𝑟𝑎𝑖𝑛 :
1.Compute the prediction 𝑀𝐿𝑃𝜃 𝒙𝐵

2.Compute the loss L of 𝑀𝐿𝑃𝜃 𝒙𝐵  compared to the true labels 𝑦𝐵

3.Compute the gradient of the loss 𝛁𝜽𝑳

4.Update the parameters 𝜽𝑛𝑒𝑤 = 𝜽 − 𝜂𝜵𝜽𝑳

5.Use the updated parameters in the next iteration 𝜽 = 𝜽𝑛𝑒𝑤

The gradient of the loss needs to be computed w.r.t. all parameters, 
including those from the hidden layer!



Minibatching
Mini-batching is a technique used to split the dataset into smaller subsets, 
each containing B examples. Instead of updating the parameters after 
processing all examples or after each single example, updates are done after 
processing each mini-batch

1.Divide the dataset into multiple mini-batches of size B (batch size, hyperparameter)
2.Shuffle the dataset at the beginning of each epoch to avoid bias in training.
3.Update model parameters once per mini-batch.

• Why is Mini-Batching Useful? It is a compromise between:
• Stochastic Gradient Descent (SGD) (B = 1): Updates after each example → fast but noisy 

updates.
• Batch Gradient Descent (B = n): Updates after the entire dataset → stable but slow 

updates.
• Mini-batching provides a balance

• Faster convergence than full batch updates
• More stable updates than SGD
• Efficient computation by leveraging GPU parallelism



Gradient of the loss

We have different loss functions based on the output layer, and we can 
compute their gradients as follows

We can update the output layer parameters (𝜃𝑦) using these gradients
However, we don't yet know how to compute the gradient for the hidden layer 
parameters (𝜃ℎ)



Backpropagation at the rescue
Key Idea: We apply the Chain Rule to propagate the gradient from the output layer to the hidden layer
1. Compute the gradient for the output layer
• Example: For BCE, the gradient is  

∇𝜃𝑦𝐿 = 𝑥( ො𝑦 − 𝑦)

2. Propagate the gradient back to the hidden layer
• Using the Chain Rule, the gradient for the hidden layer parameters 𝜃ℎ  is:

∇𝜃ℎ𝐿 = ∇ℎ𝐿 ⋅ ∇𝜃ℎℎ

• ∇ℎ𝐿 is the gradient of the loss with respect to the hidden layer output 𝒉

• ∇𝜃ℎℎ is the gradient of 𝒉 with respect to 𝜃ℎ 

3. Compute the gradient of 𝒉
• If the hidden layer transformation is:

𝒉 = 𝜑(𝜽ℎ𝒙)

• Then, using the chain rule:
∇𝜃ℎ𝐿 = ∇ℎ𝐿 ⋅ 𝜑′ 𝜽ℎ𝒙 ⋅ 𝒙

• Where 𝜑′ is the derivative of the activation function

Luckily for you 
backpropagation is 

automatically 
handled by the NN 

libraries



Convergence Criteria

• Learning is obtained by iteratively supplying shuffled training data 
and adjusting by backpropagation
• Typically, 1 training set presentation = 1 epoch

• We need a stopping criteria to define convergence
• Validation for generalization performance: stop when generalization 

performance reaches a peak



• Keep a hold-out validation set and assess accuracy after (every/some) epoch.

• Maintain weights for best performing network on the validation set and stop 
training when error increases beyond this

• Always let the network run for some epochs before deciding to stop (patience 
parameter), then backtrack to best result

No. of epochs

Error

Training error

Validation error

Early Stopping



Wrap-up



Take home lessons

• Artificial Neural Networks are universal function approximators that can learn complex 
patterns from noisy and diverse data
• In healthcare they allow handling vast amounts of heterogenous data in a scalable way, providing highly 

accurate predictions

• The artificial neuron is loosely inspired by biological neurons 
• Artificial neurons receive and aggregate inputs, apply activation functions, and transmit outputs

• The MLP has a layered structure consisting of input, hidden, and output layers
• Capable of learning any decision boundary and adaptable to various tasks
• Several architectural/model selection choices need to be taken even for simple networks

• Training ANNs involves a specialized gradient descent algorithm (backpropagation)
• Optimization aspects needs to be carefully curated
• Stopping conditions are relevant as it is an iterative process

• Optimize neural networks from the start
• Applying the right weight initialization strategies significantly impacts effectiveness
• Needs to be tailored to the activation function



Next Lecture

• Laboratory tutorial
• Next week lecture 

• Risk scoring and stratification for population health management
• Machine learning for risk stratification
• Identifying risk factors
• Assessment and validation of risk predictors
• Censoring and its impact in risk scoring
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