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Lecture Outline

• From shallow to deep networks
• Enabling factors (tricks and else) for deep learning

• Gradient issues
• Activation functions
• Normalization and regularization
• Optimization 

• Neural Autoencoders
• The first deep neural network
• Unsupervised learning with deep neural networks
• AE tasks: anomaly detection, compression, denoising



From the shallows to the deep



MLP – The shallow network
From some lectures ago..



Going deeper

• Apparently scaling up hidden layers to 2+
• Clearly much more than this



Deep neural network (DNN) computation

Transform input x through a composition of learnable non-linear functions
𝐷𝑁𝑁Θ(𝒙) = 𝑔𝜃𝑦 𝑔𝜃ℎ𝑙 (𝑔𝜃ℎ𝑙−1 (… (𝑔𝜃ℎ1 (𝒙))))

where

• 𝒉1 = 𝑔𝜃ℎ1 𝒙 = 𝜑1 𝜽ℎ1𝒙

• 𝒉2 = 𝑔𝜃ℎ2 𝒉1 = 𝜑2 𝜽ℎ2𝒉1

• …

• 𝒉𝑙 = 𝑔𝜃ℎ𝑙 𝒉𝑙−1 = 𝜑𝑙 𝜽ℎ𝑙𝒉𝑙−1

• 𝑦 = 𝑔𝜃𝑦 𝒉𝑙 = 𝜑𝑦(𝜽𝑦𝒉𝑙)

A set of learnable parameter matrices Θ = {𝜽ℎ1 , … , 𝜽ℎ𝑙 , 𝜽𝑦} and layer-specific 
activation functions 𝜑𝑙



Deep Learning: Learning Hierarchical 
Representations
• Early layers → Learn simple features (e.g., edges in images, basic 

word embeddings in text)
• Deeper layers → Learn complex features by combining simpler 

ones (e.g., shapes, object parts in images; syntax/semantics in 
text)

• Final layers → Combine high-level features for task-specific 
predictions

• This is especially useful in computer vision and natural language 
processing, where hierarchical feature extraction is critical



Hierarchical Neural Representations

• Deep learning success 
builds on the assumption 
that input is 
compositional

• Under such conditions 
going deeper is better 
than going wider



Efficient learning with depth (vs. width)

• There are theorems that prove that single-hidden-layer MLPs are 
universal approximators (with possibly infinite neurons)

• In practice, instead of making networks wider (more neurons per 
layer) is it best to go deeper (more layers) 
• Better feature abstraction → Each layer refines representations learned by 

previous layers
• More efficient learning → Deep networks can represent complex functions 

more compactly
• Improved generalization → Deep architectures capture meaningful 

patterns with fewer parameters than a shallow, wide network



Effect of Number of Layers

N hidden layers = 0 → Perceptron
• Learning separating hyperplanes
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Example from to Eric Postma via Jason Eisner



Effect of Number of Layers

N hidden layers = 1 → Multilayer Perceptron
• Learning convex region boundaries (open or closed) 
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Example from to Eric Postma via Jason Eisner



Effect of Number of Layers

<
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N hidden layers = 2 → Deep learning (sort-of)
• Learning to combine convex regions

Example from to Eric Postma via Jason Eisner



Challenges of deep learning: the role of depth 
(𝑙)
• Model selection becomes expensive

• A new bunch of hyperparameters: depth 𝑙, size of each hidden layer, …
• Overfitting becomes a taunting problem

• Deep networks can easily memorize training data, leading to poor generalization
• Requires massive amounts of data

• Hundreds of thousands of data: challenging for labelling and in general in the 
healthcare domain

• Limited usefulness if input is not compositional
• Deep architectures may not provide much benefit over simpler models

• Inherent computational and numerical challenges
• Deep models require large memory and powerful computing
• Training can be unstable and slow to converge (gradient and optimization issues)



Tackling Deep Learning Challenges



Training of deep networks

• We can keep working with the stochastic gradient descent 
principle and the backpropagation algorithm

• Principled and smooth generalization with respect to increasing 
scale and model complexity

• But…

Dumbly applying backprop training does not work with deep 
networks → learning becomes difficult and training unstable

More complex networks may result in more articulated loss 
landscapes to be optimized



The original sin
The gradient vanish/explosion problem

A numerical problem rooted in the long chain of multiplications needed 
when backpropagating gradients through many layers

Gradient (norm of 
the gradient) < 1

Gradient (norm of 
the gradient) > 1



In the following

• A set of tips and tricks essential to smoothen and facilitate 
training of deep neural networks
• Weight initialization
• Activation functions
• Activation normalization
• Regularization
• Residual connections
• Optimization algorithms
• Gradient clipping

• They often have deep theoretical motivations behind but for your 
mental safety we will refrain from deepening such motivations



Weight initialization

• Choice of initial weight values is important as this decides starting 
position in weight space

• Proper weight initialization is crucial to ensure stable learning, faster 
convergence, and improved accuracy in deep neural networks

• Guiding principles
• Select weight values which produce midrange function signals 
• Select weight values randomly to break symmetries
• Normalise weight values w.r.t. number of weighted connections per unit

• Try different random initialization to
• Assess robustness
• Have more opportunities to find optimal results



Weight initialization strategies
Random Initialization 
• Breaks symmetry, ensuring different neurons learn distinct features
• Scaling strategies like sampling from small-variance Gaussian/uniform distributions are used to prevent large initial values 

from dominating training
Glorot (Xavier) Initialization 
• Maintains balanced weight distribution across layers, smoothing gradient flow for efficient backpropagation
• Designed for sigmoid and tanh activations 
• Weights are drawn from either distributions
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with 𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡 number of input and output units to a layer
He Initialization 
• Designed for for activation functions that do not have zero-centered mean (like ReLU)
• Weights are drawn from either distributions
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Gradient issues: on the role of activation 
functions
• The derivative of the 

activation functions play 
a major role in 
determining gradient 
magnitude

• Non-linear saturating 
activation functions 
(sigmoidal-like) have bad 
derivatives



The Rectified Linear Unit (ReLU)

ReLU was instrumental to deep learning 
success 
• Helps mitigating the vanishing gradient 

problem (doesn’t solve it entirely!)

• Maintains (some degree of) non-linearity

• It can be efficiently computed (by GPUs)

𝑅𝑒𝐿𝑈(𝑥) = ቊ
𝑥, 𝑖𝑓 𝑥 > 0
0, 𝑖𝑓 𝑥 ≤ 0

Careful: it does not work nicely with all 
neural architectures (e.g. recurrent NNs)

𝑑𝑅𝑒𝐿𝑈(𝑥)

𝑑𝑥
= ቊ

1,  𝑖𝑓 𝑥 > 0
0, 𝑖𝑓 𝑥 ≤ 0



Many variations along the ReLU principle

If too many neurons get 
stuck at zero, they stop 
learning



Activation Normalization

• Activations are the neural representations of the input information 
in terms of the features learned by the hidden layers
• If they have different scales, the model suffers from the same issues as 

unnormalized inputs!

• We may need activation normalization methodologies
• Prevent vanishing/exploding gradients → Stabilize training
• Enable faster learning → Allows higher learning rates
• Improve generalization → Reduces reliance on precise weight 

initializations



Batch Normalization (BN)
For a given mini-batch B, BN normalizes activations:
1. Compute mean and variance across the batch
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3. Scale and shift through learnable parameters (𝛾, 𝛽)
෢ℎ𝑖
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• Reduces internal covariate shift (changing distribution of activations)
• Improves convergence → Training is faster and more stable

Need to backpropagate 
through these

Becomes the input to 
layer 𝑙 + 1

Training 
Data

B1

B2

Bn

…

Activation of one neuron in 
layer 𝑙 for minibatch sample 𝑖



Layer Normalization (LN)

• Instead of normalizing over a batch, LN normalizes across features for each sample
1. Compute single mean and variance across the layer 
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• Used in Transformers and RNNs where batch statistics (on sequences) are less 
robust



Regularization

• More layers → More parameters → Higher risk of overfitting
• We already have a bunch of regularization techniques in 

our toolbox that use penalties on weight vector norms (L1, 
L2, …, combined) 

• Here we focus on a different approach to regularization 
introduced specifically for deep learning: dropout 
regularization 
• Key idea: randomly disconnect units from the network during 

training



Dropout regularization

… …

During training:
1. Randomly "drop" (set output to 0) 

some neurons in the hidden layers
2. This reduces the number of active 

neurons, effectively creating a 
smaller network

3. Each batch sees a different sub-
network, forcing the model to learn 
robust features



Dropout regularization

… …

During training:
1. Randomly "drop" (set output to 0) 

some neurons in the hidden layers
2. This reduces the number of active 

neurons, effectively creating a 
smaller network

3. Each batch sees a different sub-
network, forcing the model to learn 
robust features



Dropout regularization

… …

During training:
1. Randomly "drop" (set output to 0) 

some neurons in the hidden layers
2. This reduces the number of active 

neurons, effectively creating a 
smaller network

3. Each batch sees a different sub-
network, forcing the model to learn 
robust features



Dropout regularization

… …

o Regulated by unit dropping 
hyperparameter p (Bernoulli)

o Need to adapt prediction 
phase

o You can also drop single 
connections (dropconnect)



Residual Connections

The DNN learns the residual (difference) between layers, rather than the full 
transformation

• Gradients can "skip" layers and directly reach early layers
• Makes it easier for deeper networks to learn identity mappings  

Instead of just passing 
information sequentially through 
layers, residual connections skip 
layers and directly connect an 
earlier layer’s input to a later 
layer’s output



Cost functions 
are 

(unfortunately) 
more complex 

than simple 
convex functions



Optimizers in Deep Learning
• Optimizer - A function that performs SGD to update model parameters efficiently
• Different optimizers improve SGD by modifying how gradients are used

Optimizer Key Idea Advantages Disadvantages

SGD (Vanilla) Basic gradient descent update Simple & effective
Can get stuck in local 
minima, slow convergence, 
difficult to tune learning rate

Momentum
Adds "inertia" (exponentially 
weighted history of previous 
weights changes)

Faster convergence, 
escapes local minima

Can overshoot if 
momentum is too high

Adagrad Adapts learning rate for each 
parameter Good for sparse data (NLP) Learning rate decays too 

fast, can slow down

RMSprop Similar to Adagrad, but decays 
past gradients more smoothly

Works well in non-
stationary environments Requires tuning decay rate

Adam Combines Momentum + RMSprop Fast convergence, handles
noisy gradients

Prone to overfitting in some 
cases

Adam is the current de-facto standard (but can depend on the task)



Optimization Algorithms



Gradient Clipping
Technique to contrast exploding gradients 
by limiting the gradient (magnitude) to a 
threshold 𝜃0

• If 𝑔 > 𝜃0 then 𝑔 =
𝜃0

𝑔
𝑔



Neural Autoencoders



Unsupervised Learning Tasks

• Neural autoencoders are an example of deep learning 
architecture for solving unsupervised learning tasks

• Outlier/anomaly detection: identify samples that deviate 
significantly from the rest of the dataset
• Fraud detection, network security, medical diagnostics

• Compression/dimensionality reduction: reduce data complexity 
while preserving essential information
• Data visualization, noise reduction, and efficient storage

• Data Generation: generate new samples similar to those in the 
dataset
• Synthetic data generation: we will look into it, if we have time



Neural Autoencoder (AE)

• Key idea: train a neural network that can reconstruct its input
• Key catch: to be useful, we will constrain the network to learn a 

compressed representation of input information
How to constrain the network?
• Bottleneck autoencoder - Make sure the hidden layer has fewer 

degrees of freedom (neurons) than the input
• Denoising autoencoder – Make the network reconstruct a clean 

information starting from an altered input



Bottleneck autoencoder

Encoder: 
codifies input 𝒙
in a smaller 
neural 
representation 𝒉

Decoder: 
produces a 
reconstruction ෥𝒙 of 
the original input 𝒙
in from its 
compressed 
representation 𝒉

𝒉 = 𝜑𝑒𝑛𝑐 𝜽𝒆𝒏𝒄𝒙 ෝ𝒙 = 𝜑𝑑𝑒𝑐 𝜽𝒅𝒆𝒄𝒉

The number 
of input 
features is 𝑛
= number of 
output 
neurons Number of hidden neurons 𝑘 < 𝑛

(bottleneck)



Bottleneck AE intuition

• Encoder: Compressing the Input
• The encoder transforms the input x into a lower-dimensional 

representation h (the "bottleneck")
• Goal: Preserve only the most useful input features (relevant factors of 

variation) needed for reconstruction
• Decoder: Reconstructing the Input

• The decoder takes h and attempts to reconstruct x as closely as possible

𝑀𝑆𝐸 𝒙, ෝ𝒙 =
1

𝑁
෍

𝑖=1

𝑁

𝒙𝑖 − ෝ𝒙𝑖
2

• Reconstruction won't be perfect, since h contains less information than 
x, but it will also be non-trivial



Denoising autoencoder

The original input 𝒙
is altered by 
addition of noise ෥𝒙

The encoder transforms the 
corrupted input ෥𝒙 into its 
hidden representation 𝒉

The decoder reconstructs the 
original clean input 𝒙 from the 
hidden representation 𝒉

It is no longer necessary that 
𝑘 < 𝑛



Denoising AE intuition

• Noise: Corrupting the Input
• The network never sees the clean input, but it must learn to reconstruct it (controls 

overfitting)
• Mathematically, the noisy input is

෥𝒙 = 𝒙 + 𝝐 where 𝝐 ~𝒩 𝟎, 𝜎2  with 𝜎2 small
• Why? Forces the model to focus on essential patterns rather than memorizing details

• Encoder: Learning a Robust Representation
• Extracts meaningful features to reconstruct the input while ignoring noise

• Decoder: Reconstructing the Original Input
• The decoder tries to reconstruct the original input from its noisy version
• The network learns to filter out noise

• The Denoising AE is trained by MSE minimization w.r.t. the clean input 
reconstruction



Deep Autoencoder (AE)

oUnsupervised training
oHierarchical autoencoder
oExtracts a representation of 

inputs that facilitates
• Data visualization, 

exploration, indexing,…
• Realization of  a 

supervised task

𝒉1

𝒉2

𝒉3

𝒉4

𝒙

Supervised learning

Encoder



Unsupervised Layerwise Pretraining

DAVIDE BACCIU - ISPR COURSE 44

Incremental unsupervised construction of the Deep AE 

𝒉1

𝒙

෥𝒙

𝒉1

𝒙

Any form of AE, e.g. those 
shown in previous slides

𝑾1 𝑾1



Unsupervised Layerwise Pretraining

DAVIDE BACCIU - ISPR COURSE 45

Incremental unsupervised construction of the Deep AE 

𝒉1 𝒉1

𝒙

𝒉2 𝒉2

෩𝒉1

𝑾2

𝑾1

𝑾2



Unsupervised Layerwise Pretraining

DAVIDE BACCIU - ISPR COURSE 46

Incremental unsupervised construction of the Deep AE 

𝒉1

𝒙

𝒉2 𝒉2

෩𝒉2

𝑾3

𝑾2

𝒉3 𝒉3

𝒉4

𝑾4

𝑾3



Autoencoders in use

• Anomaly/outlier detection
• Compression
• Denoising
• (and more.. such as generation)



Autoencoder for Anomaly/Outlier Detection

We want to determine if an input differs significantly from normal data
• Key idea: An autoencoder learns to reconstruct normal data, but struggles with anomalies

• Normal inputs → The autoencoder reconstructs well (low reconstruction loss)
• Anomalous inputs → The autoencoder fails to reconstruct (high reconstruction loss)

How to:
• At training time: Fit the autoencoder parameters using only normal data
• At test time: Given a new input, compute reconstruction error L = 𝒙 − ෝ𝒙 2

• If 𝐿 ≤ 𝜏 → Input is normal
• If 𝐿 > 𝜏 → Input is anomalous

• Here 𝜏 is a threshold on reconstruction error
• It can be computed using the average reconstruction error on ground truth normal data
• It can also be made more robust by running a statistical test considering both average and std of normal data 

reconstruction



Anomaly Detection in Radiotherapy Plans

ROC curve and 
reconstruction error 

distribution confronting 
a deep AE with other 
anomaly detection 

methods

Radiotherapy plan represented 
by 30 input features

https://doi.org/10.3389/fonc.2023.1142947 

https://doi.org/10.3389/fonc.2023.1142947


Identifying anomalous brain morphology
Detecting morphological anomalies in Bipolar Disorder (BD) subjects as an anomaly detection task 
from Healthy Controls (HC)

AE trained on HC

AE tested and 
validated on BP 
and HC from a 

different 
dataset

https://doi.org/10.1101/2024.09.04.611239

https://doi.org/10.1101/2024.09.04.611239


Identifying differentially 
anomalous features in 
BD Vs HC

https://doi.org/10.1101/2024.09.04.611239

https://doi.org/10.1101/2024.09.04.611239


Unsupervised pathology detection in 
biomedical images

Unsupervised pathology 
detection of a brain tumor image 
and resulting anomaly scores 
(growing values: blue → red)

https://www.sciencedirect.com/science/article/pii/B9780128243497000153

https://www.sciencedirect.com/science/article/pii/B9780128243497000153


Autoencoder for Data Compression

• The hidden layer of an autoencoder provides a compressed representation of the input 
which can be used for dimensionality reduction 

• If the bottleneck size k is smaller than the input size n, the network is forced to learn a 
compressed but meaningful encoding
• Nonlinear dimensionality reduction (differently from PCA)
• When k=2, the hidden layer represents 2D coordinates and can be used for data visualization
• When using a (deep) multi-layer bottleneck we can obtain a hierarchical dimensionality reduction

• Other uses beyond dimensionality reduction
• Image Compression → Compress images while preserving important details.
• Audio Compression → Reduce bitrate while keeping sound quality.
• Latent Representations for ML Models → Extract compressed feature vectors for classification.



Autoencoders for 
dimensionality 
reduction and 

visualization of 
gene expression 

data

https://pmc.ncbi.nlm.nih.gov/articles/PMC6417816/



Autoencoder for Biomedical Image Denoising

https://www.techscience.com/cmc/v70n3/44978/html

https://www.techscience.com/cmc/v70n3/44978/html


Wrap-up



Take home lessons

• Deep learning is about learning hierarchical representations of input features

• Several factors are key to determine efficacy of the model
• Activation functions
• Activation normalization and regularization techniques
• Weight initialization and architectural tricks (residual connectivity)
• Optimization strategies 

• Neural autoencoders are powerful tools for unsupervised learning tasks
• Key catch: information bottleneck obliges the network to focus only on relevant factors of 

variation
• Anomaly detection, information compression, dimensionality reduction, denoising
• AEs provide refined neural representations on the top of which supervised tasks can be built



Next 2 Lectures

• Introduction to medical imaging
• Image representation
• Medical imaging as an inverse problem
• Imaging modalities and their challenges

• Convolutional neural networks
• Convolutional layers, filters/kernels, feature maps
• Pooling layers and their role
• Convolutional architectures and useful architectural tools

• Medical imaging tasks
• Classification, regression, segmentation, detection et al
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