Deep Learning for Graphs

Artificial Intelligence for Digital Health (AID) M.Sc. in Digital Health – University of Pisa Davide Bacciu (davide.bacciu@unipi.it)

Lecture Outline

Deep learning for graphs

- Motivation
- Graph formalism
- Learning tasks: Graph prediction, induction, transduction and generation
- Fundamental components of a graph neural network
- Applications to healthcare and biology

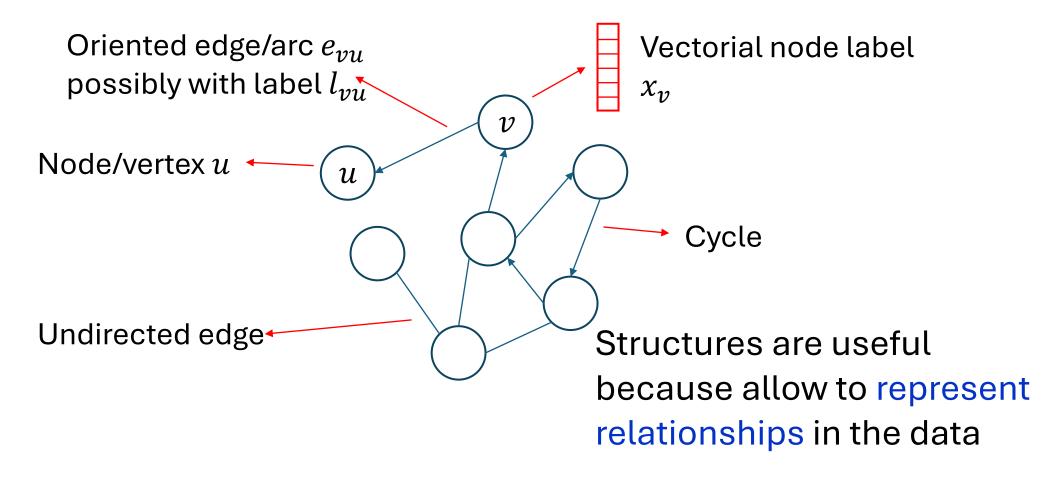
Graph Fundamentals

Why Graphs?

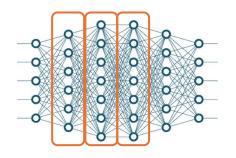
Why Graphs?

Context is fundamental for the correct interpretation of information

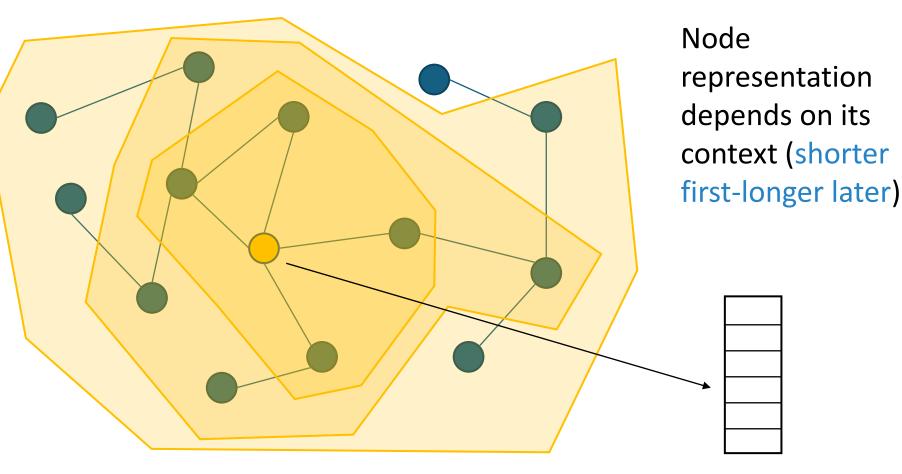
Graph Structured Data



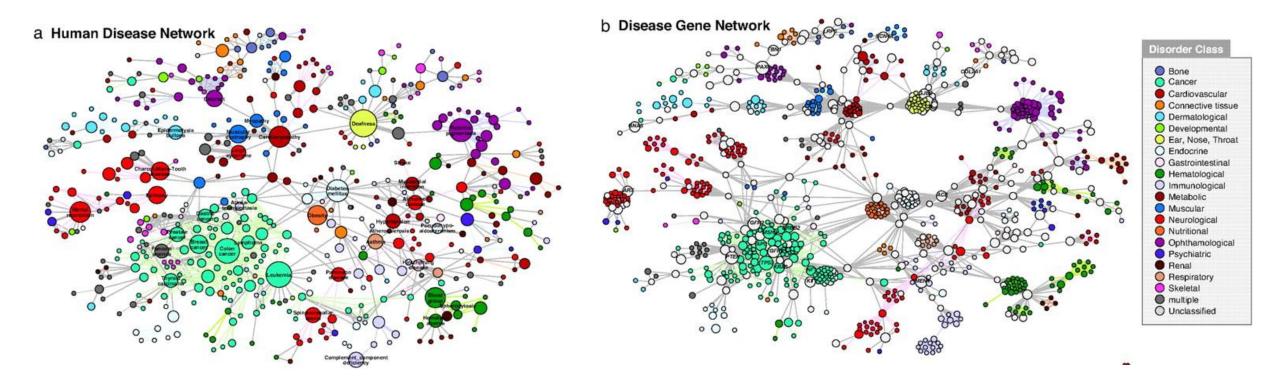
Deep Learning with graphs



Hierarchical representation learning allows to efficiently diffuse information through graph structure

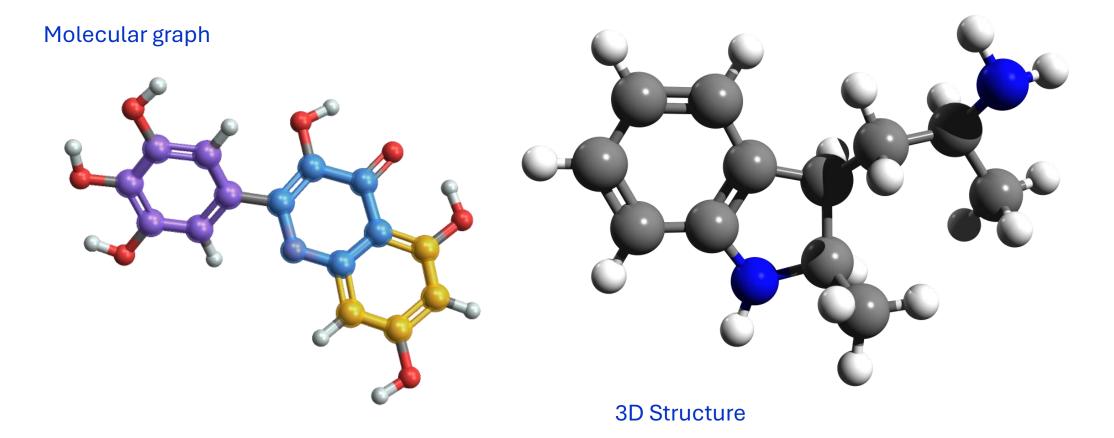


Why graphs in digital health?

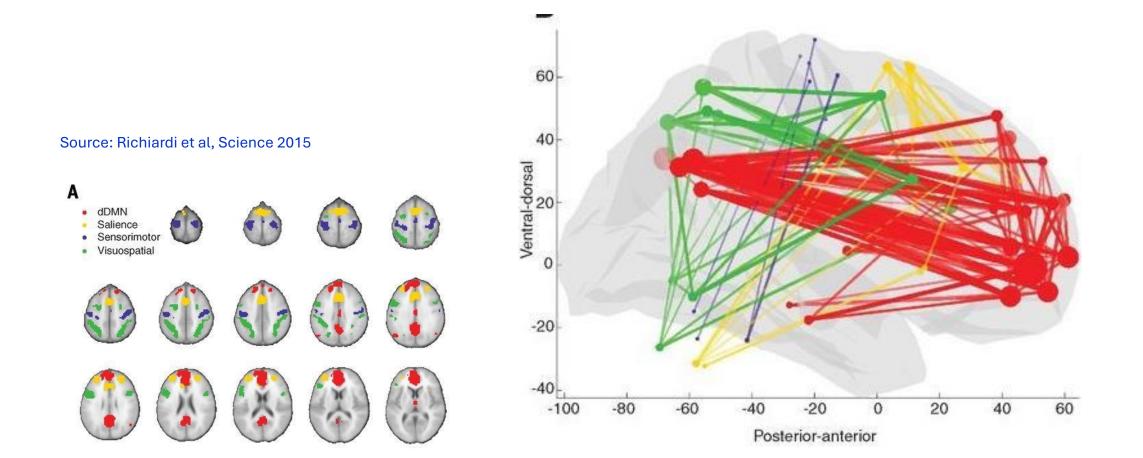


Source: Goh et al. PNAS 2007

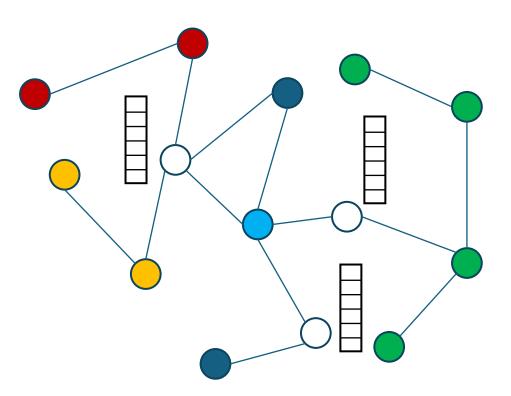
Why graphs in digital health?



Why graphs in digital health?



Predictive Tasks



Network data

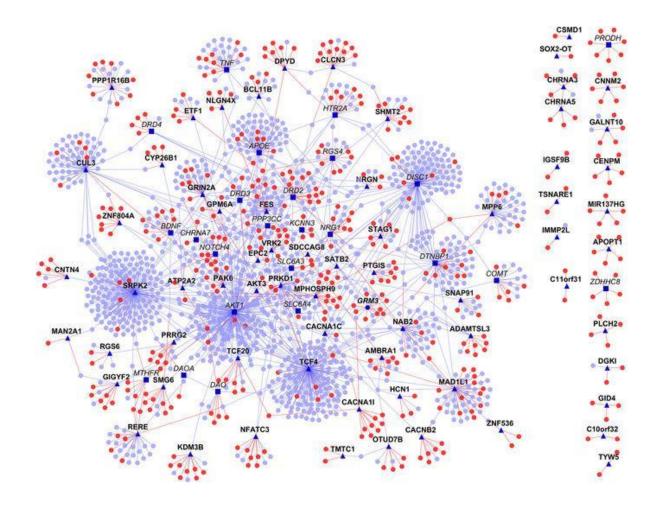
Node predictions

Predict a type or a continuous value for a given node **Link prediction** Predict whether two nodes are linked

Community/module detection Identify clusters of linked nodes that are alike

Node classification example

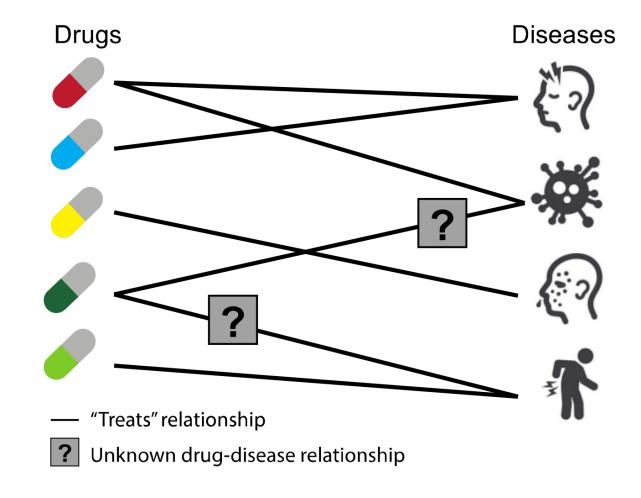
Assign a function to proteins in the interactome



Source: Ganapathiraju et al. Nature 2016

Link prediction example

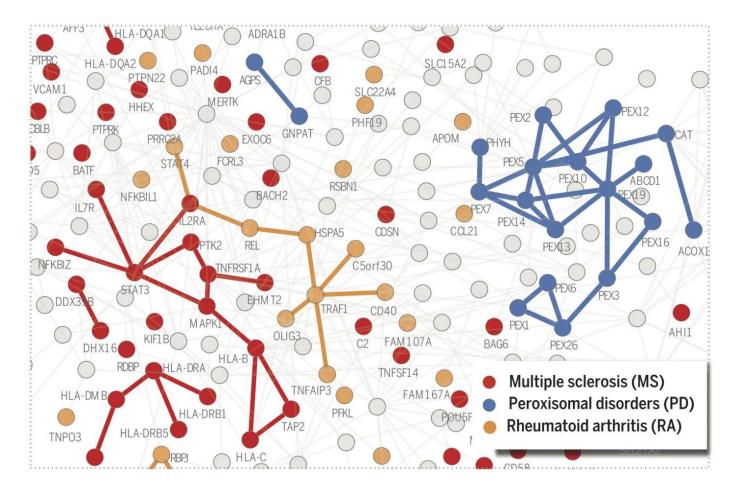
Predict which diseases can be treated by a new molecule



Source: Zitnik et al. 2020

Community prediction example

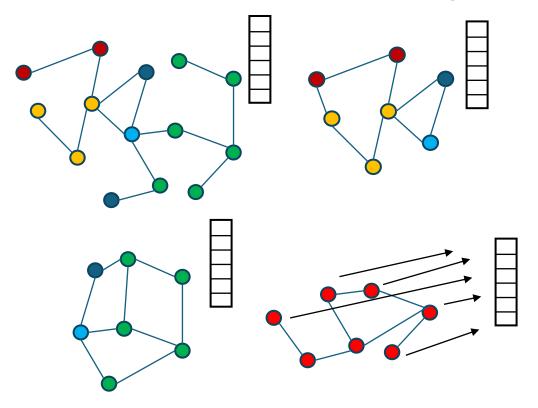
Identify disease proteins in the interactome



Source: Menche et al. Science, 2015

Predictive Tasks

Structure classification/regression



A dataset of i.i.d graphs

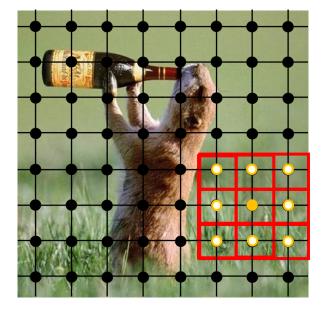
Graph classification

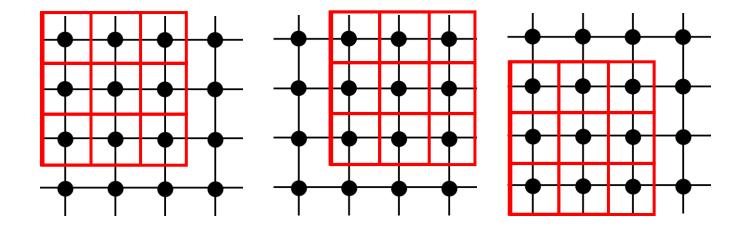
Assign whole structure to a specific class

Graph regression Regress a structure to a value (or a vector of values)

Deep graph networks

A Graph View on (Image) Convolutions

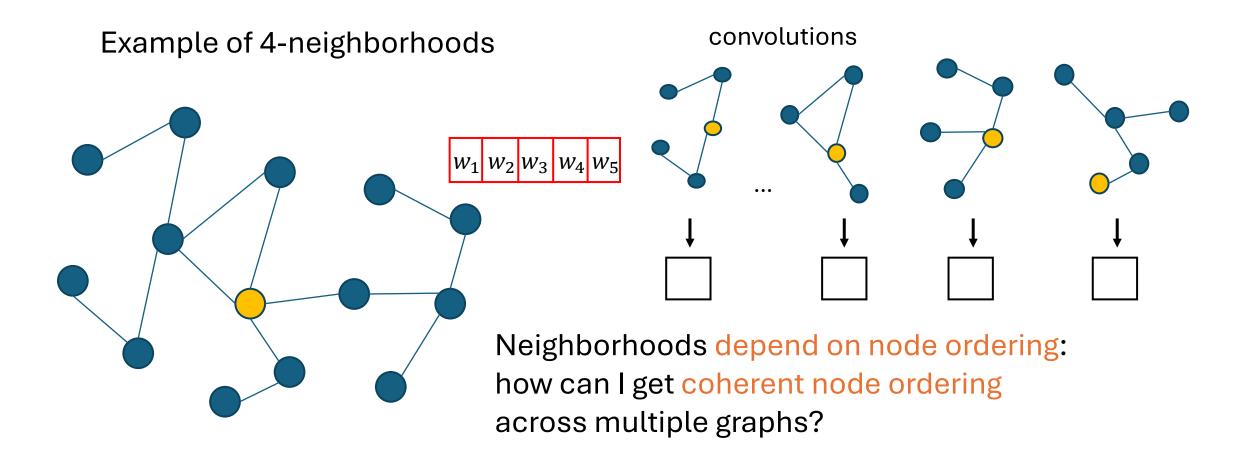




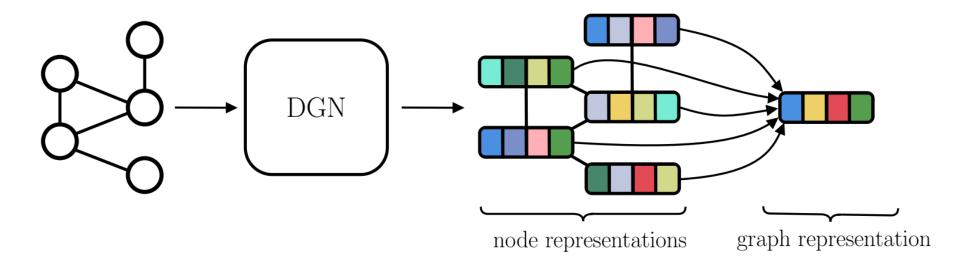
Plus some key assumptions which make it difficult to directly apply them to graphs

- Regular neighborhood
- Existence of a total node ordering

Node Neighborhoods



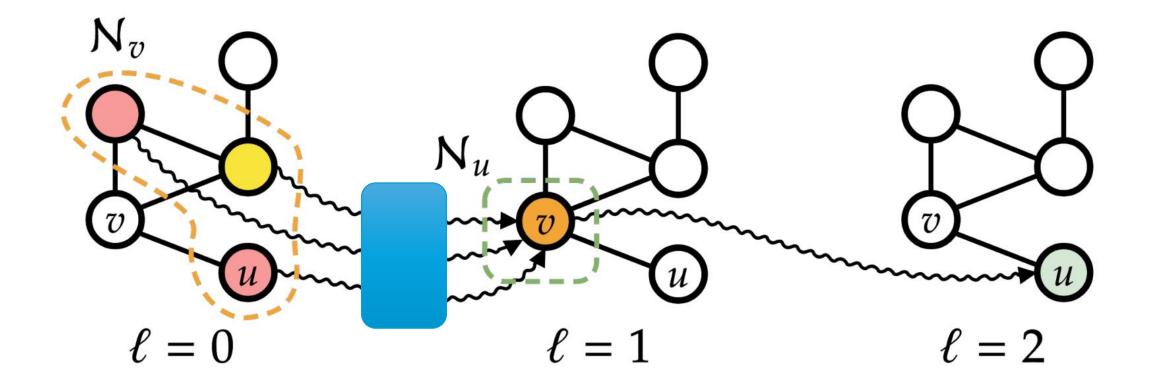
Deep Graph Networks - The intuition



Encode vertices and the graph itself into a vector space by means of an adaptive (learnable) mapping

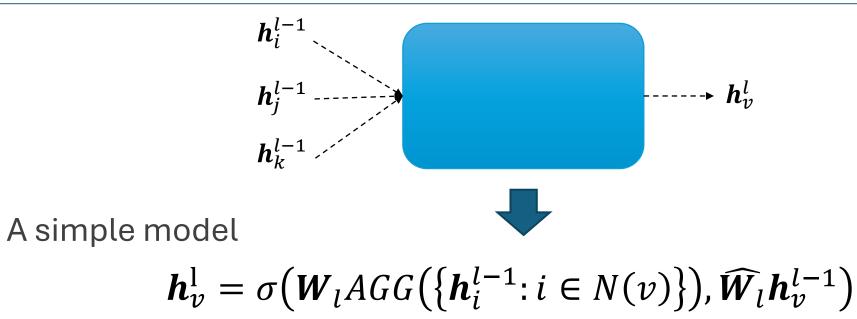
Use the learned encodings to solve predictive, explorative or generative tasks

Neighborhood Aggregation & Layering

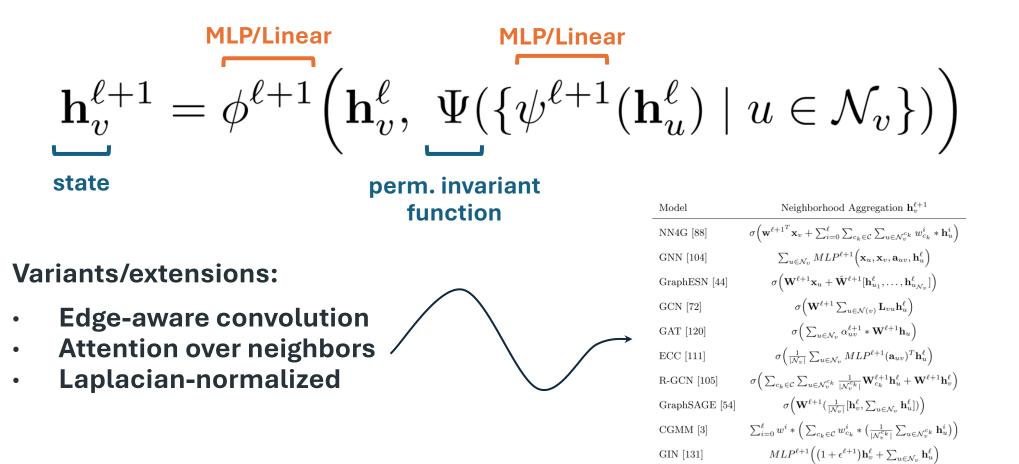


What is inside of the Box?

A learning model of course (e.g. a neural network) including an aggregation function to handle size-varying neighborhoods



General Graph Convolutional Layer



A Message-Passing view on Deep Graph Networks

Algorithm 13.1: Simple message-passing neural network

Input: Undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ Initial node embeddings $\{\mathbf{h}_n^{(0)} = \mathbf{x}_n\}$ Aggregate(·) function Update(·, ·) function **Output:** Final node embeddings $\{\mathbf{h}_n^{(L)}\}$ // Iterative message-passing for $l \in \{0, ..., L - 1\}$ do $\begin{vmatrix} \mathbf{z}_n^{(l)} \leftarrow \text{Aggregate}\left(\left\{\mathbf{h}_m^{(l)} : m \in \mathcal{N}(n)\right\}\right) \\ \mathbf{h}_n^{(l+1)} \leftarrow \text{Update}\left(\mathbf{h}_n^{(l)}, \mathbf{z}_n^{(l)}\right) \end{vmatrix}$ end for return $\{\mathbf{h}_n^{(L)}\}$

Graph Isomorphism Network

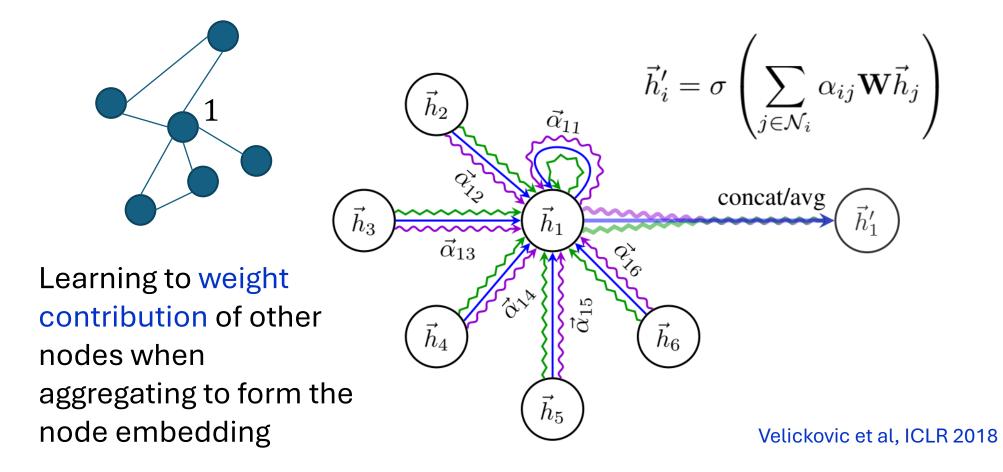
Xu et al, ICLR 2019

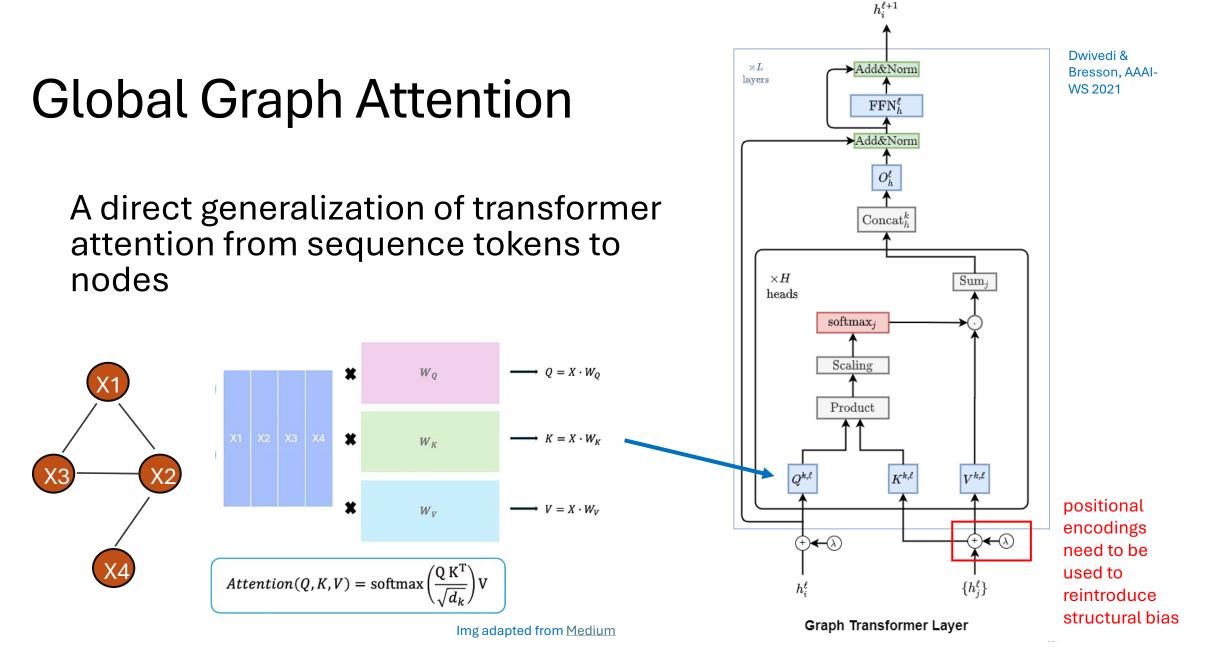
- A study of GNN expressivity
- Choice of aggregation functions influences what structures can be recognized
- Propose a simple aggregation and concatenation model

$$h_v^{(k)} = \mathrm{MLP}^{(k)} \left((1 + \epsilon^{(k)}) \cdot h_v^{(k-1)} + \sum_{u \in \mathcal{N}(v)} h_u^{(k-1)}
ight)$$

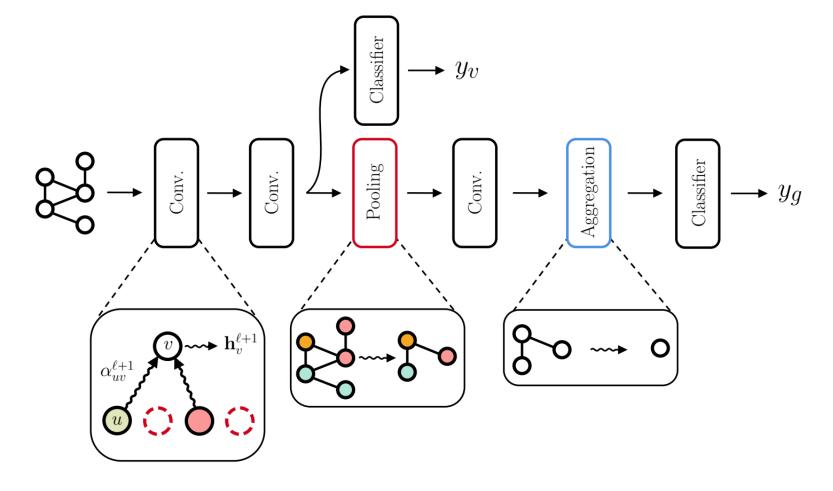
$$h_G = ext{CONCAT}(ext{READOUT}\left(\{h_v^{(k)}|v\in G\}
ight)|k=0,1,\cdots,K)$$

Graph Attention



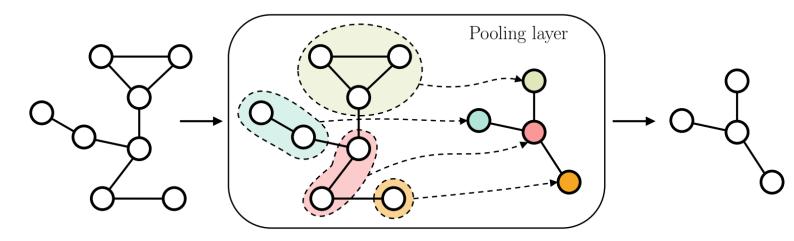


Deep Graph Networks - The Complete Picture

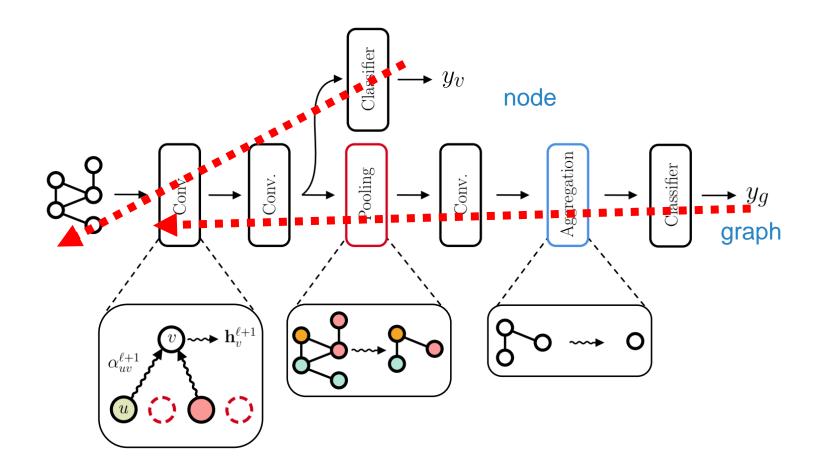


What About Pooling?

- Standard aggregation operates of predefined node subsets
- Ignore community/hierarchical structure in the graph
- Need graph coarsening (pooling) operators
 - Differentiable Rex Ying et al, NIPS 2018
 - Graph theoretical Bacciu et al, AAAI 2023
 - Graph signature



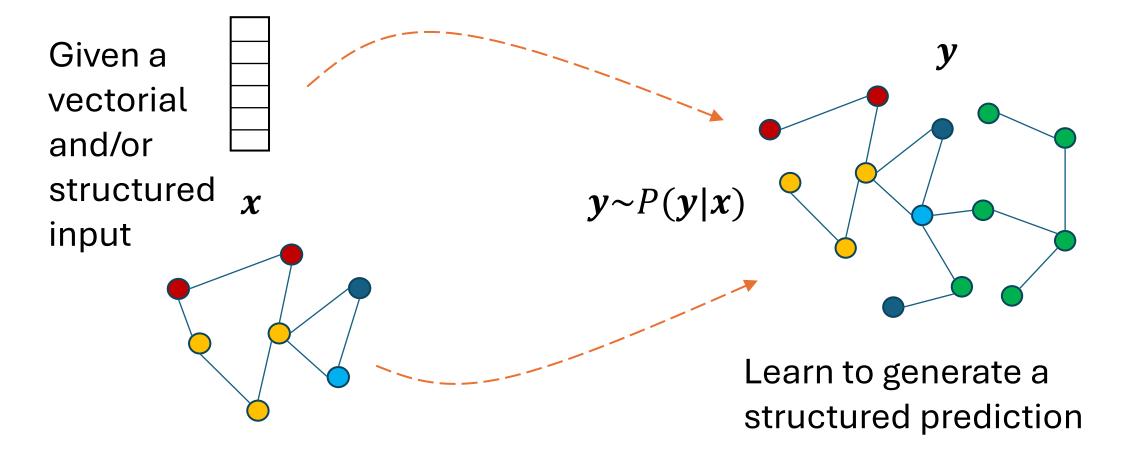
Training



Backpropagate from the (graph or node level) error computed from the top layer embeddings to the early layers

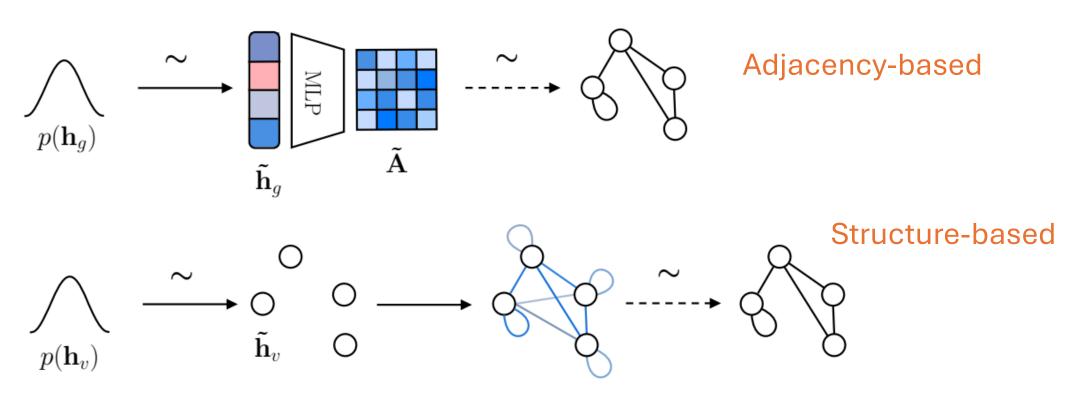
Beyond Graph Prediction

Transductive tasks

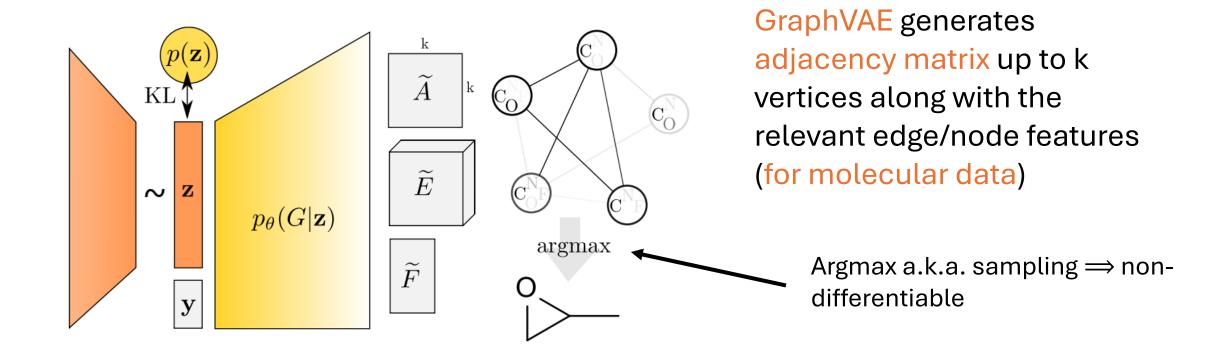


Graph Generation

Generate a prediction that is itself a graph



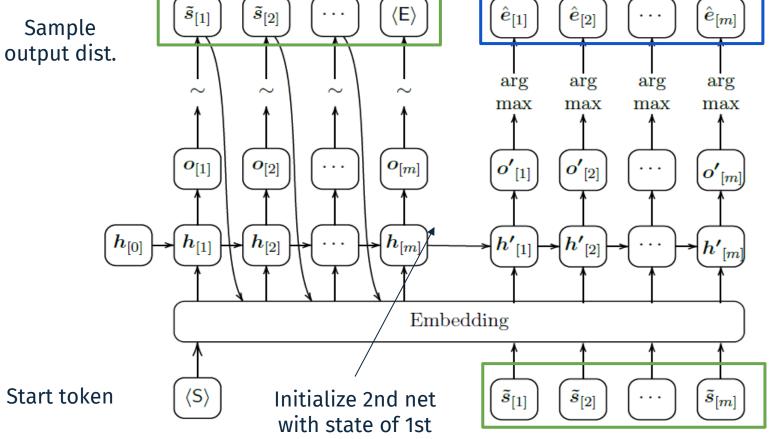
Graph Autoencoder



Simonovsky, Komodakis, ICLR-WS 2018

Language-Based Graph Generation

Sample

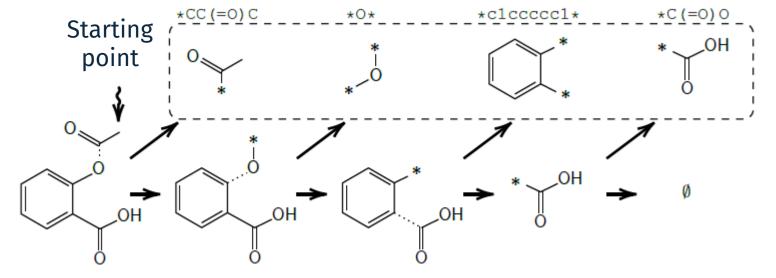


Generate a graph node-bynode and edgeby-edge through a language model

> Bacciu et al. Neurocomputing 2020

Generate Molecules by Fragmentation

- ✓ Molecule is scanned in SMILES order
- ✓ Find first breakable bond
- ✓ Break the molecule at that bond, set aside leftmost fragment
- Proceed recursively on rightmost fragment



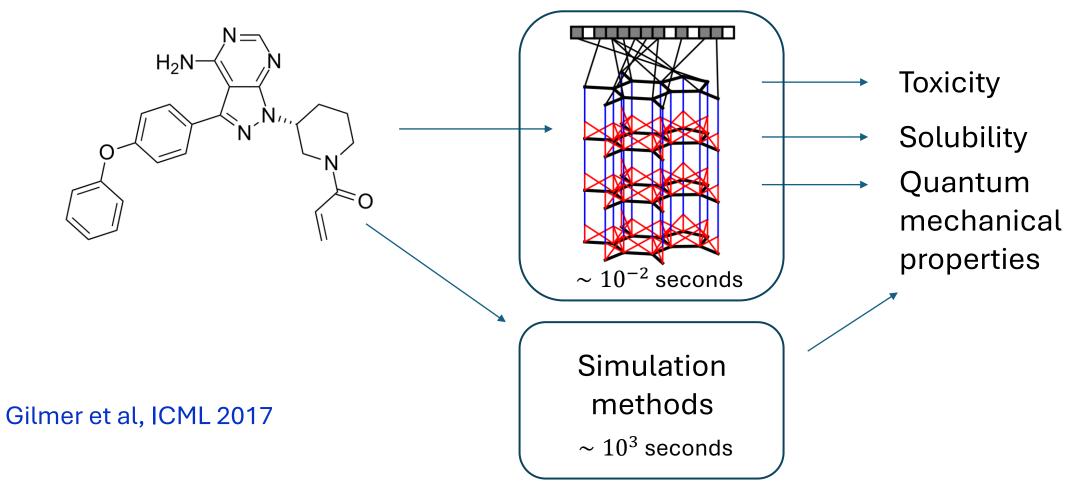
- ✓ Order is **deterministic** and the molecule can be reconstructed
- Keep a vocabulary of all possible fragments found in a dataset

✓ Graphs are transformed into **fragment sequences**

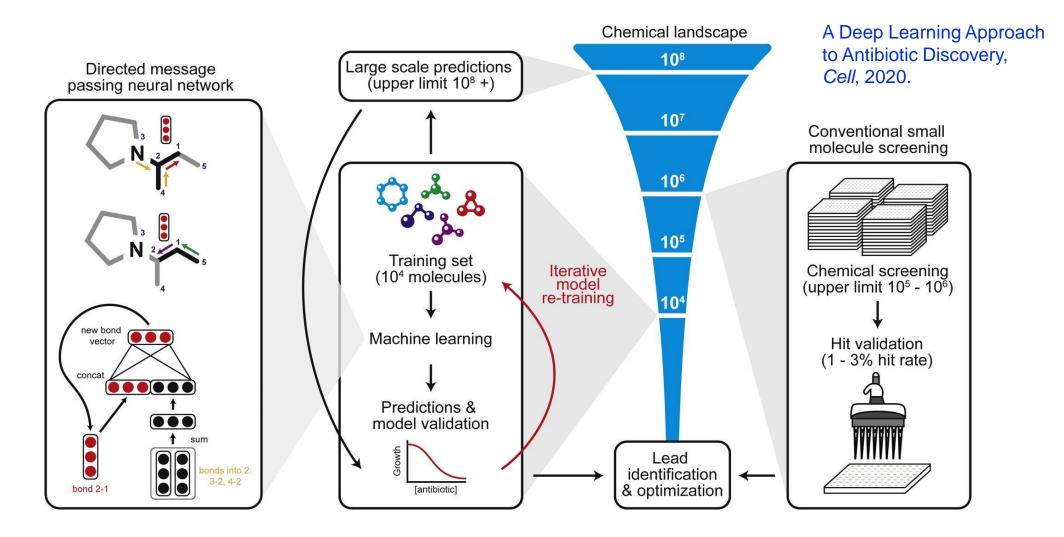
Podda et al, AISTATS 2020

Application cases

Predicting Properties of Chemical Compounds



A molecular discovery pipeline

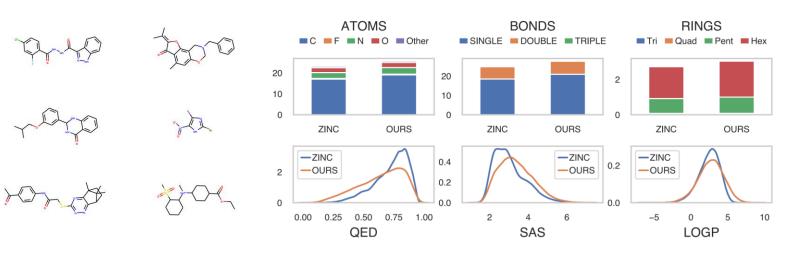


DAVIDE BACCIU - AID COURSE

Generating Molecules

Podda, Bacciu, Micheli, AISTATS 2020

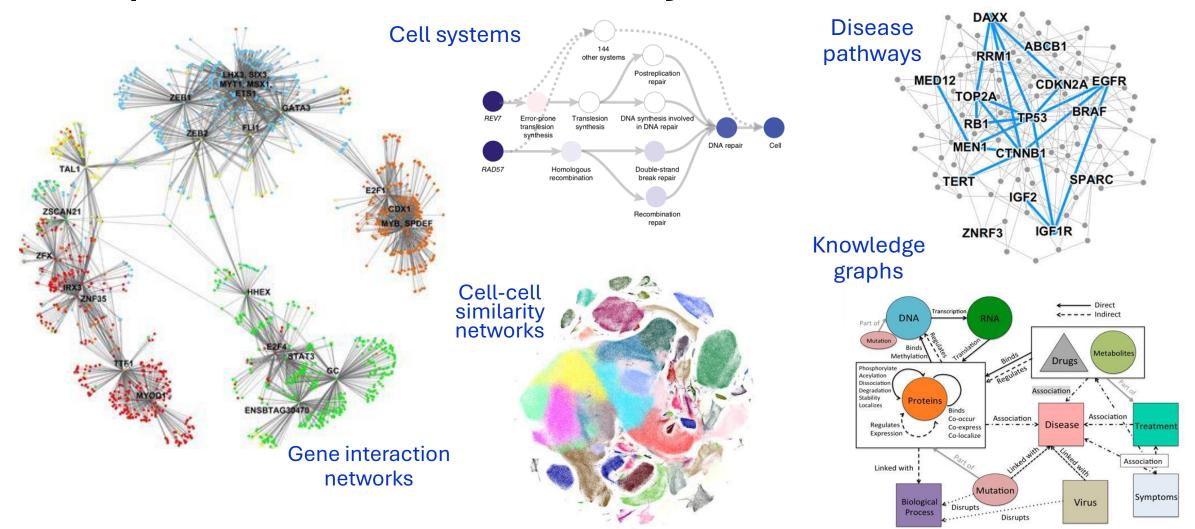
Fragment-based deep molecule generation



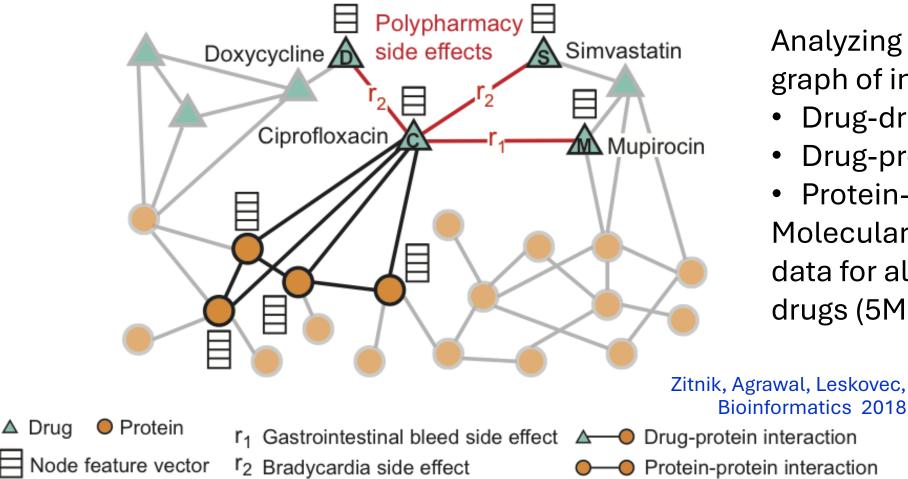
XE

DAVIDE BACCIU - AID COURSE

Graphs/Networks are everywhere



Side Effects of Drug Combinations



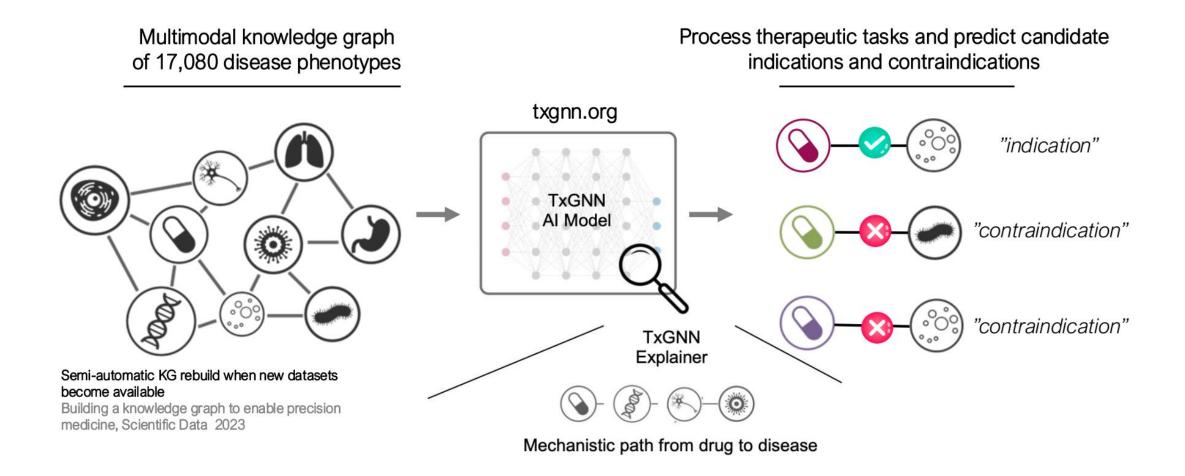
Analyzing a multimodal graph of interactions

- Drug-drug
- Drug-protein
- Protein-protein

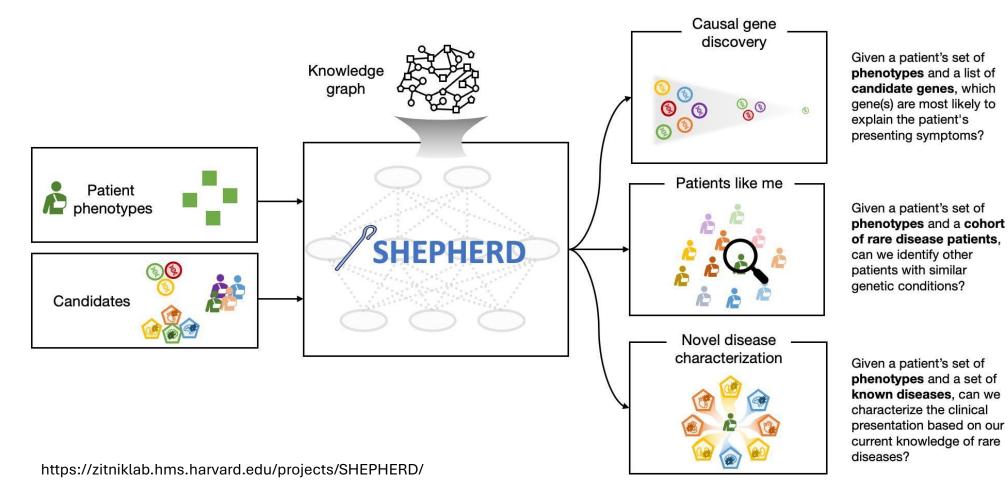
Molecular, drug, and patient data for all US-approved drugs (5M edges)

DAVIDE BACCIU - AID COURSE

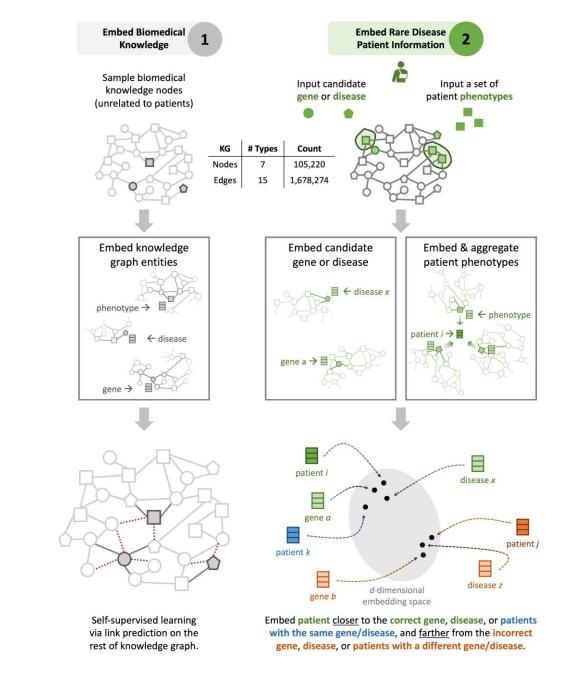
Drug Repurposing



Knowledge-Based rare disease diagnosis



SHEPERD – Graph processing pipeline



https://huggingface.co/spaces/emilyalsentzer/SHEPHERD

You can find most of the foundational models in this lecture implemented here

DeepGraphLibrary

Structured Biobanks

includes 1.6M assays covering 2.4M compounds

includes 31,467 bulk and single-cell RNA-seq libraries

includes 20B interactions between 59.3M proteins

includes 6M gene annotations derived from 150K publications

includes annotations for 192K human genetic elements

includes 2,711 pathways manually curated by PhDs

ORUGBANK

includes 17K FDA-approved and experimental drugs

includes 139K adverse reactions for marketed drugs

includes 13K phenotypes and 156K disease annotations

Wrap-up

Take Home Lessons

- Deep learning for graphs is a now a consolidated research area
 - DGNs as natural extensions of convolutional and recurrent architectures to graphs
 - A candidate AI model for the integration of symbolic knowledge, numerical data and reasoning
- First wave of works (now almost over?) focusing mainly on
 - Different ways of implementing message passing and aggregation on static graphs
 - Graph reductions and pooling
 - Expressivity properties associated with different aggregation functions
 - Efficiency and efficacy of context creation and propagation
- New wave of works focusing on
 - Dynamic graphs
 - DGNs as dynamical systems and their physical interpretation
 - Learning and aligning with (graph) algorithms
 - Oversmoothing, oversquashing and problems of the sort
- ... in other words, plenty of opportunities for thesis work!

Advertisement time

Learning on Graph course

- Coming up on Semester 1, Year 2027
- ✤ 6 CFU Elective of the AI curriculum (M.Sc. Computer Science)
- From foundations of learning on graphs to edge-of-research models

Next Lecture

- Graph Learning Laboratory
- Final lecture (exams and all)