Causal Models: Representation and Learning

INTELLIGENT SYSTEMS FOR PATTERN RECOGNITION (ISPR)

RICCARDO MASSIDDA, DAVIDE BACCIU – DIPARTIMENTO DI INFORMATICA - UNIVERSITA' DI PISA

RICCARDO.MASSIDDA@DI.UNIPI.IT DAVIDE.BACCIU@UNIPI.IT

Probabilistic and Causal Learning

- Bayesian Networks (Tuesday 4th)
- Bayesian Networks (Thursday 6th)
- Graphical Causal Models (Tuesday 11th)
- Structure Learning and Causal Discovery (Wednesday 12th, today!)
 - Constraint-Based Methods (PC, FCI)
 - Score-Based Methods (GES)
 - Parametric Assumptions (Additive Noise Models)

Learning with Bayesian Networks

The Structure Learning Problem

Υ ₁	Y_2	Y_3	Y_4	Y_5	Y_6
1	2	1	0	3	4
4	0	0	0	1	2
		•••			• • •
0	0	1	3	2	1

- Observations are given for a set of fixed random variables
- Network structure is not specified
 - Determine which arcs exist in the network (causal relationships ⇒ causal discovery)
 - Compute Bayesian network parameters (conditional probability tables) or SCM parameters (structural functions)
- Determining the graph entails
 - Deciding on arc presence
 - Directing edges

Structure Finding Approaches

- Constraint Based
 - Use tests of conditional independence
 - Constrain the network
- Search and Score
 - Model selection approach
 - Search in the space of the graphs
- Parametric Identifiability

Markov Equivalence Class

- A Markov Equivalence Class (MEC)
 is a set of DAGs encoding the same
 set of conditional independences.
- Two DAGs are Markov equivalent if and only if they have the same skeleton and the same set of colliders (v-structures).

Constraint-Based Methods

Constraint-based methods require:

- **Faithfulness**, i.e., all conditional independences are represented from the distribution are represented in the graph.
- **Causal Sufficiency**, i.e., all confounders are observed and there is not selection bias.

Constraint-Based Methods

- We can reconstruct the Markov Equivalence Class by iteratively performing conditional independence testing (χ2-test, KCI-test, Fisher z-test, G-square test, ...).
- The Spirtes, Glymour, and Scheines (SGS) and the Peter and Clark (PC) algorithms are the fundamental constraint-based discovery methods.

SGS Algorithm: Skeleton

 Two variables X and Y are adjacent in the skeleton if they are always conditionally dependent, i.e., there exists no separating set without X and Y.

Require: Dataset of observed variables \mathcal{D} over variables V **Ensure:** Markov Equivalence Class as CPDAG \mathcal{G} 1: $\mathcal{G} \leftarrow$ Fully connected CPDAG over V. 2: **for all** Pairs (X, Y) in V **do** 3: **for all** $Z \subseteq V \setminus \{X, Y\}$ **do** 4: **if** $X \perp Y \mid Z$ **then** 5: Prune X - Y in \mathcal{G} . 6: **end if** 7: **end for** 8: **end for**

SGS Algorithm: v-structures

11:

12:

13:

If two variables X and Y 0

are **not** adjacent in the skeleton and there exists

- a third variable W that
- It is adjacent to both X and Y, and
- It is not a member of any separating set:
- We found a **collider**! 0

- 9: for all Triplets (X, W, Y) s.t. 10:
 - X W Y in \mathcal{G} , and
 - X Y not in \mathcal{G} do
 - if W is not in any separating set of X and Y then Orient $X \to W \leftarrow Y$ as a collider.
- end if 14:
- 15: **end for**

SGS Algorithm: Additional Orientations

- By avoiding the introduction of new colliders and cycles, we can further orient other edges.
- Still, we might have some unoriented edges and return a Completed
 Partially Directed Acyclic Graph (CPDAG).

16: while Further edge orientations are possible do for all Triplets (X, Y, Z) s.t. 17: $X \to Y$ and Y - Z in \mathcal{G} do 18:Orient $Y \to Z$. 19:end for 20:for all Pairs (X, Y) in \mathcal{G} do 21:if X is an ancestor of Y and X - Y then 22:Orient $X \to Y$. 23: end if 24:end for 25:26: end while 27: **return** The CPDAG of the Markov Equivalence Class

Meek Rules

- The orientations of the SGS algorithm (R1, R2) are generalized by the Meek rules to avoid indirectly introducing new v-structures.
 They still do not
 - guarantee a DAG but decrease the MEC.

UNIVERSITÀ DI PISA

Testing Strategy

- Choice of the testing order is fundamental for avoiding a super-exponential complexity
- Level-wise testing
 - Tests $I(X_i, X_j | Z)$ are performed in order of increasing size of the conditioning set Z (starting from empty Z)
 - PC algorithm (Spirtes, 1995)
- Node-wise testing
 - Tests are performed on a single edge at the time, exhausting independence checks on all conditioning variables
 - TPDA Algorithm
- Nodes that enter Z are chosen in the neighborhood of X_i and X_j

PC Algorithm: Skeleton

- Instead of checking all possible separating sets, as in SGS, the PC algorithm considers separating sets of increasing size.
- Same worst case of SGS, much **better on average**!

1: $\mathcal{G} \leftarrow$ Fully connected CPDAG over V. 2: K = 03: while $K \leq |V|$ do for all Pairs (X, Y) in \mathcal{G} do 4: $A = \{ Z \mid X - Z \text{ in } \mathcal{G} \} \setminus \{ Y \}$ 5:for all $Z \subseteq A, |Z| \leq K$ do 6: if $X \perp Y \mid Z$ then 7: Prune X - Y in \mathcal{G} . 8: end if 9: end for 10:end for 11: $K \leftarrow K + 1$ 12:13: end while

Constraint-Based Methods

- Is the CPDAG produced by a constraint-based method **enough**?
- **Probabilistic** Queries P(Y|X)

 \Rightarrow We can take *any* graph in the MEC and use it! 55

- Interventional P(Y|do(X)) or counterfactual P(Y|do(X), Y') queries \Rightarrow We need further knowledge to orient undirected edges.
- Given the graph, we need to choose the distribution families, for BNs/CBNs, or the mechanisms, for SCMs, and learn the parameters.

Search & Score

• Search the space $Graph(\mathbf{Y})$ of graphs G_k that can be built on the random variables $\mathbf{Y} = Y_1, \dots, Y_N$

- $\mathbf{r} = r_1, \dots, r_N$
- Score each structure by $S(G_k)$
- Return the highest scoring graph G^*
- Two fundamental aspects
 - Scoring function
 - Search strategy

Scoring Function

- Fundamental properties
 - Consistency Same score for graphs in the same equivalence class
 - Decomposability Can be locally computed
- Approaches
 - Information theoretic Based on data likelihood plus some modelcomplexity penalization terms (AIC, BIC, MDL, ...)
 - Bayesian Score the structures using a graph posterior (likelihood + proper prior choice)

$$\log P(D|G) \approx \sum_{D} \sum_{X} \log \tilde{P}(x|\boldsymbol{pa}(x)) + \log P(G)$$

Search Strategy

- Finding maximal scoring structures is NP complete (Chickering, 2002)
- Constrain search strategy
 - Starting from a candidate structure modify iteratively by local operations (edge/node addition or deletion)
 - Each operation has a cost
 - Cost optimization problem: greedy hill-climbing, simulated annealing, ...
- Constrain search space
 - Known node order Can reduce the search space to the parents of each node (Markov Blanket)
 - Search in the space of structure equivalence classes (GES algorithm)
 - Search in the space of node orderings (Friedman and Koller, 2003)

Hybrid Models

- Multi-stage algorithms combining previous approaches
- Independence tests to find a sub-optimal skeleton (good starting point)
- Search and score starting from the skeleton
 - Skeleton refinement
 - Edge orientation
- Max-Min Hill Climbing (MMHC) model
 - Optimized constraint-based approach to reconstruct the skeleton (Max-Min Parents and Children)
 - Use the candidate parents in the skeleton to run a search and score approach

Linear Additive Noise Model

A Linear Additive Noise Model (ANM) is a structural causal model where the functional mechanisms are linear and the noise is additive.

Formally, given a matrix $W \in \mathbb{R}^{n \times n}$, $Y_j = \sum_{Y_i \in pa(Y_j)} w_{ij}Y_i + U_j$

Identifiability of Linear ANMs

The **identifiability** of a linear Additive Noise Model from data strongly depends on the **distribution** of the **noise** terms.

- Gaussian w/ Equal Variance \Rightarrow Yes!
 - Not so common in real-world applications.
- Gaussian w/o Equal Variance \Rightarrow No!
- Non-Gaussian Noise \Rightarrow Yes!
 - ICA-LiNGAM, DirectLingam, PairwiseLingam...

Common Identifiability Results for SCMs

Type of structural assi	Condition on funct.	DAG identif.	
(General) SCM:	$X_j := f_j(X_{\mathbf{PA}_j}, N_j)$		X
ANM:	$X_j := f_j(X_{\mathbf{PA}_i}) + N_j$	nonlinear	\checkmark
CAM:	$X_j := \sum_{k \in \mathbf{PA}_i} f_{jk}(X_k) + N_j$	nonlinear	1
Linear Gaussian:	$X_j := \sum_{k \in \mathbf{PA}_i} \beta_{jk} X_k + N_j$	linear	X
Lin. G., eq. error var.:	$X_j := \sum_{k \in \mathbf{PA}_j} \beta_{jk} X_k + N_j$	linear	\checkmark

From "Elements of Causal Inference" by Peters et al.

Take Home Messages

- Directed graphical models
 - Represent asymmetric (causal) relationships between RV and conditional probabilities in compact way
 - Difficult to assess conditional independence (v-structures)
 - Ok for prior knowledge and interpretation
- Undirected graphical models
 - Represent bi-directional relationships (e.g. constraints)
 - Factorization in terms of generic potential functions (not probabilities)
 - Easy to assess conditional independence, but difficult to interpret
 - Serious computational issues due to normalization factor
- o Structure learning to infer multivariate causal relationships from data

