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Lecture Outline

* Sequence-to-sequence learning
e Encoder-decoder architectures

e Neural attention
e Cross-attention
e Self-attention

e Transformers and vision transformers
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Gated RNN Refresher
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Graphical Notation for Compositionality
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Use a simplified (and overloaded)
graphical notation to represent
GRNN layers and stacks of GRNN
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Dealing with Compound Data

* GRNN are excellent to handle size/topology varying data in
Input
* How ?
* Sequence-to-sequence
e Structured data is compound information

» Efficient processing needs the of such
information

e Attention mechanism
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Sequence Transduction

* A new class of learning problems over sequences

* |Input and output are both sequences
* They may have different lengths

* They are not-alighed
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Seguence-to-Sequence Learning

Solution is based on an encoder-decoder scheme

Generates the
il Bag output sequence

starting from the
compressed

Compresses the h Decoder Input

input sequence

into a fixed size

representation —> Y
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Early Encoder-Decoder Architectures
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Recurrent Sequence-to-Sequence Learning

Solution is based on RNNs
both in input and output

Generates the output sequence
starting from the input RNN state
using autoregressive modelling

Z
Z
Z

Compresses the input sequence into a
the RNN state
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Encoder

Produce a compressed and fixed length representation ¢ of
all the input sequence x4, ..., X,

-------------------------- >' Originally ¢ = h,,

C
Wh[_] h Activations of an
] @ D \ LSTM/GRU layer of K
-
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Y1 Y2 Y3 Ym
A LSTM/GRU layer of K

cells seeded by the
context vector ¢

c is contextual information kept throughout
output generation
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Autoregressive Decoding The output at the previous

step is used as input to the
Yino Y2 V3o Ym current step (autoregressive
generation)
| 1 s = f(¢,Si—1,Yi-1)
Wh Wh Wh \

‘\\\ IWlTl ‘\\ IWl l'. IWL
"Y1 Y2 Vm-1

At training time we use teacher forcing: current
input comes from the ground truth rather than
from the previous output (which can be wrong)
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Sequence-To-Sequence Learning

Encoder-Decoder can share
parameters (but it is uncommon)

h, :@ dhd e —lh | ' Encoder-Decoder typically
n .
L‘_J C trained end-to-end (but they can

be pretrained independently)
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Attention
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A Motivating Example

The cat is on the table

Il gatto e sul tavolo
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On the Need of Paying Attention

Encoder-Decoder scheme assumes the hidden activation of the last input
element summarizes sufficient information to generate the output
- Bias toward most recent past

Other parts of the input sequence might be very informative for the task
- Possibly elements appearing very far from sequence end
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On the Need of Paying Attention

o Attention mechanisms select which part of the sequence to focus
on to obtain a good ¢
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Attention Mechanisms — Blackbox View
Aggregated seed tC

Attention Module

Context info
S

hy h, hy .. h, Encodings
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What'’s inside of the box?
The Revenge of the Gates!
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Opening the Box — Cross Attention

C
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Opening the Box — Relevance

Neural layer fusing each encoding with C
current context s
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e; = a(s, h;)
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Opening the Box — Softmax

A differentiable max selector C o exp(e;)
operator 2. exp(e;)

SOFTMAX
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Opening the Box — Voting

Aggregated seed by (soft) attention ¢t C
voting
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Attention - Equations

* Relevance: e; = a(s, h;)
exp(e;)
Zj exp(ej)

* Aggregation: c = )}; a;h;

* Normalization: a; =
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Attention module
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Attention in Seg2Seq

Context is past output state

Seed considers (subset of) the
Input states
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Learning to Translate with Attention
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Bahdanau et al, Show, Neural machine translation by jointly learning to align and translate, ICLR 2015
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Transformers
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Limitations of the Recurrent Approach

* Sequence-to-sequence RNNs opened the way “difficult” tasks
such as machine translation and question answering

* They also popularized the encoder-decoder architecture which as
been used in multiple concretizations: e.g., image-to-sequence,
sequence-to-image, image-to-imagesequence, ...

* Still RNNs retain the issues seen previously

* Difficulty in learning long-range dependencies
* Gradientissues

We need a different approach, that does not use recurrence to
capture relationships between the elements of the sequence
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Self Attention — The Intuition

* Previously - Hope that the input at position i remains in memory
up to position j in order to learn the relationship between x; and x;

* Now - Compute explicitly the relationship between x; and x; for
all choices of i and |

* To achieve this, we will need to transform each element x; of the
Input sequence into three vectors

* Key

* Query
* Value
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Self Attention — K,V,Q Generation

input#1.~~ input#2

Figure credit to this article
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https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Self Attention — Compute Attention Score

Self-attention

VVVVVVVVVVVVVVV

key key key
Lofe]e]  [rfz]s] [4[efo]  [2]s]o] [2[s]1]  [2]e]s]

iiiiiii

input #2

iiiiiii
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Self Attention — Produce Output

Self-attention

query
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multiplication mmm - multiplication m - multiplication nmn P
score score score
— [ — [] — [
key value key value key value
[TeTs]  [efele]  [eIele]  [2]e]7]
input #1 input #2 input #3
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Self Attention

e N Self-attention\\
Each element of an :
input sequence x; e =
projects into 3 vectors: : Atnton :
query, key and value g v ermex i
Input, Keys, Output,
X K=38,1" + ;X V - Softmax [KI'Q]

N

Scaled (multiplicative) self-attention

D

Q;- K"
l Values,
E softmax; | —— | V; V=17t 2.X )

| 7
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Transformers

e Encoder-decoder architecture

* First pure attention-based
model

* Self-attention is place of
recurrence

DAVIDE BACCIU

Attention Is All You Need,
https://arxiv.org/pdf/1706.03762.pdf
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Transformer Architecture

Feed-forward network:

after taking information from
other tokens, take a moment to
think and process this information \

T

Encoder self-attention: —__

tokens look at each other

queries, keys, values
are computed from
encoder states

Output
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Feed-forward network:
after taking information from
other tokens, take a moment to
think and process this information

!

Decoder-encoder attention:

,/ target token looks at the source

queries - from decoder states; keys
and values from encoder states

!

Decoder self-attention (masked):
tokens look at the previous tokens

queries, keys, values are computed
from decoder states
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Self Attention — MultiHead
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Strubell et al, Linguistically-Informed Self-Attention for Semantic Role Labeling, EMNLP 2018
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Attention Is All You Need,
https://arxiv.org/pdf/1706.03762.pdf

(Absolute) Positional Encoding

* Self-attention is order- Their computation uses sines and

iIndependent . .
.p cosines functions, for reasons we do

* Butin sequences we need ot cover here
ordering information

* Positional embeddings are
vectors associating unique
values to each position in the
sequence

* They are summed to the
original embedding: input
embedding + positional
embedding

embedding dimensionsi € {1, d}

Positions p
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Encoder Components

* Input embedding — Transforms discrete input tokens (e.g. words) into
dense vectorial representations

* Positional encoding — Adds position information to the embeddings

* Multi-head self-attention — Updates the input embedding adding
Information from the context in which a specific input occurs within the

sequence

* Add & Norm - Residual connection (Add) plus layer normalization to
prevents gradient issues

* FeedforwardNN/MLP - The bit on nonlinearity we always need (same
network applied to each input element, usually)
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Decoder Components

Same as for the encoder, plus

* Masked Multi-head self attention - Like the standard one but we
are not allowed to look on the right of the current element
(because it was not generated yet)

 Multi-head cross attention — Adds the context from the encoder,
just like in RNN sequence-to-sequence

* Output layer - Predict the current output item (typically a softmax
for textual sequences)

DAVIDE BACCIU - AID COURSE 39



The Vision Transformer (ViT)

Vision Transformer (ViT) Transformer Encoder
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Wrap-up
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Take Home Lessons

* Attention as a powerful tool to obtain context dependent neural

representations (embeddings) of elements composing my data
* Self-attention: relationship between one element of the input and all the input
elements (including itself)
* Cross-attention: relationship between each element of the input and an external
context
* Encoder-Decoder scheme
* Ageneral architecture to compose heterogeneous models and data
* Decoding allows sampling complex predictions from an encoding conditioned
distribution
* Transformers as low-inductive bias architectures
* Need huge amounts of data to generalize
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Next Lectures

* The (silently) missing bit: how do we deal with textual sequences, from
natural or biological languages?

* Representing textual information
* Word embeddings
* Skip-grams
* Tackling textual modelling tasks

* Masked language modelling
* Relevant language model architectures
* Pretraining and foundation models

* Language modelling in healthcare
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