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Relative Entropy

Relative Entropy, also called KL divergence, is a statistical distance be-
tween two probability distributions. It measures the excess entropy of
assuming the distribution ) when the true one is P.
P(z) Q)

=— P(x)log 1

reX

Dk (P||Q) = Eflog(

In machine learning, we commonly use it for classification problems. The
cross-entropy is defined as:

H(P,Q) = H(P) + Drr(Pl|Q) ()

But The KL divergence is also perfectly valid for regression problems with
continuous distributions.
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Relative Entropy - 2

Relative Entropy represents the expected value of the log-likelihood
ratio statistic when the real distribution is P.

Usually, in machine learning, we assume a parameterized distribution py
and we want to find the "real” parameters 6* given by the data.

This optimization process is done in the parameter space ©. In this space,
each point corresponds to a different vector of parameters that defines a
different distribution. So the distance between two points in the pa-
rameter space is defined as the statistical distance between the two
distributions: the KL-divergence.
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D(0,0) = Drr(po(v)||py (z Zpe
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Fisher Information as Curvature

We can now see how our distance changes under infinitesimal perturbations
using Taylor Expansion of our distance. Assume we are at a minimum
of the KL: our 6 are equal to the optimal 6*.

For ease the computation, we take the continuous version of the KL diver-
gence:

82

mp(9*79))9:0* (9 — 9*) -+ 0((9 _ 0*)2)

D(H*,6) = 36— 6°)(

Note that the KL-divergence at the minimum is 0 and the first deriva-
tive at the same point is also 0.
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Fisher Information as Curvature - 2

We then see that the Hessian of the divergence has the information on
how the KL-divergence changes for infinitesimal perturbations.

3£%DKL(p(fc;9*),p(w;9))e—e* = (3)

_ > ey, p(@67) B

= 90,00, (/ plas0°)log™ oy d)o=o- = (4)
2

= f(/p(z; 0*)89?%1091)@; 0)dx)g—p~ (5)

We computed this at convergence because to compute the KL-divergence
we need to know the real parameter ¢/°. This is true only at optimum.
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Fisher Information as Curvature - 3

When everything is evaluated at " = 6 we obtain that the curvature of
the KL is equal to:

2

F(0) = [aeaae

logp(x;0)|0]

This is defined FISHER INFORMATION. It describes the amount of
information that a random variable carries about the parameters.

A higher Fisher Information means that | will need fewer observations to
learn the right parameter.

Finally, it is a measure of the sensibility of the KL-divergence to per-
turbations in the parameters.
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Fisher Information as Curvature - 4

When at optimum, the gradient is zero. The curvature information tells
us how much the KL changes when we move. High curvature means
a high KL increase.

— Function 1 (High Curvature)
= Function 2 (Low Curvature)




Online Continual Learning (OCL)

Additional constraints and desiderata from CL:

1. Online Training No access to whole task data. Only a small
mini-batch can be processed for a limited time;

2. Anytime Inference The model should be ready for inference at any
point in time;

3. Continual Stability The model must be stable at any point in time,
instead of only at the task boundaries;

4. Fast Adaptation The model must be able to learn quickly from new
data.
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Stability Gap

The standard approach for OCL is Replay.

But, when continually evaluated, Replay methods suffer from Stability
gap.
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Figure 1: Accuracy on first task when using ER in task-incremental scenario
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Online Curvature-Aware Replay




Optimization problem

We approach OCL as a sequence of local optimization problems using
Replay data.

At every step in time, we receive a few observations N, from the current
data distribution and a few samples B; from our limited buffer 5. The
optimization problem for time ¢ is:

H(lsin KL(yNt‘|fwt(th))+KL(thwat(th))
t (6)

1
subject to §||5||§ <e,
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First-Order Solution

The KL-divergence can be approximated by Taylor-expansion:

KL(yp || fu(p)) = KL(yp || fumuw, (#0))+
Vi6: + 6 Hyd,

Note
V. is equivalent to the "usual” loss gradient when using cross-entropy,
MSE, or negative log-likelihood losses.

Solving the problem with a first-order approximation:

1
5; = _X(VNt + vBt) (7)

This is the standard Experience Replay. At task boundary, the first-

order information of the previous tasks is very small.




Second-Order Solution and Stability Constraint

If at task boundary Vi, =~ 0 and Vy, > Vp,, we can instead use the
second-order approximation:

5: = _(HNt + HBt + )‘I)il(th + vBt)?

This is equivalent to Newton optimization (with a damping term). It
improves optimization, but we can put an explicit stability constraint.
The new problem becomes:

méin KL(yNt H fwt(th)) + KL(th H fwt(‘rBt))
subject to K L(fuw,_ ,(x,) || fu.(B,)) < p

1
SII8I < e
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The New solution

The terms of the Taylor expansion of the stability constraint around w;_1:

" KL(fwt—l(th)||fwt—1(‘rBt)) :O
- vW:wtfchL(fwtfl(th) H fwt (th)) =0
. Hw:wOKL(fwt—l(th> || fwt (th)) = FBt

Hence, the new solution is:

6f = —(Hy, + Hp, + \Fp, + 7)Y (Vn, + V3,),

A depends on p and controls the importance of the stability. 7 depends
on € and act as a Tikhonov damping.
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Approximations

Computing and inverting two Hessians and a Fisher matrix is not feasible.
Note that

Ht = Hw:wt—lKL(yDt || fUJ(th)) (8)

both for D; = N; and D; = By;. If we assume that our current model
fw,_, is a good representation of the new and buffer data, we get
Hy, = Fy, and Hp, = Fp, and a a single Fisher matrix is required.
We hence obtain the Online Curvature-Aware Replay update:

6 = —a(Fy, + (1 4+ NFp, +7I)"(Vn, + V3,).

The Fisher matrix is obtained weighting more the buffer data and is
approximated by Kronecker-factored Approximate Curvature.
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(a) OCAR 2D projection of the learning trajectory.
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(b) ER 2D projection of the learning trajectory.
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Qualitative Analysis
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Figure 3: Left: L, Cumulative loss of single batches. Right: Ls Cumulative
loss measured on all previous data of the stream. The model is linear and the
problem a linear regression.
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Split-Cifar 100

Method ‘ Acc AAA 4 WC-Acc® 1+ Probed Acc 1
i.id 353+ 1.5 - - 45.8 £ 0.6
ER 282+1.2 36.6+2.0 12.54+0.6 44.9+0.9
GDumb 185+ 0.5 - - -
AGEM 3.1+0.2 10.4 £ 0.6 2.9+0.3 18.7+0.8
ER-+LwF 304+08 392420 15.34+0.9 44.4 4+ 0.8
MIR 294+19 33.1+£3.2 11.6 +1.6 43.44+0.7
RAR 282+14 382+1.6 14.9 +£0.7 42.3+0.9
DER++ 29.3+09 375+25 13.4+0.7 44.0 £0.8
ER-ACE 299+06 385+1.8 14.94+0.9 42.4 £+ 0.6
SCR 28.3+0.8 42.1+2.1 20.3+0.4 37.0+0.3
OnPro 31.7+1.2 36.6+25 122+1.1 -
OCM 30.9+0.7 33.3+1.9 14.9+0.4 -

LPR 33.3+06 425+0.5 19.3+0.3 -
OCAR 349+06 482+1.2 25.0+t1.1 46.2 + 0.6
OCAR-DER++ | 34.3+1.1 468+1.7 254+ 0.8 46.0 0.8
OCAR-ACE 35.6+1.2 487+4+1.7 26.5+0.4 44.1 £+£0.7




ylmagenet

Method ‘ Acc T AAA 4 WC-Acc® 1+ Probed Acc 1
ii.d 26.5 £+ 0.6 - - 34.3+0.5
ER 21.24+0.6 339+1.7 152+£05 35.6 £ 0.6
GDumb 13.1+04 - - -
AGEM 2.6 £0.2 73+£05 2.6+0.2 23.3+0.6
ER+LwF 22.7+1.1 344424 17.0+£0.7 33.8+0.9
MIR 21.3+0.8 31.0+1.8 15.2£0.5 33.0+£0.4
RAR 15.7+09 27.8+28 10.1+0.9 29.8+0.9
DER++ 22.9+0.5 342440 16.3+0.3 31.5+0.9
ER-ACE 23.6 0.7 35.0+1.5 16.8 £0.7 34.2+0.3
SCR 16.9+04 30.7+1.5 12.3£0.5 22.5+0.4
OnPro 171+15 242+04 8.00+0.8 -
OCM 20.6 £0.6 24.8+1.1 10.9+0.5 -

LPR 23.1+0.2 349+04 16.2+£0.2 -
OCAR 21.7+1.0 383+14 17.4+0.6 38.3+0.6
OCAR-ACE | 25.6+04 39.8+2.0 21.5+0.9 34.7+0.3
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Online CLEAR

Table 1: Results on Online CLEAR (10 Tasks) domain incremental setting.
2000 Buffer size. Best in bold.

Method Online CLEAR (10 Tasks)

Acc 1 AAAY™ + WC-Acc @ ¢
ER 63.1+£0.7 589+0.8 477+1.6
LPR 65209 63.5=£1.0 62.6 £0.7

OCAR(Ours) | 75.3+£08 73.9+05 703405
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Single task Training Times

Table 2: Training Time for the First Task on Split-CIFAR-100.

Method Training Time (seconds)
ER 14
ER + LWF 15
MIR 31
ER-ACE 17
DER 17
RAR 72
SCR 131
LPR 213
OCAR(Ours) 38
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Conclusions

= We approach OCL as a sequence of local and independent
optimization problems;

= At minimum, the alert of current task tends to zero while
second-order information is valid:

= Using an explicit stability constraint introduce the use of the
Fisher Information;

= Using approximations, we need to compute a single Fisher, with
theoretical similarities to Natural Gradient Descent;

= OCAR has solid empirical results while keeping training times
acceptable.
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