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Backgorund



Relative Entropy

Relative Entropy, also called KL divergence, is a statistical distance be-
tween two probability distributions. It measures the excess entropy of
assuming the distribution Q when the true one is P .

DKL(P ||Q) = E [log( P (x)
Q(X)

)] = −
∑
x∈X

P (x)log
Q(x)
P (X)

(1)

In machine learning, we commonly use it for classification problems. The
cross-entropy is defined as:

H(P, Q) = H(P ) + DKL(P ||Q) (2)

But The KL divergence is also perfectly valid for regression problems with
continuous distributions.
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Relative Entropy - 2

Relative Entropy represents the expected value of the log-likelihood
ratio statistic when the real distribution is P.

Usually, in machine learning, we assume a parameterized distribution pθ

and we want to find the ”real” parameters θ∗ given by the data.

This optimization process is done in the parameter space Θ. In this space,
each point corresponds to a different vector of parameters that defines a
different distribution. So the distance between two points in the pa-
rameter space is defined as the statistical distance between the two
distributions: the KL-divergence.

D(θ, θ
′
) = DKL(pθ(x)||pθ′ (x)) =

∑
x∈X

pθ(x) pθ(x)
pθ′ (x)
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Fisher Information as Curvature

We can now see how our distance changes under infinitesimal perturbations
using Taylor Expansion of our distance. Assume we are at a minimum
of the KL: our θ are equal to the optimal θ∗.

For ease the computation, we take the continuous version of the KL diver-
gence:

D(θ∗, θ) = 1
2

(θ − θ∗)( ∂2

∂θi∂θj
D(θ∗, θ))θ=θ∗(θ − θ∗) + o((θ − θ∗)2)

Note that the KL-divergence at the minimum is 0 and the first deriva-
tive at the same point is also 0.
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Fisher Information as Curvature - 2

We then see that the Hessian of the divergence has the information on
how the KL-divergence changes for infinitesimal perturbations.

∂2

∂θi∂θj
DKL(p(x; θ∗), p(x; θ))θ=θ∗ = (3)

= ∂2

∂θi∂θj
(
∫

p(x; θ∗)log
p(x; θ∗)
p(x; θ)

dx)θ=θ∗ = (4)

= −(
∫

p(x; θ∗) ∂2

∂θi∂θj
logp(x; θ)dx)θ=θ∗ (5)

We computed this at convergence because to compute the KL-divergence
we need to know the real parameter θ∗. This is true only at optimum.
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Fisher Information as Curvature - 3

When everything is evaluated at θ∗ = θ we obtain that the curvature of
the KL is equal to:

F(θ) = −E[ ∂2

∂θi∂θj
logp(x; θ)|θ]

This is defined FISHER INFORMATION. It describes the amount of
information that a random variable carries about the parameters.

A higher Fisher Information means that I will need fewer observations to
learn the right parameter.

Finally, it is a measure of the sensibility of the KL-divergence to per-
turbations in the parameters.
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Fisher Information as Curvature - 4

When at optimum, the gradient is zero. The curvature information tells
us how much the KL changes when we move. High curvature means
a high KL increase.
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Online Continual Learning (OCL)

Additional constraints and desiderata from CL:

1. Online Training No access to whole task data. Only a small
mini-batch can be processed for a limited time;

2. Anytime Inference The model should be ready for inference at any
point in time;

3. Continual Stability The model must be stable at any point in time,
instead of only at the task boundaries;

4. Fast Adaptation The model must be able to learn quickly from new
data.
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Stability Gap

The standard approach for OCL is Replay.

But, when continually evaluated, Replay methods suffer from Stability
gap.

Figure 1: Accuracy on first task when using ER in task-incremental scenario
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Online Curvature-Aware Replay



Optimization problem

We approach OCL as a sequence of local optimization problems using
Replay data.

At every step in time, we receive a few observations Nt from the current
data distribution and a few samples Bt from our limited buffer B. The
optimization problem for time t is:

min
δt

K̂L(yNt || fwt(xNt)) + K̂L(yBt || fwt(xBt))

subject to 1
2

||δ||22 ≤ ϵ,
(6)
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First-Order Solution

The KL-divergence can be approximated by Taylor-expansion:

K̂L(yD || fw(xD)) ≈ K̂L(yD || fw=w0(xD))+
∇T

t δt + δT
t Htδt

Note
∇t is equivalent to the ”usual” loss gradient when using cross-entropy,
MSE, or negative log-likelihood losses.

Solving the problem with a first-order approximation:

δ∗
t = − 1

λ
(∇Nt

+ ∇Bt
) (7)

This is the standard Experience Replay. At task boundary, the first-
order information of the previous tasks is very small.
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Second-Order Solution and Stability Constraint

If at task boundary ∇Bt
≈ 0 and ∇Nt

≫ ∇Bt
, we can instead use the

second-order approximation:

δ∗
t = −(HNt + HBt + λI)−1(∇Nt + ∇Bt),

This is equivalent to Newton optimization (with a damping term). It
improves optimization, but we can put an explicit stability constraint.
The new problem becomes:

min
δ

K̂L(yNt
|| fwt

(xNt
)) + K̂L(yBt

|| fwt
(xBt

))

subject to K̂L(fwt−1(xBt) || fwt(xBt)) ≤ ρ

1
2

||δ||22 ≤ ϵ.
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The New solution

The terms of the Taylor expansion of the stability constraint around wt−1:

• K̂L(fwt−1(xBt
) || fwt−1(xBt

)) = 0
• ∇w=wt−1K̂L(fwt−1(xBt

) || fwt
(xBt

)) = 0
• Hw=w0K̂L(fwt−1(xBt

) || fwt
(xBt

)) = FBt

Hence, the new solution is:

δ∗
t = −(HNt

+ HBt
+ λFBt + τI)−1(∇Nt

+ ∇Bt
),

λ depends on ρ and controls the importance of the stability. τ depends
on ϵ and act as a Tikhonov damping.
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Approximations

Computing and inverting two Hessians and a Fisher matrix is not feasible.
Note that

Ht = Hw=wt−1K̂L(yDt
|| fw(xDt

)) (8)

both for Dt = Nt and Dt = Bt. If we assume that our current model
fwt−1 is a good representation of the new and buffer data, we get
HNt

= FNt
and HBt

= FBt
and a a single Fisher matrix is required.

We hence obtain the Online Curvature-Aware Replay update:

δ∗
t = −α(FNt

+ (1 + λ)FBt + τI)−1(∇Nt
+ ∇Bt

).

The Fisher matrix is obtained weighting more the buffer data and is
approximated by Kronecker-factored Approximate Curvature.
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Results



Training trajectories
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(a) OCAR 2D projection of the learning trajectory.
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(b) ER 2D projection of the learning trajectory.
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Qualitative Analysis

Time0.0

0.5

1.0

L p
×105

Time0.0

0.5

1.0

L s

×105
ER EWC NGD OCAR

Figure 3: Left: Lp Cumulative loss of single batches. Right: Ls Cumulative
loss measured on all previous data of the stream. The model is linear and the
problem a linear regression.
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Split-Cifar 100

Method Acc ↑ AAAval ↑ WC-Accval ↑ Probed Acc ↑

i.i.d 35.3 ± 1.5 - - 45.8 ± 0.6
ER 28.2 ± 1.2 36.6 ± 2.0 12.5 ± 0.6 44.9 ± 0.9
GDumb 18.5 ± 0.5 - - -
AGEM 3.1 ± 0.2 10.4 ± 0.6 2.9 ± 0.3 18.7 ± 0.8
ER+LwF 30.4 ± 0.8 39.2 ± 2.0 15.3 ± 0.9 44.4 ± 0.8
MIR 29.4 ± 1.9 33.1 ± 3.2 11.6 ± 1.6 43.4 ± 0.7
RAR 28.2 ± 1.4 38.2 ± 1.6 14.9 ± 0.7 42.3 ± 0.9
DER++ 29.3 ± 0.9 37.5 ± 2.5 13.4 ± 0.7 44.0 ± 0.8
ER-ACE 29.9 ± 0.6 38.5 ± 1.8 14.9 ± 0.9 42.4 ± 0.6
SCR 28.3 ± 0.8 42.1 ± 2.1 20.3 ± 0.4 37.0 ± 0.3
OnPro 31.7 ± 1.2 36.6 ± 2.5 12.2 ± 1.1 -
OCM 30.9 ± 0.7 33.3 ± 1.9 14.9 ± 0.4 -
LPR 33.3 ± 0.6 42.5 ± 0.5 19.3 ± 0.3 -
OCAR 34.9 ± 0.6 48.2 ± 1.2 25.0 ± 1.1 46.2 ± 0.6

OCAR-DER++ 34.3 ± 1.1 46.8 ± 1.7 25.4 ± 0.8 46.0 ± 0.8
OCAR-ACE 35.6 ± 1.2 48.7 ± 1.7 26.5 ± 0.4 44.1 ± 0.7
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Split-TinyImagenet

Method Acc ↑ AAAval ↑ WC-Accval ↑ Probed Acc ↑

i.i.d 26.5 ± 0.6 - - 34.3 ± 0.5
ER 21.2 ± 0.6 33.9 ± 1.7 15.2 ± 0.5 35.6 ± 0.6
GDumb 13.1 ± 0.4 - - -
AGEM 2.6 ± 0.2 7.3 ± 0.5 2.6 ± 0.2 23.3 ± 0.6
ER+LwF 22.7 ± 1.1 34.4 ± 2.4 17.0 ± 0.7 33.8 ± 0.9
MIR 21.3 ± 0.8 31.0 ± 1.8 15.2 ± 0.5 33.0 ± 0.4
RAR 15.7 ± 0.9 27.8 ± 2.8 10.1 ± 0.9 29.8 ± 0.9
DER++ 22.9 ± 0.5 34.2 ± 4.0 16.3 ± 0.3 31.5 ± 0.9
ER-ACE 23.6 ± 0.7 35.0 ± 1.5 16.8 ± 0.7 34.2 ± 0.3
SCR 16.9 ± 0.4 30.7 ± 1.5 12.3 ± 0.5 22.5 ± 0.4
OnPro 17.1 ± 1.5 24.2 ± 0.4 8.00 ± 0.8 -
OCM 20.6 ± 0.6 24.8 ± 1.1 10.9 ± 0.5 -
LPR 23.1 ± 0.2 34.9 ± 0.4 16.2 ± 0.2 -
OCAR 21.7 ± 1.0 38.3 ± 1.4 17.4 ± 0.6 38.3 ± 0.6

OCAR-ACE 25.6 ± 0.4 39.8 ± 2.0 21.5 ± 0.9 34.7 ± 0.3
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Online CLEAR

Table 1: Results on Online CLEAR (10 Tasks) domain incremental setting.
2000 Buffer size. Best in bold.

Method Online CLEAR (10 Tasks)
Acc ↑ AAAval ↑ WC-Acc val ↑

ER 63.1 ± 0.7 58.9 ± 0.8 47.7 ± 1.6
LPR 65.2 ± 0.9 63.5 ± 1.0 62.6 ± 0.7

OCAR(Ours) 75.3 ± 0.8 73.9 ± 0.5 70.3 ± 0.5
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Single task Training Times

Table 2: Training Time for the First Task on Split-CIFAR-100.

Method Training Time (seconds)

ER 14
ER + LWF 15
MIR 31
ER-ACE 17
DER 17
RAR 72
SCR 131
LPR 213

OCAR(Ours) 38
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Conclusions

• We approach OCL as a sequence of local and independent
optimization problems;

• At minimum, the alert of current task tends to zero while
second-order information is valid;

• Using an explicit stability constraint introduce the use of the
Fisher Information;

• Using approximations, we need to compute a single Fisher, with
theoretical similarities to Natural Gradient Descent;

• OCAR has solid empirical results while keeping training times
acceptable.
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