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Lecture(s) Outline

* Introduction to Bayesian networks
* Graphical formalism

e Structure and components of Bayesian networks
* Random variables and conditional independence
* Factorized distributions
* Relevant graphical substructures
* Reasoning graphically on conditional independence

* Learning in Bayesian Networks

* Applications in healthcare for diagnosis, prognosis, and decision
support systems
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Probabilistic models

* ML models that represent knowledge inferred from data under
the form of probabilities
* Probabilities can be sampled: new data can be generated
* Supervised, unsupervised, weakly supervised learning tasks
* Incorporate prior knowledge on data and tasks
* Interpretable knowledge (how data is generated)

* The majority of the modern task comprises large numbers of
variables
* Modeling the joint distribution of all variables can become impractical
* Exponential size of the parameter space
* Computationally impractical to train and predict

DAVIDE BACCIU - AID COURSE



Bayesian Networks - A Graphical
Framework

* Representation

* Bayesian Networks are a compact way to represent exponentially
large probability distributions

* Encode conditional independence assumptions

* Inference
* How to query (predict with) a Bayesian Network?
* Probability of unknown random variable X given observed ones d,
P(X|d)
* Learning

* Fitting the parameters associated with the model probability
distribution

* An inference problem after all
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Graphical Representation

A graph whose nodes (vertices) are random variables whose edges (links)

represent probabilistic relationships between the variables

Bayesian Network (BN) Dynamic BNs

Directed edges express 5 '2 > Allow the BN structure to
dependence change to reflect dynamic

relationships O/ processes
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Probability factorization in probabilistic
ML




Representing Joint Distributions

* The main goal of probabilistic modeling is to define models able
to represent the joint distribution of a set of variables.

* Probabilistic models enable
* Sampling new instances
* Inferencing values of hidden variables
* Estimating the likelihood of a configuration
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Representing Joint Distributions

 Assume N discrete random variables with k distinct values.
* How many parameters in the joint probability distribution?

———

Yl YZ Y3 P(Yl ) Yz, Y3)

0 0 0 0.03
0 0 1 0.12
0 B kN_ 1

1 0 0.31

1 1 1 0.04
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Representing Joint Distributions

* What if we compute the probability one variable at the time?

* We can exploit the chain rule to decompose the joint.

P(Yl’ Yz, Y3) —

P(Y,)P(Y, | Y1)P(Y3
P(Y,)P(Y; | Yy)P(Y;

Y1,Y,)
Y1,Y5)

P(Y3)P(Y, | Y3)P(Y; | Yy, Ys).
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Representing Joint Distributions

* The order of the variables can be represented by directed graphs.

P(Y,)P(Y, | Y))P(Y5 | Y;,Y,)  P(Y{)P(Ys | Y))P(Y, | Yq,Y3) P(Y3)P(Y, | Y3)P(Y; | Y,,Y3)
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Representing Joint Distributions

* Decomposing the joint with the chain rule
reduces the number of parameters?

e No! (&3

P(Y1,Y,,Y3) = P(Y)P(Y, | Y1)P(Ys5 | Y1,Y2)

. J | ] |
\ |

1 2 4

YNk - DK = kN -1
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Marginal and Conditional Independence

* Two random variables X and Y are independent if knowledge
about X does not change the uncertainty about Y and vice versa

I(X,Y) & X 1Y < P(X,Y)=P(X|Y)P®Y)
= P(Y | X)P(X) = P(X)P(Y).
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Representing Joint Distributions

 When variables are independent, we only need Nk parameters.

P(Y;,Y,5,Y3) = P(Y)P(Y, | Y1)P(Y;3 | Y1,Y5)
= P(Y;)P(Y,)P(Y3)

1 1 1
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Marginal and Conditional Independence

 Two random variables X and Y are conditionally independent
given Z if knowledge about X does not change the uncertainty
about Y and vice versa on the conditional distribution

I(X,Y|Z) — X1Y|Z < PX,Y|Z)=P(X|Y.,2Z)P{Y .2)
=P(Y| X .2)P(X ,2)
= P(X | 2)P(Y | 2).
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Representing Joint Distributions

* Conditional independences reduce the number of parameters

e Yes! B¢

Y; LY3 ],
— P(Y1,Y2,Y3) = P(Y1)P(Y2 Yl)P(Yg
= P(Y)P(Y, | Y,)P(Ys

1 2
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Bayesian Networks
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Bayesian Network

* Directed Acyclic Graph (DAG) G = (V, )
* Nodes v € V represent random variables
 Shaded = observed

* Empty = un-observed

* Edges e € £ describe the conditional
independence relationships

Conditional Probability Tables (CPT) local to each node describe the probability
distribution given its parents

N
P, i) = | [ POt Ipatr)
=1
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Joint probability factorization

P(Y1)

false

0.6

true

0.4

©.

- ®

P(Y3|Yq)

false

false

0.4

false

true

0.6

true

false

0.9

true

true

0.1

e Let L be the maximum number
of ingoing edges in a Bayes
Net.

* Then, the number of
parameters is at most N-(k-1)*

* = The sparser the network, the
less “complex” the parameters.
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Causality or Dependence?

e Are these relations causal?

* In general no, a Bayesian
Network represent statistical
dependence relations.

* However, they might coincide

/. with causal dependence under

further assumptions.

@..
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Local Markov Property

Definition (Local Markov property)

Each node / random variable is conditionally
independent of all its non-descendants given a joint
state of its parents

Yo L Yinch) |Ypa) forallv eV

Party and Study are marginally independent
 Party 1 Study

However, local Markov property does not support
 Party 1 Study | Headache
« Tabs 1 Party

But Party and Tabs are independent given Headache

DAVIDE BACCIU - AID COURSE
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Joint Probability Factorization

An application of Chain rule and Local Markov Property 1
1. Pick a topological ordering of nodes
2. Apply chain rule following the order

3. Use the conditional independence
assumptions

P(PA,S,H,T,C) =
P(PA) - P(S|PA) - P(H|S,PA) - P(T|H,S,PA) - P(C|T,H, S, PA)
= P(PA) - P(S) - P(H|S, PA) - P(T|H) - P(C|H)
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(Ancestral) Sampling of a BN

A BN describes a generative process for observations

1. Pickatopological ordering of nodes

2. Generate data by sampling from the local conditional
probabilities following this order

Generate i-th sample for each variable PA,S,H, T, C

pa; ~ P(PA)

Si ~ P(S)

h; ~ P(H|S = s;, PA = pa;)

ti ~ P(TlH — hl)

Ci ~ P(ClH = hl)

A W NN

DAVIDE BACCIU - AID COURSE
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Conditional Independence in Bayesian
NEIWY eI E
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Fundamental BN structures

There exist three fundamental substructures that determine the
conditional independence relationships in a Bayesian Network.

* Tail-to-Tail (Fork, “Common Cause”) . . .
 Head-to-Tail (Chain, “Causal Effect”) . . .
 Head-to-Head (Collider, “Common Effect”) .—’.‘—.

DAVIDE BACCIU - AID COURSE 24



Tail-to-Tail Connections

* Correspondsto
o P(Y1, Y3|Y5)P(Y;) = P(Y1|Y2)P(Y3|Y2)P(Y2)
o °  If Y, isunobserved thenY; and Y; are
marginally dependent
(% aiee
* If Y, is observed thenY; and Y5 are

conditionally independent
Y: L Y511,

When Y, in observed is said to block the path from Y; to Y3
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Head-to-Tail Connections

Observed Y, blocks

the path from Y; to Y3

* Correspondsto
P(Yy, Y3, Y3) = P(Y1)P(Y,|Y)P(Y5]|Y3)

= P(Y1|Y2)P(Y3|Y2)P(Y2)

* If Y, isunobserved thenY; and Y5 are
marginally dependent Type equation here.

Y, J Yy

* If Y, is observed thenY; and Y5 are
conditionally independent

Y, L Y31,

DAVIDE BACCIU - AID COURSE
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Head-to-Head Connections

* Correspondsto
o P(Y1,Y3,Y3) = P(Y1)P(Y3)P(Y2|Yy, Y3)
o °  If Y, isobserved thenY; and Y; are
conditionally dependent
o Y L Ys|Y;
* If Y, isunobserved thenY; and Y5 are

o ° marginally independent
Y, 1Y,

If any Y, descendants is observed it unlocks the path
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Blocked Path

Letr = (Y, © - ©Y,) be an undirected path between Y, and Y,.

The path ris blocked by a set Z if one of the following holds:

* rcontains a fork (tail-to-tail) Y; < Y, — Y, such that Y_ € Z, or
* rcontains a chain (head-to-tail) Y; = Y. = Y; such that Y, € Z, or

* rcontains a collider (head-to-head) Y; = Y, < Y, such that neither Y_ nor
its descendants are in Z.
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d-Separation

Definition (d-separated path)

Letr =Y; & --- <Y, beanundirected path between Y; and Y, then r is d-
separated by Z if there exist at least one node Y. € Z for which path r is
blocked.

DAVIDE BACCIU - AID COURSE
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d-Separation

Definition (d-separation)

Two nodes Y; and Y; in a BN § are said to be d-separated by Z < V (denoted by
Dsepg(Y; ,Y;|Z) if and only if all undirected paths between Y; and Y; are d-

separated by Z

DAVIDE BACCIU - AID COURSE
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Markov Blanket

o The Markov Blanket Mb(Y) of a node Y is the
minimal set of vertices that shield the node from
the rest of the Bayesian Network.

o In a DAG, the Markov Blanket of Y contains
® |[ts parents Pa(Y)
® Its children Ch(Y)
® |[ts children's parents Pa(Ch(Y))

o The behavior of a node can be completely
determined and predicted from the knowledge
of its Markov Blanket.

P(Y | Mb(Y),Z) = P(Y | Mb(Y)) vZ ¢ Mb(Y)
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Learning in Bayesian Networks
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Learning with Bayesian Networks

Structure

Fixed Structure

: P(Y1X) :

Data

NENEREWES

Incomplete | Complete

Latent variables
EM Algorithm (ML)
MCMC, VBEM (Bayesian)

Fixed Variables

OO

Discover dependencies
from the data

Calculate Frequencies (ML) Structure Search

Independence tests

Difficult Problem
Structural EM

Parameter Learning Structure Learning

DAVIDE BACCIU - AID COURSE
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Learning Parameters on a Simple Bayesian
Network

The Naive The naive independence assumption

Bayes Classifier ,
i * Input features Y; are independent

@ given the class
L
!
P(C, X, -, X0) = P(O) | | PCXilC)
i=1
Learning entails finding the values
@ @ of P(C) and P(X;|C) (for alli)
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Naive Bayes — Maximum Likelihood
Learning

Consider N observed training pairs d = {(x,,, ¢;;) }n=1.n S-t. X;; =<
X1 ever Xppy >

The model likelihood is the probability of the data d given the model
parameters 8 = {P(C),P(X,|C), ..., P(X.|C)} (for Naive Bayes on discrete data)

N L
Plo) = | [Pl | [PGrinlen
n=1 =1

Learning equations for the model are derived by maximization of the logarithm
of the likelihood

0* = max log P(d|6)

For a model as simple as the Naive Bayes this optimization can be easily
computed and closed form update equations are obtained
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Example of Naive Bayes Learning Rules

It is all about counting frequencies of events occurring (this is true in general for
maximume-likelihood learning with discrete variables)

* N(k) » Number of samplesin class k

N;s(k) = Number of samples in class k where the i-th attribute has value s

P(C=k)= #
. . _ Nis(k)
P =sle= 0 =S5

In general, everything works this smoothly whenever your
Bayesian Network does not contain non-observable variables

DAVIDE BACCIU - AID COURSE
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Bayesian Networks and Hidden Variables

* Hidden variables are introduced to
Hidden variable explain complex relationships between
(the probablllstlc observed data in simple ways

lent of _
e otron * Allow to apply conditional
r independence S|mpl|f|cat|ons

P(Xy, .., X1) ~ZP(Z)1_[P(X 7)

* Learning becomes more complex because
® @ we do not have ground truth observations

for Z

* We need to make probabilistic hypotheses
on Z to learn the model parameters 6
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Bayesian Networks in Healthcare

DAVIDE BACCIU - AID COURSE



Why Bayesian Networks in Healthcare

You would like to determine how likely the patient has pneumonia
given that the patient has a cough, a fever, and difficulty breathing

* We are not 100% certain that the patient has pneumonia =
Reasoning with uncertainty (a probabilistic approach)

* You know that some symptoms connect with diagnosis = Fitting
prior knowledge into the model

* Xgiven that Y occurs = Conditional probabilities and
Independence

* How did you come up with the diagnosis? = Interpretability
requirements
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r N 1 N6 D

.
blood gas demographics current & radiology

past history :
‘ /(chest X-1ay posm'cc)
y
d chest x-rav ordered
\. /)

y, y,
° " N\
A Bayesian % o .
pneumonia ___4

Network for
Pneumonia

\\‘( chief complaint)

| |
M M
TR
| e tNRX )
, A abdominal discomfgn
| e N :
abdomigal examl
bands BUN albumin \( &

pain characteristic)

systolic BP

vital signs ) [ lab values ) _ nurse assessment )

.

Aronsky, D. and Haug, P.J., Diagnosing community-acquired pneumonia with a Bayesian
network, In: Proceedings of the Fall Symposium of the American Medical Informatics
Association, (1998) 632-636.
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Studying simultaneous symptoms in patients
with advanced cancer

van der Stap et al, Scientific Reports shortness of
(2022) breath
dysphagia
g fatig
constipation
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From an Inferential

Perspective

van der Stap et al, Scientific Reports
(2022)
DAVIDE

Fixed
evidential

data

observed

symptom

Main symptom? Main symptom? Predicted simultaneous symptom C | probability of exp ing simul ymp (%)
Fatigue + Sleeping problems + 54.4
Fatigue + Sleeping problems - 376

Pain
Fatigue - Sleeping problems + 40.0
Fatigue - Sleeping problems — 13.8
Fatigue + Anxiety + 63.5
Fatigue + Anxiety - 414

Sleeping problems
Fatigue - Anxiety + 56.3
Fatigue - Anxiety - 183
Fatigue + Sleeping problems + 62.7
Fatigue + Sleeping problems - 47.8

Dry mouth
Fatigue - Sleeping problems + 45.0
Fatigue - Sleeping problems - 22.8
Dry mouth + Nausea + 54.2

> Inferred non-

Dry mouth + Nausea — 33.0

Dysphagia
Dry mouth - Nausea + 313
Dry mouth - Nausea - 5.8

L]

Fatigue + Dysphagia + 80.0 S I I I l u lt a I I e O u S
Fatigue + Dysphagia - 56.4

Lack of appetite
Fatigue - Dysphagia + 810
Fatigue - Dysphagia - 24.4

BACCIU - AID COURSH
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Understanding factors contributing to progression of
metabolic syndrome (MetS)

O Age
Gender
e age1 26% |l
female 63% || age239%|}
male 37%]|l age324% |l
o Drink D Smoke o Exsche

frequentty 30%|H

. no 66% -] no 74% -] occasionally 39%|| |
oz | o
A View on i) e e 2l

v S

Data/Phenomena 5 e S B

Interpretation v i [ RO —

\ / High HbA1c
no 92% III
- Progression status of MetS yes 8%

remain_unchanged ©64%
forward_progression 36%/|

Razbek et al, Nature (2024)
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Conditional probability tables learned by
maximum likelihood

Hyperuricemia BMI level Remain unchanged (%) Forward progression (%)

Normal 7061 29.39

Thin 65.73 3427

Overweight or obesity 62.00 38.00

Normal 45.00 55.00

Exercise
Thin 94.68 5.32 entty 30%|H
o sionally 39%|| |
A VI eW O n Overweight or obesity 28.01 31% .

Data/Phenomena 5 e S

normal <a% |l |
no o2% (T | thin 6%l

I nte rp retati O n yes 8%l overweight_or_obesity 46%

O High HbA1c

no 92% III
- Progression status of MetS yes 8%]|

remain_unchanged ©64%
forward_progression 36%/|

Razbek et al, Nature (2024)
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Visually Comparing Differences Based on

Changing Risk Factors

O Age
O Gender age136% n
female 30% age239%(I |
male 70%|B | age324% ([l
O  Drink O  Smoke . Exie
frequently 30%|fl]
no 50% l no 56% occasionally 39%|| |
yes 50°/.|[ ] yes 44%|[ v fttle 31%|li
¥ 4
E— O BMI level
normal s% ([l ]
no O%L thin 6%|]
yes 100% .:‘\ ] overweight_or_obesity 46% | IR

\

(@) Progression status of MetS

remain_unchanged 40%

forward_progression60%| |

©  High HbA1c

no 92% [

ves 8%l

(@] Age
Gend
© ender 2001 56% B
temale 66% L) age239%| |
male 34%|F | age324% (Il
O  Drink ©  Smoke D __ Bierciie
frequently 20%|fl]
0, () .
no 68% no 75% occasionally 39% |l
oz |I o,
yes 32 bl[_ yes 25A|[A fttle 31% [l
¥ L 4
- [®) BMI level
normal 48% ‘
no 100% ([ ] | [thin 6%
yes 0% &= overweight_or_obesity 46% | R
\
\ O  High HbA1c
no 92% (IR
O Progression status of MetS yes 8%|l
VS remain_unchanged 67%
forward_progression33%| |
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Subpopulations in Bayesian Networks

environment
characteristics —l/ genetics

\

SR

disease A <— therapy A disease B ~—— therapy B
patho- patho- patho-

physiology X plslsiology Y physiology Z

v v ) 4 v
sign 1 sign 2 // sign 3

symptom 1 symptom| % symptom 3
laboratory lhporatory laboratory
results 1 rasults 2 results 3

Lappenschaar et al, Artificial Intelligence in Medicine (2013)
DAVIDE BACCIU - AID COURSE

In multimorbidity problems
datasets are typically
collected from different
sources

* family practices

* sub-populations (social,
geographjc, demographic)

We need to gorrect for this or

we will have §purious

interactions b&tween disease
variables

The gender influenced estimate
of heightin linear regression!
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Multilevel Bayesian Networks

Indicator variables(introduced in the
model) capturing separation in

. —>
subpopulations

Observed shared

level variables
Level 2 capturing
D, subpopulation
splitting (e.g. gender)
Level 1
Level 0

Outcome variables
(e.g. diagnoses)

Lappenschaar et al, Artificial Intelligence in Medicine (2013)
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Multilevel BNs for multi-
disease prediction

Different subpopulation
Induced by the different
practices (indicator)
collecting data

Different practices
observable in their urbanity
(level variable)

Lappenschaar et al, Artificial Intelligence in Medicine (2013)

urbanity
totally urban CI— 0.20

strongly urban CT— (.23

ractice
p | modestly urban CT—— 0.14
little urban COI— 0.22
R Al
Level 1 not urban CT—0.21
overweight fobesity
Level 0 gender yes B 0.03
\ age ;> G5yr \tm T 0.97
lipid disorder ~a"  diabetes mellitus ||1ollltus

ves B 0.25

11'. p{ rtens mn
yes 1 (.20

| — }.("-,[??:I:r{l 50 —

no 1 0.75 : - no T (0L80

fio C—T—— 0.50

L oo Ny
angina pectoris. -renal disease

yes BC—.0.04 ves B 0.06

no E——17 0.94

heart failure

no === 0.96

v .
peripheral artery d.

ves E——— (.08

ves EC— 0.10

no 13 0.92

e

no 13 0.90

o
stroke cardiov. symptoms retinopathy
yes B —1 0.05 e e m— Y ves E—3 0.01
no 11 (.95 no C——T 1 0.72 no 11 (.99
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Modular Bayesian Networks

Define Bayesian networks over groups of features to improve interpretability

& target N
. 7
Sw.._ disease _.-*

-

Bayesian network

Becker et al, Plos Computational Biology (2021)

group 1:

body
composition
""""" group 2 .
blood
...... pressure
Y groups can be known V.
" darget S, orinferred by o target TN
~._ disease __-* . “~.._ disease ___-*
--------- clustering B
Bayesian network with Group Bayesian network

variable grouping

DAVIDE BACCIU - AID COURSE

»
‘e,
0

+
i'.
.

49



Modular BNs - Steatosis

cholesterol/ ety
metabolic < . sex
COIHpOSlthIl
syndrome
body
impedance
analysis
liver
1 serum
function <— age
tests glucose
Model AUROC +sd AUPRC +sd
logistic regression 0.82 +0.02 0.78 +0.03
detailed Bayesian network 0.55 +0.04 0.57 +0.06
group Bayesian network 0.80 +0.02 0.76 +0.04
refined group Bayesian network 0.84 +0.03 0.81 +0.02

Becker et al, Plos Computational Biology (2021)

DAVIDE BACCIU - AID COURSE

50



Modular BNs - Hypertension

age-/disease-related

age seX
measures
. latives®
bod t ©
ody composition discases
urinalysis glucose
™~ liver
\y echogenicity
diabetes
type 2

Becker et al, Plos Computational Biology (2021)
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Population-wide Bayesian Networks

-~

Anthrax Release - Global nodes

4

Location of Release Time of Release ~ |nterface nodes

} Each person in
Person Model Person Model Person Model the PO pula tion

Cooper et al, Uncertainty in Al (2012)

DAVIDE BACCIU - AID COURSE
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Example of
population-wide

e
Bayesian Network

Other ED

Anthrax Infection Disease

Age Decile

Respiratory CC
When Admitted When Admitted

Cooper et al, Uncertainty in Al (2012)
mission

DAVIDE BACCIU - AID COURSE 53
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Steps to Use Bayesian Networks

* Design the structure of the network by identifying variable (nodes)
associations (edges)

* Fit the parameters of the Bayesian Network by maximum
likelihood

* Make predictions (e.g. diagnose a disease)
* Sample observations (e.g. complete missing variables)
* Reason on associations

DAVIDE BACCIU - AID COURSE 54



Next lecture

s—Pesign Learn the structure of the network by identifying variable
(nodes) associations (edges)

* Fit the parameters of the Bayesian Network by maximum
likelihood

* Make predictions (e.g. diagnose a disease)
* Sample observations (e.g. complete missing variables)
* Reason on assoctattons-causal relationships

DAVIDE BACCIU - AID COURSE
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Wrap-up

DAVIDE BACCIU - AID COURSE




Take home lessons

Bayesian network represent asymmetric relationships between RV and
conditional probabilities in compact way

Allow to reason graphically on probabilistic concepts: we can easily map
inference and conditional independence tests into graph-based algorithms

Learning is easily achieved by maximum likelihood when all RV are observed

Useful features for healthcare applications
* Reasoning under uncertainty

* Integration of prior knowledge

* Interpretability

Very parametric: only as good as your ability to take design choices
(distribution, independence,... ) that are close to the underlying data/task
process
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Next lecture

s—Pesign Learn the structure of the network by identifying variable
(nodes) associations (edges)

* Fit the parameters of the Bayesian Network by maximum
likelihood

* Make predictions (e.g. diagnose a disease)
* Sample observations (e.g. complete missing variables)
* Reason on assoctattons-causal relationships

DAVIDE BACCIU - AID COURSE
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