
Adversarial Examples and Data Poisoning

Antonio Carta

Adversarial Robustness and Data Poisoning

▶ Instructor: Antonio Carta antonio.carta@unipi.it
▶ Course: Continual Learning

mailto:antonio.carta@unipi.it

Introduction to Robustness
Outline

▶ Intro: security threats and robustness
▶ Adversarial Robustness: test-time attacks
▶ Data Poisoning: training-time attacks

Goal of Today
▶ Goal: Understand security vulnerabilities and robustness of ML models

Several attacks are possible:
▶ Force prediction errors (focus of today)
▶ Steal the private model given a public API that provides model’s outputs
▶ Steal private data given the model

Sensitive Domains
▶ in finance there are natural adversarial relationships in markets
▶ we want robustness certifications in high-risk domains (health, autonomous

driving). Often, there are strict legal requirements on certifications and safety
standards.

▶ data privacy may be a concern or even a legal requirement
▶ ML systems are gaining access to ever more sensitive domains (e.g. agentic AI and

AI coding assistants)

Robustness vs Domain Generalization
▶ Domain Generalization: performs well on unseen but similar data

▶ Domain adaptation without the “adaptation”
▶ Robustness: performs well under local (adversarial) perturbations

▶ are models robust to small perturbations?
▶ can we craft adversarial perturbations that trick the model?
▶ can we make the model more robust against random noise or adversaries?

DNNs Are Not Robust To Noise

Figure 1: An adversarial example. Source: Goodfellow, I.J., Shlens, J., Szegedy, C., 2015.
Explaining and Harnessing Adversarial Examples. https://doi.org/10.48550/arXiv.1412.6572

Real-World Attacks - Camera Stickers

Figure 2: Li, Juncheng, Frank Schmidt, and Zico Kolter. “Adversarial camera stickers: A
physical camera-based attack on deep learning systems.” International conference on machine
learning. PMLR, 2019.

Threats
▶ Threats:

▶ Evasion attack: at test-time, craft an adversarial examples that tricks the model
▶ panda -> gibbon misclassification
▶ sticker on a traffic sign designed to break autonomous driving vehicles

▶ Poisoning attack: at training-time, inject poisoned samples that will create errors
in the trained model

▶ need to avoid detection
▶ can create targeted errors, or backdoor features

Adversarial Attacks
Untargeted Adversarial Attack
𝛿∗ = max

𝛿∈Δ
ℓ (ℎ𝜃(𝑥 + 𝛿), 𝑦) , 𝑠.𝑡.‖𝛿‖ < 𝜖

An adversarial perturbation (𝛿∗) is a small (constrained) amount of noise that results
in an example 𝑥 of class 𝑦 to be misclassified.
This is an untargeted attack since we do not specify any target for the
misclassification.

Admissible Region
𝛿∗ = max

𝛿∈Δ
ℓ (ℎ𝜃(𝑥 + 𝛿), 𝑦) , 𝑠.𝑡.‖𝛿‖ < 𝜖

The constraint 𝛿 ∈ Δ ensures that the noise is “small enough” and it is an admissible
image. Examples:

▶ Each pixel must be in [0, 255] (or [0, 1], depending on the image representation)
▶ norm constraints on the noise (l2 or ∞): ‖𝛿‖2

2 < 𝜖
▶ often the ∞ norm is used because it’s a natural choice and easy to understand:

|x|∞ ∶= max𝑖 |𝑥𝑖| < 𝜖
▶ basically, each pixel cannot be modified by more than 𝜖

▶ alternative, such as more perceptual norms, are possible

Targeted Adversarial Attack
Untargeted attack:
𝛿∗ = max

𝛿∈Δ
ℓ (ℎ𝜃(𝑥 + 𝛿), 𝑦) , 𝑠.𝑡.‖𝛿‖ < 𝜖

In a targeted attack we have a desired class 𝑦𝑡𝑎𝑟𝑔𝑒𝑡.
𝛿∗ = max

𝛿∈Δ
(ℓ (ℎ𝜃(𝑥 + 𝛿), 𝑦) − ℓ (ℎ𝜃(𝑥 + 𝛿), 𝑦target))

FGSM Attack
Fast Gradient Sign Method (FGSM):
x̃ = x + �, where � = 𝜖 sign(∇𝑥ℒ(𝜃, x, 𝑦))

▶ NOTE: the gradient is w.r.t. the input x, not the parameters!
▶ intuition: measure how much each pixel contributes to the loss, then move in a

direction that increases it
▶ efficient one-step optimization and easy to implement
▶ works with any differentiable model
▶ white-box attack: we assume we have access to the weights of the model!

FGSM in PyTorch
def fgsm_attack(image, label, epsilon):

ensure that we can compute grads for input
image.requires_grad = True
output = model(image)
loss = criterion(output, label)
model.zero_grad()
loss.backward()
perturbation = epsilon * image.grad.sign()
return image + perturbation

FGSM - Linear Model
▶ consider a linear model w⊤x (e.g. logits of logistic regression)
▶ given an adversarial example x̃ = x + 𝜂 we have

▶ w⊤x̃ = w⊤x + w⊤𝜂
▶ we see that an adversarial perturbation adds w⊤𝜂

▶ we can maximize the output by setting 𝜂 = sign(w)
▶ rescale for a desired norm

Adversarial Attacks and Linearity
▶ why does it work? in high dimensional spaces, the change to each input

dimension is small and hard to detect, but the change in the output may be large
▶ HYPOTHESIS: linearity and high dimensionality of the input results in easy

adversarial attacks
▶ The same intuition work for DNNs, even though they are not linear (DNNs with

ReLU activations are locally linear)

Code Example
Numpy implementation in the notebook

PGD
A simple generalization of FGSM is the Projected Gradient Descent (PGD):
𝑥𝑡+1 = Π𝑥+𝒮 (𝑥𝑡 + 𝛼 sgn (∇𝑥𝐿(𝜃, 𝑥, 𝑦)))

▶ iterative version of FGSM
▶ maximizes the loss via an iterative gradient ascent (notice the positive sign of the

gradient)
▶ Π𝑥+𝒮 projects the result in the feasible region (e.g. a local ball around the original

input 𝑥)

PGD in PyTorch
def pgd_attack(model, images, labels, eps=0.3, alpha=0.01, iters=40):

images = images.clone().detach().to(device)
labels = labels.to(device)
ori_images = images.clone().detach()

for i in range(iters): # iterate the attack
images.requires_grad = True # needed to compute grad wrt images
outputs = model(images)
loss = criterion(outputs, labels)
model.zero_grad()
loss.backward()
update the adversarial images
adv_images = images + alpha * images.grad.sign()
PROJECTION STEP:
clip the perturbation to be within the epsilon ball
eta = torch.clamp(adv_images - ori_images, min=-eps, max=eps)
clip the pixels to be within [0, 1]
images = torch.clamp(ori_images + eta, min=0, max=1).detach()

return images

Adversarial Example Transferability
Do adversarial examples transfer between different models?

▶ if models learn the same decision boundary (same classification function) they
have the same adversarial examples

▶ linear models trained on similar data have similar decision boundaries
▶ In theory, we do not expect DNN to behave like linear models due to nonlinearity.

In practice, many adversarial examples transfer.
▶ Implication: Black-box attacks are feasible. Even ensemble defenses may be

vulnerable.

Adversarial Defenses
▶ Adversarial Training: augment training set with adversarial examples
▶ Gradient Masking: obfuscates gradients by using non-differentiable operations

(not robust)
▶ Preprocessing: JPEG compression, denoising, feature squeezing
▶ Certification: Train models that have verifiable robustness guarantees

Robust Optimization
min𝜃 𝜌(𝜃), where 𝜌(𝜃) = 𝔼(𝑥,𝑦)∼𝒟 [max𝛿∈𝒮 𝐿(𝜃, 𝑥 + 𝛿, 𝑦)]

▶ inner optimization: find optimal attack by maximizing loss
▶ outer optimization: find parameters robust to attacks
▶ this formulation comes from the robust optimization literature

Adversarial Training
min𝜃 𝜌(𝜃), where 𝜌(𝜃) = 𝔼(𝑥,𝑦)∼𝒟 [max𝛿∈𝒮 𝐿(𝜃, 𝑥 + 𝛿, 𝑦)]
Adversarial Training (a.k.a. robust optimization):

▶ at each iteration
▶ create attack according to an adversary (e.g. PGD/FGSM)

▶ this is the inner optimization step
▶ optimize loss on perturbed samples
▶ outer optimization step

Adversarial Training (2)
Original formulation:
min𝜃 𝜌(𝜃), where 𝜌(𝜃) = 𝔼(𝑥,𝑦)∼𝒟 [max𝛿∈𝒮 𝐿(𝜃, 𝑥 + 𝛿, 𝑦)]
Outer loop (defense):
min𝜃 𝔼(𝑥,𝑦)∼𝒟 [𝐿(𝜃, 𝛿∗)]
Inner loop (attack):
𝐿(𝜃, 𝛿∗) = max𝛿∈𝒮 𝐿(𝜃, 𝑥 + 𝛿, 𝑦)

Adversarial Training in PyTorch
for epoch in range(100):

for images, labels in train_loader:
images, labels = images.to(device), labels.to(device)
Generate adversarial examples with PGD attack
we could use a different adversary here
adv_images = pgd_attack(model, images, labels,

eps=0.3, alpha=0.01, iters=7)

Train on adversarial examples
we could also train on clean+adversarial samples
outputs = model(adv_images)
loss = criterion(outputs, labels)

optimizer.zero_grad()
loss.backward()
optimizer.step()

Adversarial Training and Model Capacity
INTUITION: adversarially robust models require a “more complex” decision boundary.
Therefore, higher capacity nonlinear models may be required for robustness.

Certification - Lipschitz constraints
We can model robustness as a Lipschitz constraint: ‖𝑓 (𝑥1) − 𝑓 (𝑥2)‖ ≤ 𝐾 ‖𝑥1 − 𝑥2‖

▶ global property of the function: ensures robustness for any input
▶ if we can enforce a Lipschitz constant 𝐾, we are guaranteed a certain amount of

robustness
▶ if we can compute 𝐾 given the weights of the model, the robustness property can

also be independently verified

Example - Lipschitz Constant

Figure 3: source: wikimedia

Can we control the Lipschitz constant?
▶ for a generic DNN, it’s not possible
▶ some methods provide quantitative estimates for lower and upper bounds for

perturbated outputs
▶ example: Ko, C. et al. POPQORN: “Quantifying robustness of recurrent neural

networks”. ICML 2019
▶ some methods handcraft architectures where we can fix the Lipschitz constant

(e.g. a linear network with orthogonal matrices)

Certification - Abstract Interpretation

Figure 4: https://safeai.ethz.ch/

Robustness vs Generalization
▶ Trade-off between robustness and accuracy
▶ Adversarial robustness � better generalization

Example: a feature can be non-robust (sensitive to small perturbations) but strongly
correlated with the label, while robust feature may be less predictive

Conclusions on Adversarial Robustness
▶ DNN are not robust to noise
▶ it is easy to craft small adversarial perturbations that fools a trained model
▶ several methods exist to improve robustness or even certify a trained model

Data Poisoning

Data Poisoning Attacks
▶ Poisoning vs. Backdoor

▶ Poisoning: modify training data to corrupt learning
▶ Backdoor: insert trigger to hijack prediction

▶ Types:
▶ Clean-label attacks (no label manipulation)
▶ Dirty-label attacks (incorrect label + perturbation)

Poisoning Attacks

Figure 5: Cinà, A.E., et al., 2023. Wild Patterns Reloaded: A Survey of Machine Learning
Security against Training Data Poisoning. ACM Comput. Surv. 55, 294:1-294:39.
https://doi.org/10.1145/3585385

Threat Model
▶ we assume that the attacker can modify part of the training data
▶ examples: continual learning, active learning, federated learning, or any setting

where we continuously collect data from users
▶ the attacker doesn’t control all the data and it doesn’t control the training

algorithm

Poisoning Workflow

Figure 6: Cinà, A.E., et al., 2023. Wild Patterns Reloaded: A Survey of Machine Learning
Security against Training Data Poisoning. ACM Comput. Surv. 55, 294:1-294:39.
https://doi.org/10.1145/3585385

Poisoning Attacks
optimization-based

▶ generally expensive methods
▶ bilevel optimization
▶ feature-collision: manipulate interference in chosen samples

backdoor attacks
▶ easier to apply but more detectable
▶ patch triggers (e.g. sticker)
▶ functional triggers (e.g. warping)
▶ semantic triggers (e.g., add sunglasses to face)

Some Examples

Figure 7: Cinà, A.E., et al., 2023. Wild Patterns Reloaded: A Survey of Machine Learning
Security against Training Data Poisoning. ACM Comput. Surv. 55, 294:1-294:39.
https://doi.org/10.1145/3585385

Defenses
▶ training data sanitization: remove potentially-harmful samples
▶ robust training: limit the influence of poisoned samples
▶ model inspection: given model, identify if it’s compromised
▶ model sanitization: post-training removal of potential backdoors or poisoning
▶ trigger reconstruction: recover the trigger embedded in a backdoored network
▶ test data sanitization: filter potentially-triggered samples presented at test time.

Example - Backdoor Attack with Patch
Training: add poisoned samples to training data. Each poisoned sample is an original
image with the added backboor and the targeted class.
Test: add backdoor to images to induce misclassification.
Example - Poisoned sample with white patch
trigger = torch.ones((3, 5, 5)) # white square
img[:, -5:, -5:] = trigger
label = torch.tensor([target_class])

Poisoning with Feature Collision

Feature Collision - Poison Frogs
▶ Feature Collision IDEA: if I want to misclassify a target example, I need to

ensure that its (latent) representation is close to the representations of the desired
class

▶ I want to enforce this property by crafting some poisoned samples
▶ I can do this because I can create samples that are close in the latent space (= same

predicted class) even though they are far in the input space (= different true class)
▶ We will see the attack based on “Shafahi, Ali, et al. ”Poison frogs! targeted

clean-label poisoning attacks on neural networks.” NIPS 2018”

Feature Collision - Poison Frogs
given an original (base) input b and a target sample t, find poisoned sample p such
that
p = argmin

x
‖𝑓(x) − 𝑓(t)‖2

2 + 𝛽‖x − b‖2
2

p is close to b in the input space but close to t in the latent space.
▶ ‖𝑓(x) − 𝑓(t)‖2

2 : we want the poisoned and target samples to be close in the
latent space

▶ 𝛽‖x − b‖2
2 : we want the poisoned and original samples to be close in the input

space

Feature Collision - Learning
The learning problem is solved via proximal gradient descent

Forward step: 𝑥𝑖 = 𝑥𝑖−1 − 𝜆∇𝑥𝐿𝑝 (𝑥𝑖−1)
Backward step: 𝑥𝑖 = (𝑥𝑖 + 𝜆𝛽𝑏) /(1 + 𝛽𝜆)

▶ the forward is the standard sgd step with the gradient taken on the input 𝑥
▶ the backward is a proximal update that keeps the image close to the base input 𝑏
▶ 𝛽 is the hyperparameter controlling the regularization strength

Feature Collision - Pseudocode

Algorithm 1 Poisoning Example Generation
Input: target instance 𝑡, base instance 𝑏, learning rate 𝜆
Initialize x ∶ 𝑥0 ← 𝑏
Define: 𝐿𝑝(𝑥) = ‖𝑓(x) − 𝑓(t)‖2

for 𝑖 = 1 to maxIters do
Forward step: 𝑥𝑖 = 𝑥𝑖−1 − 𝜆∇𝑥𝐿𝑝 (𝑥𝑖−1)
Backward step: 𝑥𝑖 = (𝑥𝑖 + 𝜆𝛽𝑏) /(1 + 𝛽𝜆)
end for

Example

Figure 8: Shafahi, Ali, et al. “Poison frogs! targeted clean-label poisoning attacks on neural
networks.” NIPS (2018).

poisoned samples are indistinguishable from the clean base image

Transfer vs end-to-end
▶ Transfer learning (i.e. linear probing): given a pretrained model, we learn only

the final classifier
▶ the latent space is fixed
▶ assumes few-shot setting where training samples are less than the number of

parameters. Easier to overfit and easier to poison because even a single sample has a
large “influence” on the resulting model.

▶ End-to-end learning: train the entire model
▶ the attack is more difficult because the feature extractor is also adapted

Example - transfer learning (linear probing)
▶ only a classifier is trained on few images (#images < #trainable-parameters)
▶ one poisoned sample is sufficient to achieve 100% success rate (due to overfitting)
▶ target samples are misclassified with high confidence by the poisoned model.

Figure 9: Shafahi, Ali, et al. “Poison frogs! targeted clean-label poisoning attacks on neural
networks.” NIPS (2018).

Angular Deviation

Figure 10: Shafahi, Ali, et al. “Poison frogs! targeted clean-label poisoning attacks on neural
networks.” NIPS (2018).

The effect of poisoning can be measured by the deviation of the decision boundary.
Notice the higher effect for transfer learning.

Feature Space in end-to-end-training

Figure 11: Shafahi, Ali, et al. “Poison frogs! targeted clean-label poisoning attacks on neural
networks.” NIPS (2018).

Conclusions - Data Poisoning
▶ Feature collision is a relatively simple but very effective attack
▶ in the transfer setting, we can poison the model with few samples due to a fixed

latent space and an overfitting regime
▶ heuristics are also very effective (e.g. watermarking, patches)
▶ Alternative attacks exists, such as bilevel optimization formulations. However,

they are very expensive and possibly ineffective because the exact formulation
requires to backpropagate through the whole optimization trajectory

Summary and Takeaways
▶ ML models are vulnerable to small, well-crafted perturbations
▶ Adversarial and poisoning attacks exploit this vulnerability to enforce mistakes
▶ Defenses are evolving but no silver bullet exists
▶ Large pretrained models help (as usual) but they don’t fix the problem completely

Additional References
check the slides footnotes and:

▶ Goodfellow et al. (2015): Explaining and Harnessing Adversarial Examples
▶ Madry et al. (2018): Towards Deep Learning Models Resistant to Adversarial

Attacks
▶ Koh & Liang (2017): Understanding Black-box Predictions via Influence Functions
▶ https://adversarial-ml-tutorial.org/

