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Lecture Outline

* From shallow to deep networks

* Enabling factors (tricks and else) for deep learning
* Gradientissues
* Activation functions
* Normalization and regularization
* Optimization

* Neural Autoencoders

* The first deep neural network
* Unsupervised learning with deep neural networks
* AE tasks: anomaly detection, compression, denoising



From the shallows to the deep




MLP - The shallow network

From some lectures ago..




Going deeper

* Apparently scaling up hidden layers to 2+
* Clearly much more than this



Deep neural network (DNN) computation

Transform input x through a composition of learnable non-linear functions

DNNg (%) = g7 (ggr(Ggris (- (Ggns (D))
where

*hy =ggn (x) = ‘P1(9h1x)
* h, = ggn,(hy) = <P2(9h2h1)
* hy =ggn(h_y) = @(6™h;_,)

*y =gev(h) = ¢,(67h))

A set of learnable parameter matrices ® = {th, .., oM 0~} and layer-specific
activation functions ¢;



Deep Learning: Learning Hierarchical
Representations

* Early layers > Learn simple features (e.g., edges in images, basic
word embeddings in text)

* Deeper layers > Learn complex features by combining simpler
ones (e.g., shapes, object parts in images; syntax/semantics in
text)

* Final layers > Combine high-level features for task-specific
predictions

* This is especially useful in computer vision and natural language
processing, where hierarchical feature extraction is critical



Hierarchical Neural Representations

* Deep learning success
builds on the assumption
thatinputis
compositional

* Under such conditions
going deeper is better
than going wider

INPUT HIDDEN HIDDEN HIDDEN OUTPUT
LAYER LAYER1 LAYER2 LAYER3 LAYER

«Mark»




Efficient learning with depth (vs. width)

* There are theorems that prove that single-hidden-layer MLPs are
universal approximators (with possibly infinite neurons)

* |n practice, instead of making networks wider (more neurons per
layer) is it best to go deeper (more layers)

* Better feature abstraction > Each layer refines representations learned by
previous layers

* More efficient learning > Deep networks can represent complex functions
more compactly

* Improved generalization > Deep architectures capture meaningful
patterns with fewer parameters than a shallow, wide network



Effect of Number of Layers

N hidden layers = 0 — Perceptron
* Learning separating hyperplanes

Q70
‘O O

Example from to Eric Postma via Jason Eisner




Effect of Number of Layers

N hidden layers =1 — Multilayer Perceptron
* Learning convex region boundaries (open or closed)

=

Example from to Eric Postma via Jason Eisner
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Effect of Number of Layers

N hidden layers = 2 — Deep learning (sort-of)
* Learning to combine convex regions

Q C ( ...........
QO |

Example from to Eric Postma via Jason Eisner
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Challenges of deep learning: the role of depth
(L)

* Model selection becomes expensive
 Anew bunch of hyperparameters: depth [, size of each hidden layer, ...

* Overfitting becomes a taunting problem
* Deep networks can easily memorize training data, leading to poor generalization

* Requires massive amounts of data

* Hundreds of thousands of data: challenging for labelling and in general in the
healthcare domain

* Limited usefulness if inputis not compositional
* Deep architectures may not provide much benefit over simpler models

* Inherent computational and numerical challenges
* Deep models require large memory and powerful computing
* Training can be unstable and slow to converge (gradient and optimization issues)



Tackling Deep Learning Challenges




Training of deep networks

* We can keep working with the stochastic gradient descent
principle and the backpropagation algorithm

* Principled and smooth generalization with respect to increasing
scale and model complexity

* But...

Dumbly applying backprop training does not work with deep
networks - learning becomes difficult and training unstable

More complex networks may result in more articulated loss
landscapes to be optimized



The original sin

The gradient vanish/explosion problem

Gradient (norm of
the gradient) <1

Gradient

Vanishing Gradient

N

Input

rd
Layer1 Layer2 Layer3 Output

Layer

Gradient

Exploding Gradient

N

Input

4
Layer1 Layer2 Layer3 Output

Layer

Gradient (norm of
the gradient) > 1

A numerical problem rooted in the long chain of multiplications needed
when backpropagating gradients through many layers



In the following

* A set of tips and tricks essential to smoothen and facilitate
training of deep neural networks
* Weight initialization
* Activation functions
* Activation normalization
* Regularization
* Residual connections
* Optimization algorithms
* Gradient clipping

* They often have deep theoretical motivations behind but for your
mental safety we will refrain from deepening such motivations



Weight initialization

* Choice of initial weight values is important as this decides starting
position in weight space

* Proper weight initialization is crucial to ensure stable learning, faster
convergence, and improved accuracy in deep neural networks
* Guiding principles
* Select weight values which produce midrange function signals
* Select weight values randomly to break symmetries
* Normalise weight values w.r.t. number of weighted connections per unit

* Try different random initialization to
* Assess robustness
* Have more opportunities to find optimal results



Weight initialization strategies

Random Initialization
* Breaks symmetry, ensuring different neurons learn distinct features

* Scaling strategies like sampling from small-variance Gaussian/uniform distributions are used to prevent large initial values
from dominating training

Glorot (Xavier) Initialization
* Maintains balanced weight distribution across layers, smoothing gradient flow for efficient backpropagation
* Designed for sigmoid and tanh activations
* Weights are drawn from either distributions
V6 V6 2
- ) orN|0———
Vin + Nour Vin + Noue Nin + Moyt

with n;, + n,,: Number of input and output units to a layer

He Initialization
* Designed for for activation functions that do not have zero-centered mean (like ReLU)
* Weights are drawn from either distributions

V6 6 2
U<_x/n_x/n_> °rN<O’E>




Gradient issues: on the role of activation

functions

* The derivative of the
activation functions play
a major role in
determining gradient
magnitude

* Non-linear saturating
activation functions
(sigmoidal-like) have bad
derivatives

1.0
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Sigmoid Function and it’s Derivative

— O (X)
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The Rectified Linear Unit (ReLU)

RelLU was instrumental to deep learning
success

* Helps mitigating the vanishing gradient
problem (doesn’t solve it entirely!)

* Maintains (some degree of) non-linearity

* |t can be efficiently computed (by GPUS)
x,if x>0

RelL = .

eLU(x) {o, if x <0

dReLU(x) (1,if x >0
dx  |0,if x<0

@(x)

10

0

-10 -5 0 5
X

Careful: it does not work nicely with all
neural architectures (e.g. recurrent NNs)
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Many variations along the RelLU principle

Activation Function
Leaky RelU
Parametric ReLU (PRelLU)

Exponential Linear Unit (ELU)

GELU (Gaussian Error Linear
Unit)

SELU (Scaled Exponential Linear
Unit)

Formula
max(0.01z, )
max( e, &) (learns )

zifz >0, e — 1)ifz <0

0.52(1 + tanh(+/2/7(z +
0.04472%)))

scales output for self-normalization

Fixes "Dying RelLU"?

L. Yes (small slofe for o << ()
L. Learns best slop& for negatives

L. Smooth gradients

negatives

L. Used in Transformers (better
for NLP)

L Used in Self-Mormalizing
Metworks

If too many neurons get
stuck at zero, they stop
learning



Activation Normalization

* Activations are the neural representations of the input information
In terms of the features learned by the hidden layers

* |f they have different scales, the model suffers from the same issues as
unnormalized inputs!

* We may need activation normalization methodologies
* Prevent vanishing/exploding gradients > Stabilize training
* Enable faster learning > Allows higher learning rates

* Improve generalization > Reduces reliance on precise weight
initializations



. i B
Batch Normalization (BN) R —

N
Training |:> 4| B2
Data L

For a given mini-batch B, BN normalizes activations:

@ >
1.  Compute mean and variance across the batch m
ub = l l
ub = —Zh and ol = Z(h — b’
2. Normalize activations \ Activation of one neuron in
~ h — ,uB layer [ for minibatch sample i

Need to backpropagate
\/(UB) " / through these
3. Scale and shift through learnable parameters (y, ) :

Becomes the input to
hﬁlzyh%'hg “ layer [ + 1

* Reduces internal covariate shift (changing distribution of activations)

* Improves convergence - Training is faster and more stable



Layer Normalization (LN)

* |Instead of normalizing over a batch, LN normalizes across features for each sample
1. Compute single mean and varlance across the layer

[ _ [
leh and o' —NZ(h — i)

m hi — !

2
Jio' ) +e
3. Scale and shift through learnable parameters (y, )
h!' =yh!i+ B

. Usbed in Transformers and RNNs where batch statistics (on sequences) are less
robust

2. Normalize activations




Regularization

* More layers > More parameters > Higher risk of overfitting

* We already have a bunch of regularization techniques in
our toolbox that use penalties on weight vector norms (L1,

L2, ..., combined)

* Here we focus on a different approach to regularization
Introduced specifically for deep learning: dropout
regularization

* Key idea: randomly disconnect units from the network during
training



Dropout regularization

O \
Y- D

During training:

1.

2.

Randomly "drop" (set output to 0O)
some neurons in the hidden layers
This reduces the number of active
neurons, effectively creating a
smaller network

. Each batch sees a different sub-

network, forcing the model to learn
robust features
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Dropout regularization

O \
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During training:

1.

2.

Randomly "drop" (set output to 0O)
some neurons in the hidden layers
This reduces the number of active
neurons, effectively creating a
smaller network

. Each batch sees a different sub-

network, forcing the model to learn
robust features



Dropout regularization

-\v o Regulated by unit dropping
/ AN hyperparameter p (Bernoulli)
‘V‘V’z ‘\\ o Need to adapt prediction
‘A\\V \" phase

A‘ o You can also drop single

‘ connections (dropconnect)



Residual Connections

Instead of just passing x x Resiua
information sequentially through - YT
layers, residual connections skip +
layers and directly connect an - ;. 1 ety |
earlier layer’s input to a later _ coL \Ib
layer’s output A e
s ;

--------------------

Traditional Feedforward

without Residual Connection With Residual Cennaction

The DNN learns the residual (difference) between layers, rather than the full
transformation

* Gradients can "skip" layers and directly reach early layers
* Makes it easier for deeper networks to learn identity mappings



A

error(A)

Cost functions
are {

(unfortunately) local optimum

more complex
than simple
convex functions

loballoptimum A
g p_ 5

Local optimum



Optimizers in Deep Learning

* Optimizer - A function that performs SGD to update model parameters efficiently
* Different optimizers improve SGD by modifying how gradients are used

Optimizer Key Idea Advantages Disadvantages

Can get stuck in local
SGD (Vanilla) Basic gradient descent update Simple & effective minima, slow convergence,
difficult to tune learning rate

Adds "inertia" (exponentially
Momentum weighted history of previous
weights changes)

Faster convergence, Can overshoot if
escapes local minima momentum is too high

Adapts learning rate for each Learning rate decays too

Adagrad SErETEET Good for sparse data (NLP) i e
Similar to Adagrad, but decays Works well in non- . .

RMSprop past gradients more smoothly stationary environments Requires tuning decay rate

Adam CalinEs Mememu & 3 uiEs Fast convergence, handles  Prone to overfitting in some

noisy gradients cases

Adam is the current de-facto standard (but can depend on the task)



Optimization Algorithms

e

— SGD N — SGD -
= Momentum -  Momentum [
— NAG weem  NAG
- Adagrad - Adagrad
Adadelta ' = Adadelta
4 Rmsprop I———_ : Rmsprop
0
-2
-4

1.0




Gradient Clipping

Technique to contrast exploding gradients
by limiting the gradient (magnitude) to a
threshold 6,

0
« If|lgll > 6 theng =Hf’”g

Without gradient clipping




Neural Autoencoders




Unsupervised Learning Tasks

* Neural autoencoders are an example of deep learning
architecture for solving unsupervised learning tasks

* Outlier/anomaly detection: identify samples that deviate
significantly from the rest of the dataset
* Fraud detection, network security, medical diagnostics

* Compression/dimensionality reduction: reduce data complexity
while preserving essential information
* Data visualization, noise reduction, and efficient storage

 Data Generation: generate new samples similar to those in the

dataset
* Synthetic data generation: we will look into it, if we have time



Neural Autoencoder (AE)

* Key idea: train a neural network that can reconstruct its input

* Key catch: to be useful, we will constrain the network to learn a
compressed representation of input information

How to constrain the network?

* Bottleneck autoencoder - Make sure the hidden layer has fewer
degrees of freedom (neurons) than the input

* Denoising autoencoder — Make the network reconstruct a clean
iInformation starting from an altered input



Bottleneck autoencoder

Encoder:
codifies input x
in a smaller
neural
representation h

The number
of input
featuresisn
= number of
output
neurons

h = ¢enc(9encx) X = QDdec(edech)

Qem edec

Number of hidden neuronsk < n
(bottleneck)

Decoder:
produces a
reconstruction X of
the originalinput x
in from its
compressed
representation h



Bottleneck AE intuition

* Encoder: Compressing the Input

* The encoder transforms the input x into a lower-dimensional
representation h (the "bottleneck")

* Goal: Preserve only the most useful input features (relevant factors of
variation) needed for reconstruction

* Decoder: Reconstructing the Input
* The decoder takes h and attempts to reconstruct x as closely as possible

N
1
MSE (x,X) = NZ(xi — X;)°
i=1

* Reconstruction won't be perfect, since h contains less information than
X, but it will also be non-trivial



Denoising autoencoder

The decoder reconstructs the

The encoder transforms the original clean input x from the
corrupted input X into its hidden representation h
+€ hidden representation h
I~ GE}HC Qdf,)f

The original input x ‘ '
is altered by TN . ’
addition of noise ¥ ‘
e s
It is no longer necessary that
k<n



Denoising AE intuition

* Noise: Corrupting the Input

* The network never sees the clean input, but it must learn to reconstruct it (controls
overfitting)

* Mathematically, the noisy inputis
X = x + € where € ~N (0, 0?) with g2 small

* Why? Forces the model to focus on essential patterns rather than memorizing details

Encoder: Learning a Robust Representation
* Extracts meaningful features to reconstruct the input while ignoring noise

Decoder: Reconstructing the Original Input
* The decoder tries to reconstruct the original input from its noisy version
* The network learns to filter out noise

The Denoising AE is trained by MSE minimization w.r.t. the clean input
reconstruction



Deep Autoencoder (AE)

-—+ Supervised learning
oUnsupervised training

hy : ~ oHierarchical autoencoder
h; oExtracts a representation of
Inputs that facilitates
h, « Data visualization,
h, exploration, indexing,...

f { - Realization of a

Encoder |* _ Supervised task




Unsupervised Layerwise Pretraining
Incremental unsupervised construction of the Deep AE

Any form of AE, e.g. those
/ shown in previous slides

DAVIDE BACCIU - ISPR COURSE
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Unsupervised Layerwise Pretraining
Incremental unsupervised construction of the Deep AE

DAVIDE BACCIU - ISPR COURSE
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Unsupervised Layerwise Pretraining
Incremental unsupervised construction of the Deep AE

DAVIDE BACCIU - ISPR COURSE
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Autoencoders in use

* Anomaly/outlier detection

* Compression

* Denoising

* (and more.. such as generation)



Autoencoder for Anomaly/Outlier Detection

We want to determine if an input differs significantly from normal data

* Keyidea: An autoencoder learns to reconstruct normal data, but struggles with anomalies
* Normalinputs = The autoencoder reconstructs well (low reconstruction loss)
 Anomalous inputs > The autoencoder fails to reconstruct (high reconstruction loss)

How to:

* At training time: Fit the autoencoder parameters using only normal data

« At test time: Given a new input, compute reconstruction error L = ||x — %||?
 IfL <7~ Inputisnormal
 IfL > 7 ~>Inputisanomalous

* Here 7 is athreshold on reconstruction error

* |t can be computed using the average reconstruction error on ground truth normal data

* [tcan also be made more robust by running a statistical test considering both average and std of normal data
reconstruction



Anomaly Detection in Radiotherapy Plans

Radiotherapy plan represented

Sensitivity (TPR)

by 30 input features

1.0 1

0.8 1

0.6

0.4 1

0.2 1

0.0 1

AE (AUC is 0.99)
PCA (AUC is 0.83)
OneClassSVM (AUC is 0.70)
LocalOutlierFactor (AUC is 0.95)
HDBSCAN (AUC is 0.82)

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity (FPR)

1.0 1

0.8

Normalized Loss

0.2 1

0.0 1

2
o
)

S,
>

Features Description Fields Number of features Type Unit
Segment The number of segments of the field IMRT Integer Number
SSD Source to skin distance IMRT/tangent 4 Float cm
Collx1 Collimators’ position in the x1 direction IMRT/tangent 4 Float cm
Collx2 Collimators’ position in the x2 direction IMRT/tangent 4 Float cm
Colly1 Collimators’ position in the y1 direction IMRT/tangent 4 Float cm
Colly2 Collimators’ position in the y2 direction IMRT/tangent 4 Float cm
Gg The angle of the gantry IMRT/tangent 4 Integer Degree
Meterset The MU per field IMRT/tangent 4 Float MU
Anomaly
o . Normal
% > [ Abnormal ROC C U rve a n d
reconstruction error
distribution confronting
a deep AE with other
anomaly detection
methods
AE6 PCA OneCIalssSVM LocalOutlierFactor HDBSCAN
Method

https://doi.org/10.3389/fonc.2023.1142947
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|dentifying anomalous brain morphology

Detecting morphological anomalies in Bipolar Disorder (BD) subjects as an anomaly detection task
from Healthy Controls (HC)

Confounder Removal Pipeline Normative Autoencoder
' corrected , reconstructed Normati
Normative P Normative HcP  AE trained on HC HoP traiming sot
raining set Bioiqr\::;l:tes training set
1
Fit > Regression Training—> yhOratve oo >SEE - ; HCP-YA
+ ! ) +----» Reconstruction
Standardization E Error
external HC : :
test sets Fit—> M-COI"I'IBat L h
R EREa AE tested and |
| l o Apply validated onBP i Minimization
| PP pply
Y corrected and HC froma "* StratiBip
s.itf:x Y Y R Test set different reconstructed ----» Reconstruction
external BD RN g | HAH dataset b Test set Error
test sets Z FHHE > o Trained I| I| I| Il | |
EREEE nnnns O 1 Testing—> Normative > T T :
H \ \ \ AR I
site | site | site i \_ Tt tTt-----
harmonized e
sftex Test set site i

https://doi.org/10.1101/2024.09.04.611239
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Unsupervised pathology detection in

biomedical images

Unsupervised pathology

detection of a brain tumor image 0
and resulting anomaly scores

(growing values: blue - red)

(a) Test image (b) z-Space (c) Rec (d) Combined

https://www.sciencedirect.com/science/article/pii/B9780128243497000153
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Autoencoder for Data Compression

* The hidden layer of an autoencoder provides a compressed representation of the input
which can be used for dimensionality reduction

* |f the bottleneck size k is smaller than the input size n, the network is forced to learn a
compressed but meaningful encoding

* Nonlinear dimensionality reduction (differently from PCA)
* When k=2, the hidden layer represents 2D coordinates and can be used for data visualization
* When using a (deep) multi-layer bottleneck we can obtain a hierarchical dimensionality reduction

* Other uses beyond dimensionality reduction

* |Image Compression > Compress images while preserving important details.
* Audio Compression > Reduce bitrate while keeping sound quality.
* Latent Representations for ML Models > Extract compressed feature vectors for classification.
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Autoencoder for Biomedical Image Denoising

Denoising Autoencoder
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Wrap-up




Take home lessons

* Deep learning is about learning hierarchical representations of input features

« Several factors are key to determine efficacy of the model
 Activation functions
« Activation normalization and regularization techniques
« Weight initialization and architectural tricks (residual connectivity)
« Optimization strategies

* Neural autoencoders are powerful tools for unsupervised learning tasks

« Key catch: information bottleneck obliges the network to focus only on relevant factors of
variation

« Anomaly detection, information compression, dimensionality reduction, denoising
« AEs provide refined neural representations on the top of which supervised tasks can be built



Next 2 Lectures

* Introduction to medical imaging

* Image representation
* Medicalimaging as an inverse problem
* Imaging modalities and their challenges

* Convolutional neural networks
* Convolutional layers, filters/kernels, feature maps
* Pooling layers and their role
* Convolutional architectures and useful architectural tools

* Medical imaging tasks
* Classification, regression, segmentation, detection et al
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