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Lecture Outline

* Sequential data in healthcare
* Dealing with sequential data and learning tasks definition
* Physiological timeseries
* Electronic health records

* Recurrent neural networks (RNNSs)
* Main intuition and learning issue in the vanilla model
* Gated RNNs
* Bidirectional models
* Convolutional RNNs

* RNNs in healthcare applications (with a bonus track on models)
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Sequential Data (in Healthcare)




Sequences

* Ordered series of observations of variable length
 Each element of the sequence is (possibly) a vector (multivariate)
* Sequence elements can be sampled at irregular times

t=0 t=1 t=2 t=N

xO_’ xl—pxz_p see _’xt_’lll —_— xN

Inductive Bias

The element at time t in the sequence may depend only on its (more or less) recent past
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Kinds of Sequential Data

* When ordering is given by time, our sequence is also
known as a timeseries

* Numerical sequences: each element is a scalar (e.g.
heartrate)

* Vectorial sequences: each elementis a vector (e.g.
ECG/EEG)

* Matrix sequences: each element is a matrix (e.g. an fMRI)

* Textual sequences: each elementis the encoding of a
symbolic item (e.g. genomic sequences)
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Physiological Timeseries

Probes used to collect vital signs data from an
infantin ICU
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Rapidly varying HR
timeseries (normal)
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The

Challenging
Nature of
Physiological
Timeseries (l)
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https://physionet.org/content/challenge-2017/1.0.0/

The Challenging Nature of Physiological
Timeseries (ll)
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Fantastic

timeseries
and where to
find them

Patient Timeline

Source: Rajkomar et al, Nature

2018
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In Electronic Health
Records (EHR)!
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Electronic
Health Record

Patient chart in digital

form, containing medical

and treatment history

Patient information
stored over time

Patient Timeline

Source: Rajkomar et al, Nature

2018
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effusion, and R lung empyema
who presents with increased
drainage from

R lung pleurx tract ... "

effusion. interval removal of a right chest
tube within a loculated right pleural effusion
which contains foci of air. [..]. IMPRESSION: 1.
Interval progression of disease in the chest and
abdomen including increased mediastinal
lymphadenopathy, pleural/parenchymal
disease within the right lung, probable new
hepatic metastases and subcutaneous nodule
within the thorax [..]"”

CT scan showing increased
loculted effusion on R compared
to date ..”

Imaging and

Diagnoses and
physician notes

lab reports
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EHR Example Dataset — MIMIC-I1II/IV

 Open-source database of de-
identified data for 65,000
patients admitted to an ICU and
over 200,000 patients admitted
to the emergency department

* All patients admitted to critical
care units at Beth Israel
Deaconess Medical Center
(z%c%sgon, MA) between 2008 -

Johnson et al, Nature 2023
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Type of sequential ML tasks: sequence
prediction

The entire sequence X is associated with a single targety

Patient
condition
ICU e ICU
admission discharge

DAVIDE BACCIU - AID COURSE
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Type of sequential ML tasks: element-by-
element prediction

Given a sequence x generate a prediction y<t~ for each element

Likelinood of @
an adverse
event
occurring

ICU ¥ (D ¥ (2) oue @
admission
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Type of sequential ML tasks: sequence-to-
sequence

Given a sequence X generate an output sequence y (of different

length and not synchronized)

DAVIDE BACCIU - AID COURSE 14



Dealing with Sequences in Neural Networks

t=0 t=1 t=2 t=N Variable size data describing
sequentially dependent
information

' | Neural models need to
Cs v ' capture dynamic context ¢; to
CN perform predictions

Recurrent Neural Network
o Vanilla adaptive models (EIman, SRN, ...)

o« Randomized approaches (Reservoir Computing)

o Gated recurrent networks



Recurrent Neural Networks (RNN)
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The intuition

We apply the same neural
network to each element of the
sequence (using weight
sharing)

ht —_ tanh (met)

NNg

e

©
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NNg
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The intuition

We apply the same neural
network to each element of the @
sequence (using weight

sharing)

NNg NNg NNg

ht —_ tanh(Winxt + Whht—l)

We add a new input h;_; which @ x(2)
captures the information from

the past inputs of the network

e

O
SREILS
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Interpreting the network state h;_4

* h;_, encodes the information related to the elements of the
sequence x; ... X;_, processed before the current one (x;)

* |t acts like a state/memory that summarizes the relevant
iInformation the network has processed up to that point

* The RNN flow in summary

* We combine the current element of the sequence X¢ with input weights
* We combine the state h;_; with recurrent weights

* We sum the two results and apply an activation function

* We pass the result to the next layer

* For the first element x4, the state h, is a vector of zeros

DAVIDE BACCIU - AID COURSE
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Recursive RNN model - |
This is not necessarily

Describes the network / computed for all t

structure and
parameterization prior to

t
unfolding (i.e. applying o \
the weight sharing Typically all

copies) on the actual T dense (fully-

sequence L _] / connected)
fw

V ers
Win
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Graphics credit
. @ colah.github.io

Unfolding RNN (Forward Pass)

By now you should be familiar with the concept
of model on the data @

o
O-6-0——0 = S

® © o ® )

1 t encoding @

w > fw >

>
7 Map an arbitrary length

f
sequence X,..X; to
h,
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Vanilla RNN

Vi = f(Woutht T bout) ht_l . “ht
® — | A
4 A 4 N
T 4 h - N

0 Ea

g gt
é \ \\ [_Z_]
\ % \_ | .

ht — tanh(gt) b ] inxt
W;lht—l @
ge(he_q,x) =Wyhi_ 1 + Wy,x, + by, t
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Training RNNs — Computational Graph

ho—hfw —Fh1—FfW —rhz—rfw —bha—h...—hh_l_
X1 x2 XS

Source: S. Yeung, BIODS 220
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Training RNNs — Computational Graph

Same set of weights reused across time steps => gradient needs to be taken
w.r.t. all weight copies

ho—rfw _*h1_F.fW —phz—hfw —hha—p...—hhT
W X4 X5 =

Source: S. Yeung, BIODS 220
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Training RNNs — Computational Graph

When predicting at each time step, adjust based on the error committed at
each time step (i.e. sum the errors across time)

Y, 1 L Y 1L Y3 L, Yr Ly
ho—rfw—hh1—bfw—rh2—rfw—>h3—r- —h-hT
W X1 X2 XS

Source: S. Yeung, BIODS 220
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Training RNNs — Computational Graph

For sequence-levels tasks, have one error (and one gradient) only at the end

Source: S. Yeung, BIODS 220

DAVIDE BACCIU - AID COURSE

We will also see
more articulated
forms of output
predictions later on
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Backpropagation Through Time (BPTT) Loy vouan
compute loss, then
(in plrjint:iple) t

ackward through

Source: S. Yeung, BIODS 220
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Truncated Backpropagation Through Time

Loss Gradient tends to vanish (or

i explode) as you propagate it
/ [ \ \\ through many time steps
backwards (for numerical

reasons beyond the scope of
this course)

Source: S. Yeung, BIODS 220
DAVIDE BACCIU - AID COURSE

28



Truncated Backpropagation Through Time

>

DAVIDE BACCIU - AID COURSE

Run BPTT on
chunks of the
seguence rather
than on the full
seguence

Source: S. Yeung, BIODS 220
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Truncated Backpropagation Through Time

Deep learning APls allow you to

choose the size of the time Lo

window for truncated

propagation /f T x\\
/1. 1. 1 L N

> > - >

Source: S. Yeung, BIODS 220
30
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Learning to Encode Input History

& & _®
T L1

fr fw > fw > fu fr
5“6 ¢

Hidden state h; summarizes information on the history of the input
sighal up totime ¢t
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Learning Long-Term Dependencies is Difficult

When the time gap between the observation and the state grows
there is little residual information of the input inside of the memory

b ® @6?6%

LT
fw fw fw
6 o o

fW
DAVIDE BACCIU - AID COURSE 32
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Gated Recurrent Networks
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A motivating example

* Let's imagine we need to predict the next word in this sentence:
| lived in England when | was little, until | was ten years old. Then | moved
with my family. | speak fluently...

* |[t’s clear that if | want to predict the next word in this sentence
(English), | need to remember having seen England earlier

* The problem with standard RNNs is that this dependency might be

lost, so modifications to the standard RNN are needed to solve
this issue

DAVIDE BACCIU - AID COURSE 34



Long Short Term Memory (LSTM) — The first
gated RNN

* The idea behind an LSTM is to introduce a memory ¢, a vector that
holds a representation of elements (no matter how far back) that the
current output/state might depend on

* In asimple RNN, the memory ¢ coincides with the state h and it
contains all past input elements

* By trying to retain “everything”, the network tends to “forget” the more distant
elements (due to the vanishing gradient problem)

* The key idea in LSTMs is that, at each step, the network decides
whether and how much to update the memory

* This update is managed by gates that learn how to combine the
memory with the previous state to produce the current state and
output.

DAVIDE BACCIU - AID COURSE

35



LSTM Gates

* The forget gate tells us which parts of the memory to
erase

* The update gate tells us which parts of the memory to
update

* The output gate tells us which parts of the memory are
used to compute the output and the current state

* The activation of a gate returns vectors with values
between 0 and 1, where 0 = “throw away” and 1 = “keep”

DAVIDE BACCIU - AID COURSE 36



LSTM Design

hy Let's start from the
T vanilla RNN unit

+
@ S. Hochreiter, J. Schmidhuber, Long short-term

memory". Neural Computation, Neural Comp. 1997

DAVIDE BACCIU - AID COURSE 37



LSTM Design — Step 1

h f
s 2
: i S
T f
i Ct
Ct—1 i ~ "'_]
-~ i Yt
i +_/
| N N
b )
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Introduce a memory ¢;

Combines past internal
state ¢;,_1 with current
Input x;
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LSTM Design — Step 2 (Gates)

h fi

(0
i Ct

Ct—1 i 3
i Xj—t_/

____/ i 9t

i A,
t
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Input gate

Controls how inputs
contribute to the
internal state

I (xt, he—q)

Logistic sigmoid
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LSTM Design — Step 2 (Gates)

DAVIDE BACCIU - AID COURSE

Forget gate
Controls how past
internal state ¢;_4
contributes to ¢;

Fe(xe, he—1)

Logistic sigmoid

40



LSTM Design — Step 2 (Gates)

"l

1

DAVIDE BACCIU - AID COURSE

Output gate

Controls what part of
the internal state is
propagated out of the
cell

O¢(xt, he—1)

Logistic sigmoid

41



LSTM in Equations

1) Compute activation of input and forget gates Training works by BPTT
. 4t by) as in vanilla RNNs
+ bp) (including truncation)

2) Compute input potential and internal state
g: = tanh(Wilh 1 +Winic. + bi)
¢ = FOc_1 + 1:0Og,

3) Compute output gate and output state

0, = U(t—l + Woinx: +|bg)

ht — Othth(Ct)

® element-wise
multiplication

DAVIDE BACCIU - AID COURSE 42



Deep LSTM

------------------------------------------ h3
1 ; P —
4 ) hl 4 "\ -~ N h3
¢ t
@ $ LSTM $ LSTM $ LSTM $ @
CELL CELL CELL
N \ hz \
N -\ -\
2
b J thZ_ - J N J

___________________________

LSTM layers extract information at increasing levels of abstraction
(enlarging context)
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Bidirectional LSTM (BiLSTM)

LSTMg

l’v%T,a‘v"! @ |

LSTMe

* We combine (sum,
average) the two
directions before the
output

* This is more powerful, as
It takes the entire
sequence into account to
make a prediction

* But the entire sequence
must be available (which
Is not always possible)
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Gated Recurrent Unit (GRU)

Reset acts directly on output state (no th;
internal state and no output gate) ht—l//v x +] \
hi =1-2z)Oh1+2,0h, - )
h, = tanh(Wp,(r:® he_y) + Wpinx, + by) I
mn {—-I-_f =k X]

act as input and forget gates

z, = o(Wyhe_y + Wyinx, + b))
Tt — O-(thht—l T Wrinxt + br) : ;xt’

C. Kyunghyun et al, Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, EMNLP 2014

T Z¢
Reset and update gates when coupled i[ @ht

DAVIDE BACCIU - AID COURSE
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Convolutional Recurrent Networks

DAVIDE BACCIU - AID COURSE



Convolutional neural networks on timeseries

It should not be surprising to think that convolutional filters can be
defined to be mono-dimensional for their use on timeseries

® % 9
el
() £ £
O O O
®@ o ©

Q

Q

O

Q

@)

O

Q)

O

_____________ . Stacking
® o Q Q Q Q Output f:onvolutlonal
i 5 | ,: 5 / i ayers
O Q Q\ C '/ \)J' Hidden Layer
) £ : W, iHidden Layer
Q | / i Hidden Layer
‘ { yy V l Input

2x1 convolutions
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Temporal Convolutional Networks (TCNs)

The return of dilated convolutions

© 6 06 06060060 .0 0 0 0 0 0 0.0 ..

Dilation = 8
o O O O O O O OOOOOOO(‘)HiddenLaye,

Dilation = 4

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 1

O O O (‘) O O O/Q
@ & @ & & @ & O  Input

DAVIDE BACCIU - AID COURSE 48




You canreuse all your CNN buﬂdlng
blocks and knowledge here

I
Single ‘ I
lead

0 MR

//
7
7
34-layer Convolutional s
Neural Network
S~
~
= S~
SINUS | SINUS | SINUS | SINUS | AFIB AFIB AFIB AFIB

Predicting Sinus rhythm (SINUS) Vs Atrial Fibrillation

for a total of 14 classes

Source: Arxiv
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Input
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Dropout
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Dropout
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!

BN
RelLU

dense

Softmax
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https://arxiv.org/pdf/1707.01836

Metric

To get you cardiologist level predictions

Seq Set

Model Cardiol. Model Cardiol.

Sequence F1 Class-level F1 Score

AFIB 0.604 0.515 0.667 0.544
AFL 0.687 0.635 0.679 0.646
AVB_TYPE2 0.689 0.535 0.656 0.529
BIGEMINY 0.897 0.837 0.870 0.849
CHB 0.843 0.701 0.852 0.685
EAR 0.519 0.476 0.571 0.529
IVR 0.761 0.632 0.774 0.720
JUNCTIONAL 0.670 0.684 0.783 0.674
NOISE 0.823 0.768 0.704 0.689
SINUS 0.879 0.847 0.939 0.907
Set F1 SVT 0.477 0.449 0.658 0.556
TRIGEMINY 0.908 (0.843 0.870 0.816
VT 0.506 0.566 0.694 0.769
WENCKEBACH 0.709 0.593 0.806 0.736
Model 0.5 0.6 0.7 0.8 Aggregate Results
Cardiologist Seore Precision (PPV) 0.800 0.723 0.809 0.763
Recall (Sensitivity) 0.784 0.724 0.827 0.744
F1 0.776 0.719 0.809 0.751

Source: Arxiv
DAVIDE BACCIU - AID COURSE 50
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Healthcare Applications
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LSTM for clinical timeseries (and risk prediction)

* LSTMs vs logistic regression
in predictive tasks on MIMIC-
1]

* Used a subset of 17 clinical
variables in input

* All required some imputation
Four predictive tasks:
In-hospital mortality
* decompensation
length-of-stay
* Phenotype classification

Variable MIMIC-III table Impute value Modeled as
Capillary refill rate chartevents 0.0 categorical

Diastolic blood pressure chartevents 59.0 continuous
Fraction inspired oxygen chartevents 0.21 continuous
(C);I:l)iés;iz‘gv coma scale eye chartevents 4 spontaneously categorical

gl:;;ﬁ:; coma scale motor chartevents 6 obeys commands categorical

Glascow coma scale total chartevents 15 categorical

gl;;fgg:; coma scale verbal chartevents 5 oriented categorical

Glucose chartevents, labevents 128.0 continuous
Heart Rate chartevents 86 continuous
Height chartevents 170.0 continuous
Mean blood pressure chartevents 77.0 continuous
Oxygen saturation chartevents, labevents 98.0 continuous
Respiratory rate chartevents 19 continuous
Systolic blood pressure chartevents 118.0 continuous
Temperature chartevents 36.6 continuous
Weight chartevents 81.0 continuous
pH chartevents, labevents 7.4 continuous

DAVIDE BACCIU - AID COURSE

Harutyunyan et al, Nature Sci. Data 2019
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In-hospital mortality task

Train  Test

Negative 15480 2862
Positive 2423 374

in-hospital mortality

O o—>
Beginning of 48 hours End of the
the ICU stay ICU stay

DAVIDE BACCIU - AID COURSE

* Predicting in-hospital
mortality based on the
first 48 hours of an ICU

stay
* Binary classification task
* AUC-ROC as metric

Harutyunyan et al, Nature Sci. Data 2019
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Decompensation prediction task

Train Test

Negative 2847401 513525
Positive 61013 9683

24 hours
false true
Beginning of The moment End of the
the ICU stay patient died ICU stay

* Decompensation prediction (as mortality in the next 24hours)
* Multiple binary classification task
® AUC_ROC as metrlc Harutyunyan et al, Nature Sci. Data 2019

DAVIDE BACCIU - AID COURSE 54



Length-of-stay prediction task

Train Test
2925434 525912

remaining length of stay

G,

Beginning of End of the
the ICU stay ICU stay

 Remaining time spent in ICU at each hour of stay

* Multiclass task on 10 classes (one for ICU stays shorter than a day, 7
day-long buckets for each day of the first week, one for stays of over one week
but less than two, and one for stays of over two weeks)

. . Harutyunyan et al, Nature Sci. Data 2019
e Cohen’s linear weighted kappa score
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Phenotype classification
task

Train Test
35621 6281

25 phenotypes

@ >
Beginning of End of the

the ICU stay ICU stay

* Classifying which of 25 acute care
conditions are present in each patient ICU
stay record

* Multilabel classification problem
* Average AUC-ROC

Harutyunyan et al, Nature Sci. Data 2019

Prevalence
Phenotype Type Train | Test | AUC-ROC
Acute and unspecified renal failure acute 0.214 |0.212 | 0.806
Acute cerebrovascular disease acute 0.075 |0.066 | 0.909
Acute myocardial infarction acute 0.103 |0.108 | 0.776
Cardiac dysrhythmias mixed 0321 [0.323 0.687
Chronic kidney disease chronic |0.134 |0.132 | 0.771
Chronic obstructive pulmonary disease chronic |0.131 |0.126 | 0.695
Complications of surgical/medical care acute 0.207 |0.213 | 0.724
Conduction disorders mixed 0.072 | 0.071 0.737
Congestive heart failure; nonhypertensive mixed |0.268 |0.268 | 0.763
Coronary atherosclerosis and related chronic [0.322 |0.331 | 0.797
Diabetes mellitus with complications mixed 0.095 |[0.094 0.872
Diabetes mellitus without complication chronic | 0.193 | 0.192 0.797
Disorders of lipid metabolism chronic |0.291 |[0.289 0.728
Essential hypertension chronic |0.419 |0.423 | 0.683
Fluid and electrolyte disorders acute 0.269 |0.265 | 0.739
Gastrointestinal hemorrhage acute 0.072 [ 0.079 0.751
Hypertension with complications chronic |0.133 | 0.130 | 0.750
Other liver diseases mixed 0.089 |0.089 | 0.778
Other lower respiratory disease acute 0.051 |0.057 | 0.694
Other upper respiratory disease acute 0.040 | 0.043 0.785
Pleurisy; pneumothorax; pulmonary collapse acute 0.087 | 0.091 0.709
Pneumonia acute 0.139 | 0.135 0.809
Respiratory failure; insufficiency; arrest acute 0.181 |[0.177 0.907
Septicemia (except in labor) acute 0.143 | 0.139 0.854
Shock acute 0.078 |0.082 | 0.892
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Some interesting insights (and tricks)

* Working with multi-channel data requires a lot of alignment of
timesteps (subsampling, supersampling and imputation)
* Authors also experimented with channel specific (Bi)LSTMs (one for each of the
17 channels)

* Pair each channel with a binary variable (in time) indicating whether the
specific channel was observed at time step t

* Multitask learning can help: training the LSTM
to solve all four task altogether rather than
independently Jj E f % |

* Deep supervision helps on sequence
prediction tasks N %73
il

* Use target replication for each time step if it
makes sense

* Doesn’t work for length-of-stay and
decompensation

DAVIDE BACCIU - AID COURSE 57



Survival prediction in ICU from MIMIC-IIl data

Chart events Lab events Output events

Cambed e £

AS4NOD div - NIOJv4d 3dIAVd

HOUR 16 0 m nm
15:06 - SBP 134
15:09 - Glucose 60 ﬂ l
¢ 3 A1\ ] !
eSS a a 5:57 - SBP 105 7.3-pH-7.4 96-0,—-100 90-SBP-170

1
15:57 - Urine 1200
15:59 - Glucose 59

15:59 - Glucose_low

0.25 /\/\/ / All patient data
: / / ingested by the
. /’\/ LSTM
«

/

r’,

0.05 "

Discretize continuous variables by quantile

\\

curation”
approach

o
N

Discretization and
quantilization to
reduce the impact
of noise

o
[

Probability of mortality

0

0 2 4 6 8 10 12 14 16
Mark m|SS|ng data Hours since admission

and do not impute Deasy et al, Scientific Report, 2020




Temporal convolutions h, e

on MIMIC-III tasks

Thanks to the dilation
factor can gain a
longer-time insight
Into the history of the
Input signal than
Gated RNNs, without
Incurring in fading
gradients

Bednarsky et al, Scientific Report, 2022

: Sigmoid
(only for
Binary Cls.)
eoo0 i i Linear
i
coo0 Last TCN Layer
Dilation=4
000 . Hidden Layer 2
- Dilation = 2
ooo Hidden Layer 1
Dilation = 1
ooo b= g e Input TCN Layer

[ 1 x 7488 (Input Tensor)
[ 104 features }X[ 24 hours ]x[ 3 (ff\eas.,mask,]

time_since_meas.)
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TCN - Good cost-for-performance trade-off

Model [AUROC |AUPRC | Accuracy |F-1 | Precision | Recall
In-ICU mortality

LR 851+32 |395x7.2 |934x06 |301x76 |[550zxlle [207zx6.1
RF 89.1+22 |459+73 |935x03 |142+65 |8l.8x192 7.8+39
GRU-D 894+23 |508+68 |940x£06 |389zx81 |662x103 [276x6.5
TCN 89.2+25 |50.8+7.0 |943+06 |46.6x7.3 |045x87 3571
In-hospital mortality

LR 836+26 |447x57 |9L0x0.7 |357x60 |614%93 252+53
RF 86.4+23 |493+59 |90.7+04 |145+58 |851%140 79+34
GRU-D §73+23 |521+56 |91.6x0.8 |442+6.0 |654+75 33.4+58
TCN 87.7+x21 |53.0+x6.0 |91.2%x09 |47.2%6.0 |58.7x67 39.5+6.2
Length of stay (LOS > 3)

LR 69.0+2.1 |61.7+28 |655+x18 |535+27 |63.6+28 46.2+29
RF 71420 |655+28 |673x1.7 |553x27 |67.1+£28 47.0+£ 3.0
GRU-D 722120 |65.7x27 |68.1x1.7 |59.4+25 |656x206 54.2+3.0
TCN 71622 |650x27 |67.0£17 |556x27 |66.0x28 48029
Length of stay (LOS>7)

LR 66.8+42 |159+33 |91.7+03 23+28 152 +17.7 1.3+1.6
RF 75.3%3.5 |220%45 |92.1+0.0 0.0+0.0 0.0+0.0 0.0+£0.0
GRU-D 74438 |224x45 |920x04 98153 (449204 55+£32
TCN 735+36 |188+35 |91.8+03 3.7+35 250+21.9 20+19

GRU-D GRU-D
MIMIC-Extract MIMIC-Extract
s ‘_\\\\ //’//- 50 \\\
// \\\ P N

7 \ 7. l \
/ \ / \
f \ [ \
f 9.4 ' [ '

TCN TCN TCN | TCN
NS0 l. 158 757} N200 NSO | 97 04— %19 N200
\ 'l II
‘I'\ / \ 215 /

\ 427 // \\ . /

\\\ B \\ B /

TCN TCN
N100 N100

Bednarsky et al, Scientific Report, 2022
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Working with Genomic Sequences

Sequenced
genetic material

QDIO|O | >
oclo|lo -

Ol= a2 0Oy
00 0O O

e -2 E-2K-2 §)

Ol
o

110

-
- o

0|0

one-hot neural layers for
encoding sequences

DAVIDE BACCIU - AID COURSE

=>

prediction
layer

61



AS4NOD div - NIOJv4d 3dIAVd

The approach

can be
extended also
to protein

Source: D. Harding-Larsen et al, Biotechnology Advances, 2024
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One-Hot Physicochemical Evolutionary Sequence-based

Encoding : Properties ; Matrix + Structural Properties
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Although the vocabulary grows and many different representations
can be thought of (including graph-based ones)
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DeepBind

Predicting scores of whether particular

proteins will bind to the sequence or not Convolutional neural

network for sequences

Current batch Motif sca Features Qs 75
of inputs & O
P (/{9 GI:S‘
CTAAGCACCGTCT I I ﬁ ! i

TTAGGCGGCACCAGTACT
TAGCACCTCTATTGCACCC
CTCGOGCCCCTOCAT

TACAAATGAGCACAA X
Motif 2 .
SeAstoie _&_ Thresholds Weights

Current model
parameters

Parameter
updates

Alipanahi et al, Nature 2015
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HNRNPA1

DeepBind — Intepreting filters
T°°h"°'°gyt¢ PRDM1 EBF1 NR4A2  ZC3H10
| kbl s | St Al

DeepBind .

motifs

*ChIP-seq
unrelated
motif(s)
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artifact .

s

G OAANCT
b AT
‘AAQEIQAAAGI?

gAAAGrGAAAQI
sl |
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i (..
6

ok,
AG‘, Vig

260
T

Alipanahi et al, Nature 2015




Mutation would
increase score

DeepBind — Mutations effect

SP1 loss in LDL-R promoter

C>D would decrease

WT ACTmT binding e
ccAcTGcAA GCTAGAAACCTCACA
T )

4 N
Mutant: C>G -chr19:11,200,089 (c.~136)
CCACTGCAAACTCCTCCCCCTGCTAGAAACCTCACA
;é G>C would increase

=y binding

have no effect

Mutation would
decrease score

GATAT1 gain in a-globin cluster

WT chr16:209,709 - s
CCAAGCCTGTGCTGTTATTTTCTAATAATGTGGGTG

>A
>C
>T

gg}\inécpé;iTCCETTATTTTC IAATGTQGGT@

>T . B

Predict the effect of sequence mutation through
interpretability techniques

Alipanahi et al, Nature 2015
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Output:
variant functionality

prediction Functional-variant prediction

DeepSea o

log(allele T/allele A)
Output:

predicted chromatin 3.0
. . effect igE I
Predict chromatin effects Multitask orediction of  °F in
. Ulti-taSkK predadiction o
of (non-coding) sequence 919 chromatin profites, ~~__ == T

alte rations With Single- for eaCh auele Variant) DHS TF binding Histone marks

nucleotide weaceaise. 1T OQQOOOO 00O
pQI_imorphismS (SNPS) profile e Q Q@0 0@000@0

Predict t
Training data: Train { Q , i g g E oA

ENCODE, Deep convolutional network S - S - — —

[o=——="4 — « - S— T—
: : S
Roadmap Epigenomics | <« (DeepSEA) R RN R RS
. . : JRQCOCI0CROCILA0nd
Convolutional (8x1) and Olrome profiiee - 2806505003003050000
pooling (4x1) layers
Input t
Input:
genomic sequences . . .GCGTGGGTACGCTTATTCGTCAAGCTTTAGCGT. . .
(1,000 bp) . . .GCGTGGGTACGCTTAATCGTCAAGCTTTAGCGT. . .
Zhou and Troyanskaya, Nature 2015 Variant position
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Bonus Track
What if we don’t

@ train this?
E fw
é ht — tanh(Whht_l + Winxt)

e

It means that these are initialized
but not trained!
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You get Reservoir Computing

trainable<

fixed

~ Simple linear layer
/" readout — trainable in closed from
(remember least-mean

I square!)

o ~ High dimensional but
.W - — sparsely connected

reservoir .Q \ recurrent layer
e \\
\. ﬁ J It works under certain

conditions concerning the
eigenvalues of the recurrent

weight matrix (randomly
“" initialized and not learned)
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Reservoir Computing — What do | gain?

* Good predictive performance on highly noisy input signals and
short-term memory tasks

* Computational and memory efficiency

* Trains in seconds (Vs hours/days)

* Even on embedded devices (computation, memory and energy
constraints)

* Consider physiological monitoring applications

* Comes also in deep learning fashion (and with some adaptivity
reintroduced in the recurrent layer)

* Can be implemented in hardware (heuromorphic)
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A Reservoir Computing Application

e Automatic assessment of balance skills

* Predict the outcome of the Berg Balance Scale (BBS) clinical test from time-series of
pressure sensors (in 10 secs Vs 10 minutes)

----- s Line o
.

ngervention

[+ EE = = W 2 B

[+ +]

[+]
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Wrap-up
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Take Home Lessons

* Recurrent neural networks create a dynamic memory of past inputs which
influences neural activation besides the current input
* Goodinductive bias for sequential data
* Amounts to weight sharing in time

* Learning long-term dependencies can be difficult due to gradient vanish/explosion
so you need smarter solutions than vanilla RNNs
* Gated RNNs: control memory reading and writing by gates

* Temporal convolution networks: use dilation factor to broaden the scope of how much past a
neuron can see

* Reservoir computing: use randomization in place of learning when you have computational
constraints (and the right task)

* Dealing with physiological timeseries typically requires preprocessing carefully
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Next Lectures

* Laboratory tutorial (Tuesday)
Next 3 lectures:

* Deep learning fundamentals
* Sequence-to-sequence learning and encoder-decoder architectures

* Neural attention
* Transformers and vision transformers

* Natural language and text data processing
* Learning dense embeddings
* Natural language processing pipeline and tasks
* Language modelling

* Application verticals
* Language models for healthcare
* Dealing with language in HER
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