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Boltzmann Machines

An example of Markov Random Field
o Visible RV v € {0, 1}

o LatentRV h € {0, 1}

o s =|vh]

\Y

o Alinear energy function
1 1 .
E(S) = — E EMUSL'S]’ —EbjSJ = — §STMS —b's
ij J

with symmetric and no self-recurrent connectivity
o Model parameters 8 = {M, b} encode the interactions between the variables
(observable and not)

Boltzmann machines are a type of Recurrent Neural Network
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Boltzmann Machines ad Stochastic Networks

o A neural network of units whose activation is determined by a stochastic
function

e The state of a unit at a given timestep is sampled from a given probability distribution

e The network learns a probability distribution P(V) from the training patterns

h o Network includes both visible v and
hidden h units

o Network activity is a sample from
posterior probability given inputs
(visible data)

Vv
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Stochastic Binary Neurons

o Spiking point neuron with binary output s;

o Typically, discrete time model with time into small At intervals

o Ateachtimeinterval (t +1 =t + At), the neuron can emit a spike with

probability p](.t)

( : - (t)
© _ . 1, with probability P;

KO, with probability 1 — pj(.t)

The key is in the definition of the spiking probability (needs to be a
function of local potential x;)

t t
p:? ~ a(x")
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General Sigmoidal Stochastic Binary Network

Network of N neurons with binary activation s;
o Weight matrix M = [Mif]ij e{1,.. N}

o Biasvector b = [bj]j e{1,.., N}

Local neuron potential x; defined as usual

N
(t+1) _ (t)
Xj = z MijSi + bj
=1

A chosen neuron fires with spiking probability

(t+1)
J

= P(s;" = 1|58 = o(x;"TV) =

_x(t+1)
14+e 7
Formulation highlights Markovian dynamics
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Update Dynamics

How does the model state (activation of all neurons) evolve in
time?
Assume RV to be updated in parallel every At (Parallel dynamics)

N
(t+1) ] «(t)\ — (t+1) .t _ (t+1) | (t
Ps@VIs®) = | [p(sfV1st) = T(s1sO)
j=1
Yielding a Markov process for state update

P(stD) = gy = z T(s'|s)P(s® = s)




The Boltzmann-Gibbs Distribution

Undirected (i.e. symmetric) connectivity enforces detailed balance
condition

P(s)T(s'|s) = P(s)T(s|s")
Ensures reversible transitions guaranteeing existence of equilibrium
(Boltzmann-Gibbs) distribution

P,(s) =

e—E(s)

Z

where
o E(s) is the energy function

o Z =Y e E®) s the partition function

I ———————————————————
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Learning

Ackley, Hinton and Sejnowski (1985)

Boltzmann machines can be trained so that the equilibrium distribution tends towards
any arbitrary distribution across binary vectors given samples from that distribution

A couple of simplifications to start with
o Bias b absorbed into weight matrix M
o Consider only visible RVs = v

Use probabilistic learning techniques to fit the parameters, i.e. maximizing the log-
likelihood

L
L(M) = %Z log P(v!|M)
=1

given the P visible training patterns v
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Gradient Approach

o First, consider the gradient for a single pattern
oP(v|M)
aMU = —(vivj> + vivj

with free expectations (vivj) = Y P(W)v;v;

o Then, the log-likelihood gradient

0L
oMy —(vivy) + (UiVJ')C

: . 1
with clamped expectations (vivj)c = Zzp viv!
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A Neural Interpretation, Once Again!

It is Hebbian learning!

(viv,-)c — (viv))
N —— N e’
wake dream

o wake partis the standard Hebb rule applied to the empirical
distribution of data that the machine sees coming in from the
outside world

o dream part is an anti-hebbian term concerning correlation

between units when generated by the internal dynamics of the
machine

Can only capture quadratic correlation! |
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Learning with Hidden Variables

o To efficiently capture higher-order correlations we need to
introduce hidden RV h

o Again log-likelihood gradient ascent (s = [vh])

OP(v|IM
a(l\ljll ) — Z SiSjP(hlv) — z SiSjP(S) — (SiSj>C — <5i5j>

j A

o Expectations again become intractable due to the partition
function Z




Restricted Boltzmann Machines (RBM)

A special Boltzmann machine

o Bipartite graph

o Connections only between
hidden and visible units

h

\'}

o Energy function, highlighting bipartition in hidden (h) and visible
(V) units

E(w,h) = —v'Mh —b"v —c'h
o Learning (and inference) becomes tractable due to graph
bipartition which factorizes distribution




The RBM Catch

Hidden units are conditionally independent given visible units, and
viceversa

P(h]|v) — 0'(2 Ml-jvl- + C])

P(vi|h) = U(Z M;;ih; + b;)
J

They can be updated in batch!




Training Restricted Boltzmann Machines

Again by likelihood maximization, yields

0L
oMy, (vihy), = (vihy)
data model

A Gibbs sampling approach

Wake Dream

o Clampdataonv o Don’t clamp units

o Sample v;h; for all pairs of o Let network reach equilibrium
connected units o Sample v;h; for all pairs of

o Repeat for all elements of dataset connected units

o Repeat many times to get a good
estimate
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Gibbs-Sampling RBM

0L

oM, (vihj) —(vih))
data model
h OO0/ |[000] 000|
7N /N /L N\
v OOO| (000 [000] 000|
t=0 t=1 t =2 t - o

It is difficult to obtain an unbiased sample of the second term




Gibbs-Sampling RBM: Plugging-in Data
h (000 (000,

(viky), /' \v‘ y' \ / \(v,-;hj)oo
v[000] [000| [000O
t=0 t=1 t=2 t > o0

1. Start with a training vector on the visible units
2. Alternate between updating all the hidden units in parallel and
updating all the visible units in parallel (iterate)




Contrastive-Divergence Learning

Gibbs sampling can be painfully slow to converge (high variance)

1. Clamp a training vector v! on

h [OOO] [OOO] visible units
<vihf)0/ \ /! (vihj)
v/000| (000

t=20 t=1
data reconstruction

1 2. Update all hidden units in parallel

3. Update all the visible units in
parallel to get a reconstruction

4. Update the hidden units again

(vihj), —  (vihy),

N e’ Ny e’ i
data reconstruction
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What does Contrastive Divergence Learn?

o A very crude approximation of the gradient of the log-likelihood
e It does not even follow the gradient closely
o More closely approximating the gradient of an objective function
called the Contrastive Divergence

e lItignores one tricky term in this objective function, so it is not even
following that gradient

o Sutskever and Tieleman (2010) have shown that it is not following
the gradient of any function
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RBM-CD in Code

for epoch = 1: maxepoch

data = dataOr > rand ( size (data) ) ;
poshidP =1./(1+ exp (-dataxW —bh));
wake = data’ * poshidP ;

poshidS = poshidP > rand ( size ( poshidP ) ) ;
reconDataP =1./( 1+ exp (—poshidS+W’ - bv)) ;
reconData = reconDataP > rand ( size (data) ) ;
neghidP =1./ (1 + exp (-reconDatasW — bh)) ;
dream = reconData '+ neghidP ;

err =sum (sum ( (data—negdata) ~2));

deltaW = (wake — dream ) / numcases ;
deltaBh = (sum ( poshidP ) — sum ( neghidP ) ) / numcases ;
deltaB v = (sum ( data ) = sum (reconData ) ) / numcases ;

end
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Boltzmann Machines in Python

o Boltzmann machines implementations are available in all major
deep learning libraries: Theano, Torch, Tensorflow, ...

o sklearn.neural network contains an implementation of a binary
RBM

o Little support in Python libraries for generative and graphical
models

o Plenty of personal implementations on Github
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Character Recognition

Learning good features for reconstructing images of number 2 handwriting

50 binary
feature
neurons
Increment weights
between an active pixel
and an active feature / \ Decrement

weights between

and an active

E1 feature
L‘d

16x16
binary

Reconstructed

image
Slide credit goes to G. Hinton Image
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Weight Learning

. . . . . . . . . - UNIVERSITA DI PISA
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Final Weights
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Digit Reconstruction

i , rE——
. i

/ w‘den features

.E B
; reconstruction " 1—




One Last Final Reason for Introducing RBM
Deep Belief Network

Classifier/Regressor

The fundamental building block
for popular deep learning
architectures (Deep RBM as well)

A network of stacked RBM
trained layer-wise by
Contrastive Divergence plus a
supervised read-out layer
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Take Home Messages

O Boltzmann Machines

A first bridge between (undirected) generative models and (recurrent) neural networks
Neural activity regulated by stochastic behavior

Training has both a ML and an Hebbian interpretation

Require approximations for computational tractability

O Restricted Boltzmann Machines
® Tractable model thanks to bipartite connectivity

® Trained by a very short Gibbs sampling (contrastive divergence)
® Can be very powerful if stacked (deep learning)
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Generative Graphical Models — Wrap up

Bayesian Models/Nets Markov Random Fields

a

JoR=C

N M

o Knowledge and

O Unsupervised data constraints through
understanding feature function

Interpretability o CRF: the supervised way

O Weak on supervised to generative

performance o Computationally heavy
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Dynamic Models

Topology unfolds on data
structure

Structured data processing

Complex causal
relationships




Tractability

o Consider using generative models when

Need interpretability

Need to incorporate prior knowledge

Unsupervised learning or learning with partially observable supervision
Need reusable/portable learned knowledge

o Consider avoiding generative models when
e Having tight computational constraints
e Dealing with raw, noisy low-level data

o Variational inference and sampling
e Efficient ways to learn an approximation to intractable distributions

o Neural networks can be used as variational functions or to implement
sampling processes
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Next Lecture

ntroduction to the deep learning module

Deep Autoencoders

o Autoencoders and dimensionality reduction

o Neural autoencoders (sparse, denoising contractive)
o Deep neural autoencoders and pretraining

o Deep generative-based autoencoders

o Visualization and multi-modal data fusion with autoencoders
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