
Deep Learning
Fundamentals

Artificial Intelligence for Digital Health (AID)

M.Sc. in Digital Health – University of Pisa

Davide Bacciu (davide.bacciu@unipi.it)

Lecture Outline

• From shallow to deep networks
• Enabling factors (tricks and else) for deep learning

• Gradient issues
• Activation functions
• Normalization and regularization
• Optimization

• Neural Autoencoders
• The first deep neural network
• Unsupervised learning with deep neural networks
• AE tasks: anomaly detection, compression, denoising

From the shallows to the deep

MLP – The shallow network
From some lectures ago..

Going deeper

• Apparently scaling up hidden layers to 2+
• Clearly much more than this

Deep neural network (DNN) computation

Transform input x through a composition of learnable non-linear functions
𝐷𝑁𝑁Θ(𝒙) = 𝑔𝜃𝑦 𝑔𝜃ℎ𝑙 (𝑔𝜃ℎ𝑙−1 (… (𝑔𝜃ℎ1 (𝒙))))

where

• 𝒉1 = 𝑔𝜃ℎ1 𝒙 = 𝜑1 𝜽ℎ1𝒙

• 𝒉2 = 𝑔𝜃ℎ2 𝒉1 = 𝜑2 𝜽ℎ2𝒉1

• …

• 𝒉𝑙 = 𝑔𝜃ℎ𝑙 𝒉𝑙−1 = 𝜑𝑙 𝜽ℎ𝑙𝒉𝑙−1

• 𝑦 = 𝑔𝜃𝑦 𝒉𝑙 = 𝜑𝑦(𝜽𝑦𝒉𝑙)

A set of learnable parameter matrices Θ = {𝜽ℎ1 , … , 𝜽ℎ𝑙 , 𝜽𝑦} and layer-specific
activation functions 𝜑𝑙

Deep Learning: Learning Hierarchical
Representations
• Early layers → Learn simple features (e.g., edges in images, basic

word embeddings in text)
• Deeper layers → Learn complex features by combining simpler

ones (e.g., shapes, object parts in images; syntax/semantics in
text)

• Final layers → Combine high-level features for task-specific
predictions

• This is especially useful in computer vision and natural language
processing, where hierarchical feature extraction is critical

Hierarchical Neural Representations

• Deep learning success
builds on the assumption
that input is
compositional

• Under such conditions
going deeper is better
than going wider

Efficient learning with depth (vs. width)

• There are theorems that prove that single-hidden-layer MLPs are
universal approximators (with possibly infinite neurons)

• In practice, instead of making networks wider (more neurons per
layer) is it best to go deeper (more layers)
• Better feature abstraction → Each layer refines representations learned by

previous layers
• More efficient learning → Deep networks can represent complex functions

more compactly
• Improved generalization → Deep architectures capture meaningful

patterns with fewer parameters than a shallow, wide network

Effect of Number of Layers

N hidden layers = 0 → Perceptron
• Learning separating hyperplanes

y

1x 2x

Example from to Eric Postma via Jason Eisner

Effect of Number of Layers

N hidden layers = 1 → Multilayer Perceptron
• Learning convex region boundaries (open or closed)

y

1x 2x

11

Example from to Eric Postma via Jason Eisner

Effect of Number of Layers

<

y

1x 2x

12

N hidden layers = 2 → Deep learning (sort-of)
• Learning to combine convex regions

Example from to Eric Postma via Jason Eisner

Challenges of deep learning: the role of depth
(𝑙)
• Model selection becomes expensive

• A new bunch of hyperparameters: depth 𝑙, size of each hidden layer, …
• Overfitting becomes a taunting problem

• Deep networks can easily memorize training data, leading to poor generalization
• Requires massive amounts of data

• Hundreds of thousands of data: challenging for labelling and in general in the
healthcare domain

• Limited usefulness if input is not compositional
• Deep architectures may not provide much benefit over simpler models

• Inherent computational and numerical challenges
• Deep models require large memory and powerful computing
• Training can be unstable and slow to converge (gradient and optimization issues)

Tackling Deep Learning Challenges

Training of deep networks

• We can keep working with the stochastic gradient descent
principle and the backpropagation algorithm

• Principled and smooth generalization with respect to increasing
scale and model complexity

• But…

Dumbly applying backprop training does not work with deep
networks → learning becomes difficult and training unstable

More complex networks may result in more articulated loss
landscapes to be optimized

The original sin
The gradient vanish/explosion problem

A numerical problem rooted in the long chain of multiplications needed
when backpropagating gradients through many layers

Gradient (norm of
the gradient) < 1

Gradient (norm of
the gradient) > 1

In the following

• A set of tips and tricks essential to smoothen and facilitate
training of deep neural networks
• Weight initialization
• Activation functions
• Activation normalization
• Regularization
• Residual connections
• Optimization algorithms
• Gradient clipping

• They often have deep theoretical motivations behind but for your
mental safety we will refrain from deepening such motivations

Weight initialization

• Choice of initial weight values is important as this decides starting
position in weight space

• Proper weight initialization is crucial to ensure stable learning, faster
convergence, and improved accuracy in deep neural networks

• Guiding principles
• Select weight values which produce midrange function signals
• Select weight values randomly to break symmetries
• Normalise weight values w.r.t. number of weighted connections per unit

• Try different random initialization to
• Assess robustness
• Have more opportunities to find optimal results

Weight initialization strategies
Random Initialization
• Breaks symmetry, ensuring different neurons learn distinct features
• Scaling strategies like sampling from small-variance Gaussian/uniform distributions are used to prevent large initial values

from dominating training
Glorot (Xavier) Initialization
• Maintains balanced weight distribution across layers, smoothing gradient flow for efficient backpropagation
• Designed for sigmoid and tanh activations
• Weights are drawn from either distributions

𝑈 −
6

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡
,

6

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡
 or 𝒩 0,

2

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡

with 𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡 number of input and output units to a layer
He Initialization
• Designed for for activation functions that do not have zero-centered mean (like ReLU)
• Weights are drawn from either distributions

𝑈 −
6

𝑛𝑖𝑛
,

6

𝑛𝑖𝑛
 or 𝒩 0,

2

𝑛𝑖𝑛

Gradient issues: on the role of activation
functions
• The derivative of the

activation functions play
a major role in
determining gradient
magnitude

• Non-linear saturating
activation functions
(sigmoidal-like) have bad
derivatives

The Rectified Linear Unit (ReLU)

ReLU was instrumental to deep learning
success
• Helps mitigating the vanishing gradient

problem (doesn’t solve it entirely!)

• Maintains (some degree of) non-linearity

• It can be efficiently computed (by GPUs)

𝑅𝑒𝐿𝑈(𝑥) = ቊ
𝑥, 𝑖𝑓 𝑥 > 0
0, 𝑖𝑓 𝑥 ≤ 0

Careful: it does not work nicely with all
neural architectures (e.g. recurrent NNs)

𝑑𝑅𝑒𝐿𝑈(𝑥)

𝑑𝑥
= ቊ

1, 𝑖𝑓 𝑥 > 0
0, 𝑖𝑓 𝑥 ≤ 0

Many variations along the ReLU principle

If too many neurons get
stuck at zero, they stop
learning

Activation Normalization

• Activations are the neural representations of the input information
in terms of the features learned by the hidden layers
• If they have different scales, the model suffers from the same issues as

unnormalized inputs!

• We may need activation normalization methodologies
• Prevent vanishing/exploding gradients → Stabilize training
• Enable faster learning → Allows higher learning rates
• Improve generalization → Reduces reliance on precise weight

initializations

Batch Normalization (BN)
For a given mini-batch B, BN normalizes activations:
1. Compute mean and variance across the batch

𝜇𝐵
𝑙 =

1

𝑁𝐵
෍

𝑖=1

𝑁𝐵

ℎ𝑖
𝑙 and 𝜎𝐵

𝑙 =
1

𝑁𝐵
෍

𝑖=1

𝑁𝐵

ℎ𝑖
𝑙 − 𝜇𝐵

𝑙 2

2. Normalize activations
෡ℎ𝑖

𝑙 =
ℎ𝑖

𝑙 − 𝜇𝐵
𝑙

𝜎𝐵
𝑙 2

+ 𝜖

3. Scale and shift through learnable parameters (𝛾, 𝛽)
෢ℎ𝑖

𝑙′ = 𝛾 ෡ℎ𝑖
𝑙 + 𝛽

• Reduces internal covariate shift (changing distribution of activations)
• Improves convergence → Training is faster and more stable

Need to backpropagate
through these

Becomes the input to
layer 𝑙 + 1

Training
Data

B1

B2

Bn

…

Activation of one neuron in
layer 𝑙 for minibatch sample 𝑖

Layer Normalization (LN)

• Instead of normalizing over a batch, LN normalizes across features for each sample
1. Compute single mean and variance across the layer

𝜇𝑙 =
1

𝑁𝑙
෍

𝑗=1

𝑁𝑙

ℎ𝑗
𝑙 and 𝜎𝑙 =

1

𝑁𝑙
෍

𝑗=1

𝑁𝑙

ℎ𝑗
𝑙 − 𝜇𝑙 2

2. Normalize activations
෡ℎ𝑖

𝑙 =
ℎ𝑖

𝑙 − 𝜇𝑙

𝜎𝑙 2
+ 𝜖

3. Scale and shift through learnable parameters (𝛾, 𝛽)
෢ℎ𝑖

𝑙′ = 𝛾 ෡ℎ𝑖
𝑙 + 𝛽

• Used in Transformers and RNNs where batch statistics (on sequences) are less
robust

Regularization

• More layers → More parameters → Higher risk of overfitting
• We already have a bunch of regularization techniques in

our toolbox that use penalties on weight vector norms (L1,
L2, …, combined)

• Here we focus on a different approach to regularization
introduced specifically for deep learning: dropout
regularization
• Key idea: randomly disconnect units from the network during

training

Dropout regularization

… …

During training:
1. Randomly "drop" (set output to 0)

some neurons in the hidden layers
2. This reduces the number of active

neurons, effectively creating a
smaller network

3. Each batch sees a different sub-
network, forcing the model to learn
robust features

Dropout regularization

… …

During training:
1. Randomly "drop" (set output to 0)

some neurons in the hidden layers
2. This reduces the number of active

neurons, effectively creating a
smaller network

3. Each batch sees a different sub-
network, forcing the model to learn
robust features

Dropout regularization

… …

During training:
1. Randomly "drop" (set output to 0)

some neurons in the hidden layers
2. This reduces the number of active

neurons, effectively creating a
smaller network

3. Each batch sees a different sub-
network, forcing the model to learn
robust features

Dropout regularization

… …

o Regulated by unit dropping
hyperparameter p (Bernoulli)

o Need to adapt prediction
phase

o You can also drop single
connections (dropconnect)

Residual Connections

The DNN learns the residual (difference) between layers, rather than the full
transformation

• Gradients can "skip" layers and directly reach early layers
• Makes it easier for deeper networks to learn identity mappings

Instead of just passing
information sequentially through
layers, residual connections skip
layers and directly connect an
earlier layer’s input to a later
layer’s output

Cost functions
are

(unfortunately)
more complex

than simple
convex functions

Optimizers in Deep Learning
• Optimizer - A function that performs SGD to update model parameters efficiently
• Different optimizers improve SGD by modifying how gradients are used

Optimizer Key Idea Advantages Disadvantages

SGD (Vanilla) Basic gradient descent update Simple & effective
Can get stuck in local
minima, slow convergence,
difficult to tune learning rate

Momentum
Adds "inertia" (exponentially
weighted history of previous
weights changes)

Faster convergence,
escapes local minima

Can overshoot if
momentum is too high

Adagrad Adapts learning rate for each
parameter Good for sparse data (NLP) Learning rate decays too

fast, can slow down

RMSprop Similar to Adagrad, but decays
past gradients more smoothly

Works well in non-
stationary environments Requires tuning decay rate

Adam Combines Momentum + RMSprop Fast convergence, handles
noisy gradients

Prone to overfitting in some
cases

Adam is the current de-facto standard (but can depend on the task)

Optimization Algorithms

Gradient Clipping
Technique to contrast exploding gradients
by limiting the gradient (magnitude) to a
threshold 𝜃0

• If 𝑔 > 𝜃0 then 𝑔 =
𝜃0

𝑔
𝑔

Neural Autoencoders

Unsupervised Learning Tasks

• Neural autoencoders are an example of deep learning
architecture for solving unsupervised learning tasks

• Outlier/anomaly detection: identify samples that deviate
significantly from the rest of the dataset
• Fraud detection, network security, medical diagnostics

• Compression/dimensionality reduction: reduce data complexity
while preserving essential information
• Data visualization, noise reduction, and efficient storage

• Data Generation: generate new samples similar to those in the
dataset
• Synthetic data generation: we will look into it, if we have time

Neural Autoencoder (AE)

• Key idea: train a neural network that can reconstruct its input
• Key catch: to be useful, we will constrain the network to learn a

compressed representation of input information
How to constrain the network?
• Bottleneck autoencoder - Make sure the hidden layer has fewer

degrees of freedom (neurons) than the input
• Denoising autoencoder – Make the network reconstruct a clean

information starting from an altered input

Bottleneck autoencoder

Encoder:
codifies input 𝒙
in a smaller
neural
representation 𝒉

Decoder:
produces a
reconstruction ෥𝒙 of
the original input 𝒙
in from its
compressed
representation 𝒉

𝒉 = 𝜑𝑒𝑛𝑐 𝜽𝒆𝒏𝒄𝒙 ෝ𝒙 = 𝜑𝑑𝑒𝑐 𝜽𝒅𝒆𝒄𝒉

The number
of input
features is 𝑛
= number of
output
neurons Number of hidden neurons 𝑘 < 𝑛

(bottleneck)

Bottleneck AE intuition

• Encoder: Compressing the Input
• The encoder transforms the input x into a lower-dimensional

representation h (the "bottleneck")
• Goal: Preserve only the most useful input features (relevant factors of

variation) needed for reconstruction
• Decoder: Reconstructing the Input

• The decoder takes h and attempts to reconstruct x as closely as possible

𝑀𝑆𝐸 𝒙, ෝ𝒙 =
1

𝑁
෍

𝑖=1

𝑁

𝒙𝑖 − ෝ𝒙𝑖
2

• Reconstruction won't be perfect, since h contains less information than
x, but it will also be non-trivial

Denoising autoencoder

The original input 𝒙
is altered by
addition of noise ෥𝒙

The encoder transforms the
corrupted input ෥𝒙 into its
hidden representation 𝒉

The decoder reconstructs the
original clean input 𝒙 from the
hidden representation 𝒉

It is no longer necessary that
𝑘 < 𝑛

Denoising AE intuition

• Noise: Corrupting the Input
• The network never sees the clean input, but it must learn to reconstruct it (controls

overfitting)
• Mathematically, the noisy input is

෥𝒙 = 𝒙 + 𝝐 where 𝝐 ~𝒩 𝟎, 𝜎2 with 𝜎2 small
• Why? Forces the model to focus on essential patterns rather than memorizing details

• Encoder: Learning a Robust Representation
• Extracts meaningful features to reconstruct the input while ignoring noise

• Decoder: Reconstructing the Original Input
• The decoder tries to reconstruct the original input from its noisy version
• The network learns to filter out noise

• The Denoising AE is trained by MSE minimization w.r.t. the clean input
reconstruction

Deep Autoencoder (AE)

oUnsupervised training
oHierarchical autoencoder
oExtracts a representation of

inputs that facilitates
• Data visualization,

exploration, indexing,…
• Realization of a

supervised task

𝒉1

𝒉2

𝒉3

𝒉4

𝒙

Supervised learning

Encoder

Unsupervised Layerwise Pretraining

DAVIDE BACCIU - ISPR COURSE 44

Incremental unsupervised construction of the Deep AE

𝒉1

𝒙

෥𝒙

𝒉1

𝒙

Any form of AE, e.g. those
shown in previous slides

𝑾1 𝑾1

Unsupervised Layerwise Pretraining

DAVIDE BACCIU - ISPR COURSE 45

Incremental unsupervised construction of the Deep AE

𝒉1 𝒉1

𝒙

𝒉2 𝒉2

෩𝒉1

𝑾2

𝑾1

𝑾2

Unsupervised Layerwise Pretraining

DAVIDE BACCIU - ISPR COURSE 46

Incremental unsupervised construction of the Deep AE

𝒉1

𝒙

𝒉2 𝒉2

෩𝒉2

𝑾3

𝑾2

𝒉3 𝒉3

𝒉4

𝑾4

𝑾3

Autoencoders in use

• Anomaly/outlier detection
• Compression
• Denoising
• (and more.. such as generation)

Autoencoder for Anomaly/Outlier Detection

We want to determine if an input differs significantly from normal data
• Key idea: An autoencoder learns to reconstruct normal data, but struggles with anomalies

• Normal inputs → The autoencoder reconstructs well (low reconstruction loss)
• Anomalous inputs → The autoencoder fails to reconstruct (high reconstruction loss)

How to:
• At training time: Fit the autoencoder parameters using only normal data
• At test time: Given a new input, compute reconstruction error L = 𝒙 − ෝ𝒙 2

• If 𝐿 ≤ 𝜏 → Input is normal
• If 𝐿 > 𝜏 → Input is anomalous

• Here 𝜏 is a threshold on reconstruction error
• It can be computed using the average reconstruction error on ground truth normal data
• It can also be made more robust by running a statistical test considering both average and std of normal data

reconstruction

Anomaly Detection in Radiotherapy Plans

ROC curve and
reconstruction error

distribution confronting
a deep AE with other
anomaly detection

methods

Radiotherapy plan represented
by 30 input features

https://doi.org/10.3389/fonc.2023.1142947

https://doi.org/10.3389/fonc.2023.1142947

Identifying anomalous brain morphology
Detecting morphological anomalies in Bipolar Disorder (BD) subjects as an anomaly detection task
from Healthy Controls (HC)

AE trained on HC

AE tested and
validated on BP
and HC from a

different
dataset

https://doi.org/10.1101/2024.09.04.611239

https://doi.org/10.1101/2024.09.04.611239

Identifying differentially
anomalous features in
BD Vs HC

https://doi.org/10.1101/2024.09.04.611239

https://doi.org/10.1101/2024.09.04.611239

Unsupervised pathology detection in
biomedical images

Unsupervised pathology
detection of a brain tumor image
and resulting anomaly scores
(growing values: blue → red)

https://www.sciencedirect.com/science/article/pii/B9780128243497000153

https://www.sciencedirect.com/science/article/pii/B9780128243497000153

Autoencoder for Data Compression

• The hidden layer of an autoencoder provides a compressed representation of the input
which can be used for dimensionality reduction

• If the bottleneck size k is smaller than the input size n, the network is forced to learn a
compressed but meaningful encoding
• Nonlinear dimensionality reduction (differently from PCA)
• When k=2, the hidden layer represents 2D coordinates and can be used for data visualization
• When using a (deep) multi-layer bottleneck we can obtain a hierarchical dimensionality reduction

• Other uses beyond dimensionality reduction
• Image Compression → Compress images while preserving important details.
• Audio Compression → Reduce bitrate while keeping sound quality.
• Latent Representations for ML Models → Extract compressed feature vectors for classification.

Autoencoders for
dimensionality
reduction and

visualization of
gene expression

data

https://pmc.ncbi.nlm.nih.gov/articles/PMC6417816/

Autoencoder for Biomedical Image Denoising

https://www.techscience.com/cmc/v70n3/44978/html

https://www.techscience.com/cmc/v70n3/44978/html

Wrap-up

Take home lessons

• Deep learning is about learning hierarchical representations of input features

• Several factors are key to determine efficacy of the model
• Activation functions
• Activation normalization and regularization techniques
• Weight initialization and architectural tricks (residual connectivity)
• Optimization strategies

• Neural autoencoders are powerful tools for unsupervised learning tasks
• Key catch: information bottleneck obliges the network to focus only on relevant factors of

variation
• Anomaly detection, information compression, dimensionality reduction, denoising
• AEs provide refined neural representations on the top of which supervised tasks can be built

Next 2 Lectures

• Introduction to medical imaging
• Image representation
• Medical imaging as an inverse problem
• Imaging modalities and their challenges

• Convolutional neural networks
• Convolutional layers, filters/kernels, feature maps
• Pooling layers and their role
• Convolutional architectures and useful architectural tools

• Medical imaging tasks
• Classification, regression, segmentation, detection et al

	Diapositiva 1: Deep Learning Fundamentals
	Diapositiva 2: Lecture Outline
	Diapositiva 3: From the shallows to the deep
	Diapositiva 4: MLP – The shallow network
	Diapositiva 5: Going deeper
	Diapositiva 6: Deep neural network (DNN) computation
	Diapositiva 7: Deep Learning: Learning Hierarchical Representations
	Diapositiva 8: Hierarchical Neural Representations
	Diapositiva 9: Efficient learning with depth (vs. width)
	Diapositiva 10: Effect of Number of Layers
	Diapositiva 11: Effect of Number of Layers
	Diapositiva 12: Effect of Number of Layers
	Diapositiva 13: Challenges of deep learning: the role of depth (l)
	Diapositiva 14: Tackling Deep Learning Challenges
	Diapositiva 15: Training of deep networks
	Diapositiva 16: The original sin
	Diapositiva 17: In the following
	Diapositiva 18: Weight initialization
	Diapositiva 19: Weight initialization strategies
	Diapositiva 20: Gradient issues: on the role of activation functions
	Diapositiva 21: The Rectified Linear Unit (ReLU)
	Diapositiva 22: Many variations along the ReLU principle
	Diapositiva 23: Activation Normalization
	Diapositiva 24: Batch Normalization (BN)
	Diapositiva 25: Layer Normalization (LN)
	Diapositiva 26: Regularization
	Diapositiva 27: Dropout regularization
	Diapositiva 28: Dropout regularization
	Diapositiva 29: Dropout regularization
	Diapositiva 30: Dropout regularization
	Diapositiva 31: Residual Connections
	Diapositiva 32: Cost functions are (unfortunately) more complex than simple convex functions
	Diapositiva 33: Optimizers in Deep Learning
	Diapositiva 34: Optimization Algorithms
	Diapositiva 35: Gradient Clipping
	Diapositiva 36: Neural Autoencoders
	Diapositiva 37: Unsupervised Learning Tasks
	Diapositiva 38: Neural Autoencoder (AE)
	Diapositiva 39: Bottleneck autoencoder
	Diapositiva 40: Bottleneck AE intuition
	Diapositiva 41: Denoising autoencoder
	Diapositiva 42: Denoising AE intuition
	Diapositiva 43: Deep Autoencoder (AE)
	Diapositiva 44: Unsupervised Layerwise Pretraining
	Diapositiva 45: Unsupervised Layerwise Pretraining
	Diapositiva 46: Unsupervised Layerwise Pretraining
	Diapositiva 47: Autoencoders in use
	Diapositiva 48: Autoencoder for Anomaly/Outlier Detection
	Diapositiva 49: Anomaly Detection in Radiotherapy Plans
	Diapositiva 50: Identifying anomalous brain morphology
	Diapositiva 51: Identifying differentially anomalous features in BD Vs HC
	Diapositiva 52: Unsupervised pathology detection in biomedical images
	Diapositiva 53: Autoencoder for Data Compression
	Diapositiva 54: Autoencoders for dimensionality reduction and visualization of gene expression data
	Diapositiva 55: Autoencoder for Biomedical Image Denoising
	Diapositiva 56: Wrap-up
	Diapositiva 57: Take home lessons
	Diapositiva 58: Next 2 Lectures

