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Lecture Outline

Deep learning for graphs
• Motivation
• Graph formalism 
• Learning tasks: Graph prediction, induction, transduction and 

generation
• Fundamental components of a graph neural network
• Applications to healthcare and biology
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Graph Fundamentals
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Why Graphs?
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Context is 
fundamental for the 
correct 
interpretation of 
information

Why Graphs?
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Graph Structured Data

Vectorial node label
𝑥𝑣

Cycle

Oriented edge/arc 𝑒𝑣𝑢

possibly with label 𝑙𝑣𝑢

𝑣

𝑢Node/vertex 𝑢

Undirected edge Structures are useful 
because allow to represent 
relationships in the data
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Deep Learning with graphs

Hierarchical
representation 
learning allows to 
efficiently diffuse 
information 
through graph 
structure

Node 
representation 
depends on its 
context (shorter 
first-longer later)
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Why graphs in digital health?
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Source: Goh et al. PNAS 2007
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Why graphs in digital health?
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Molecular graph

3D Structure
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Why graphs in digital health?
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Source: Richiardi et al, Science 2015
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Predictive Tasks

Network data
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Node predictions
Predict a type or a continuous 
value for a given node
Link prediction
Predict whether two nodes are 
linked
Community/module detection
Identify clusters of linked nodes 
that are alike
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Node classification example
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Assign a function to 

proteins in the 
interactome

Source: Ganapathiraju et al. Nature 2016
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Link prediction example
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Predict which diseases 

can be treated by a 
new molecule

Source: Zitnik et al. 2020
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Community prediction example
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Identify disease 

proteins in the 
interactome

Source: Menche et al. Science, 2015
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Predictive Tasks

Structure classification/regression
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A dataset of i.i.d graphs

Graph classification
Assign whole structure to a 
specific class 

Graph regression
Regress a structure to a value 
(or a vector of values)
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Deep graph networks
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A Graph View on (Image) Convolutions

Visual convolutions are 
graph convolutions on a 
regular grid

Plus some key assumptions which make it 
difficult to directly apply them to graphs 
❖ Regular neighborhood
❖ Existence of a total node ordering
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Node Neighborhoods 

Example of 4-neighborhoods

…

convolutions

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5

Neighborhoods depend on node ordering: 
how can I get coherent node ordering 
across multiple graphs?
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Deep Graph Networks - The intuition

❖Encode vertices and the graph itself into a vector space by means of 
an adaptive (learnable) mapping

❖Use the learned encodings to solve predictive, explorative or 
generative tasks
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Neighborhood Aggregation & Layering

DAVIDE BACCIU - ISPR COURSE
DAVIDE BACCIU - AID COURSE 20



What is inside of the Box?

𝒉𝑖
𝑙−1

𝒉𝑗
𝑙−1

𝒉𝑘
𝑙−1

𝒉𝑣
𝑙

A learning model of course (e.g. a neural network) including an 
aggregation function to handle size-varying neighborhoods

A simple model

𝒉𝑣
l = 𝜎 𝑾𝑙𝐴𝐺𝐺 𝒉𝑖

𝑙−1: 𝑖 ∈ 𝑁 𝑣 , ෢𝑾𝑙𝒉𝑣
𝑙−1
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General Graph Convolutional Layer

state perm. invariant 
function

MLP/Linear MLP/Linear

Variants/extensions:

• Edge-aware convolution
• Attention over neighbors
• Laplacian-normalized
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A Message-Passing view on Deep Graph 
Networks
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Graph Isomorphism Network
Xu et al, ICLR 2019

❖ A study of GNN expressivity
❖Choice of aggregation functions influences what structures can be 

recognized
❖ Propose a simple aggregation and concatenation model
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Graph Attention

1

Learning to weight 
contribution of other 
nodes when 
aggregating to form the 
node embedding Velickovic et al, ICLR 2018

DAVIDE BACCIU - UNIVERSITY OF PISA 25
DAVIDE BACCIU - AID COURSE 25



Global Graph Attention

A direct generalization of transformer 
attention from sequence tokens to 
nodes

X1

X3 X2

X4

Dwivedi & 
Bresson, AAAI-
WS 2021

Img adapted from Medium

positional 
encodings 
need to be 
used to 
reintroduce 
structural bias

DAVIDE BACCIU - AID COURSE 26

https://medium.com/@reutdayan1/graph-transformer-2ede65db4658


Deep Graph Networks - The Complete Picture
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What About Pooling?

❖ Standard aggregation operates of predefined node subsets 
❖ Ignore community/hierarchical structure in the graph
❖Need graph coarsening (pooling) operators

❖ Differentiable
❖Graph theoretical
❖Graph signature
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Rex Ying et al, NIPS 2018

Bacciu et al, AAAI 2023
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Training

Backpropagate
from the (graph 
or node level) 
error computed 
from the top 
layer 
embeddings to 
the early layers
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graph

node
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Beyond Graph Prediction
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Transductive tasks

Learn to generate a 
structured prediction

Given a 
vectorial
and/or 
structured 
input

𝒚

𝒙 𝒚~𝑃(𝒚|𝒙)
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Graph Generation

Adjacency-based

Structure-based

Generate a prediction that is itself a graph

DAVIDE BACCIU - UNIVERSITY OF PISA 32
DAVIDE BACCIU - AID COURSE 32



Graph Autoencoder

GraphVAE generates 
adjacency matrix up to k 
vertices along with the 
relevant edge/node features 
(for molecular data)

Simonovsky, Komodakis, ICLR-WS 2018
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Argmax a.k.a. sampling ⟹ non-
differentiable
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Language-Based Graph Generation

Generate a 
graph node-by-
node and edge-
by-edge through 
a language 
model

Bacciu et al, 
Neurocomputing 

2020Start token

Sample 
output dist.

Initialize 2nd net 
with state of 1st
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Generate Molecules by Fragmentation

✓Molecule is scanned 
in SMILES order
✓Find first breakable 

bond
✓Break the molecule at 

that bond, set aside 
leftmost fragment
✓Proceed recursively 

on rightmost fragment

Starting
point

✓Order is deterministic and the molecule can be reconstructed

✓Keep a vocabulary of all possible fragments found in a 
dataset

✓Graphs are transformed into fragment sequences
Podda et al, AISTATS 2020
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Application cases
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Predicting Properties of Chemical 
Compounds

Toxicity

Quantum 
mechanical 
properties

Solubility

∼ 10−2 seconds

∼ 103 seconds

Simulation 
methodsGilmer et al, ICML 2017
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A molecular discovery pipeline
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A Deep Learning Approach 

to Antibiotic Discovery, 
Cell, 2020.
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Generating Molecules

Fragment-based  
deep molecule 

generation

Podda, Bacciu, Micheli, AISTATS 
2020
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Graphs/Networks are everywhere
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Cell systems Disease 
pathways

Knowledge 
graphs

Cell-cell 
similarity 
networks

Gene interaction 
networks
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Side Effects of Drug Combinations

Analyzing a multimodal 
graph of interactions
• Drug-drug
• Drug-protein
• Protein-protein
Molecular, drug, and patient 
data for all US-approved 
drugs (5M edges)

Zitnik, Agrawal, Leskovec,  
Bioinformatics  2018
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Drug Repurposing
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Knowledge-Based rare disease diagnosis
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https://zitniklab.hms.harvard.edu/projects/SHEPHERD/



SHEPERD –
Graph 
processing 
pipeline

https://huggingface.co/spaces/emilyalsentzer/SHEPHERD
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Software

You can find most of the foundational models in this 
lecture implemented here
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Structured Biobanks
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Wrap-up
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Take Home Lessons 
• Deep learning for graphs is a now a consolidated research area

• DGNs as natural extensions of convolutional and recurrent architectures to graphs
• A candidate AI model for the integration of symbolic knowledge, numerical data and reasoning

• First wave of works (now almost over?) focusing mainly on 
• Different ways of implementing message passing and aggregation on static graphs
• Graph reductions and pooling
• Expressivity properties associated with different aggregation functions
• Efficiency and efficacy of context creation and propagation

• New wave of works focusing on
• Dynamic graphs
• DGNs as dynamical systems and their physical interpretation
• Learning and aligning with (graph) algorithms
• Oversmoothing, oversquashing and problems of the sort

• …in other words, plenty of opportunities for thesis work!
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Advertisement time

Learning on Graph course

❖ Coming up on Semester 1, Year 2027

❖ 6 CFU Elective of the AI curriculum (M.Sc. Computer Science)

❖ From foundations of learning on graphs to edge-of-research models

DAVIDE BACCIU - ISPR COURSE
DAVIDE BACCIU - AID COURSE 49



Next Lecture

• Graph Learning Laboratory
• Final lecture (exams and all)
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