
Chapter 1

BASIC ELEMENTS OF LINEAR ALGEBRA

1. Matrices

Let C and R be the field of real numbers and the field of complex
numbers, respectively. Moreover let i be the imaginary unit, defined by the
property i2 = −1. Let Cm×n be the set of matrices with complex entries,
with m rows and n columns; in many cases it will be useful to denote as
Rm×n the subset of matrices with real entries. If A ∈ Cn×n, then A is
called a square matrix of order n.

Usually matrices are denoted by a capital letter, while their entries are
denoted by the same letter, in lower case, followed by the indices (row index
and column) index: for example aij is an element of the matrix A. Usually
one writes:

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann


 .

The entries aij such that i = j are called the diagonal or principal entries
of A and they form the principal or main diagonal of A.

Given a matrix A ∈ Cm×n, the conjugate transpose of A is defined as
the matrix B ∈ Cn×m such that

bij = aji,

where aji is the conjugate of the complex number aji, and it is denoted by
B = AH . If A ∈ Rm×n, then the conjugate transpose of A is simply the
transpose matrix, defined as

B = AT , bij = aji.

A matrix A ∈ Cn×n is:

diagonal if aij = 0 for i 6= j;

scalar if it is diagonal and aii = α ∈ C;

upper (lower) triangular if aij = 0 for i > j (for i < j );

strictly upper (lower) triangular if aij = 0 if i ≥ j
(for i ≤ j );
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tridiagonal if aij = 0 for |i− j| > 1.

The following operations on matrices:

matrix addition (Cm×n ×Cm×n → Cm×n) :

C = A + B, cij = aij + bij ,

multiplication of a matrix by a number or scalar multiplication (C ×
Cm×n → Cm×n) :

B = α A, bij = α aij ,

make Cm×n a vector space over C, where the matrix with all zero entries is
the identity or neutral element. This matrix is denoted by Om×n or shortly
O if its dimensions are clear from the context. Matrix addition is associative
and commutative, and scalar multiplication is distributive over addition.

The row by column multiplication or matrix multiplication of two ma-
trices A ∈ Cm×n and B ∈ Cn×p is the matrix C = A B ∈ Cm×p, with
elements

cij =
n∑

k=1

aikbkj

(remark that the number of columns of A is equal to the number of rows of
B).

The matrix multiplication is associative and distributive over addition,
but it is not commutative (see exercises 1.1 e 1.2). Moreover the following
property holds

(A B)H = BHAH .

The scalar matrix of order n with all diagonal entries equal to 1 is called
identity and it is denoted by In or shortly I if the order n is clear from the
context. This matrix has the following properties:

ImA = A
AIn = A

}
for any matrix A ∈ Cm×n.

A matrix A ∈ Cn×n is called:

normal if AHA = A AH ;

hermitian if AH = A;

unitary if AHA = A AH = I.

Let A ∈ Rn×n; if A is hermitian, then AT = A and A is called symmetric;
if A is unitary, then AT A = A AT = I and A is said orthogonal.
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1.1 Example. The matrix

G =
[

cosφ − sin φ
sin φ cosφ

]
, φ ∈ R,

is unitary, because

G GH = GHG =
[

sin2 φ + cos2 φ 0
0 sin2 φ + cos2 φ

]
= I.

Moreover, since it is real, G is also orthogonal.

An important case of orthogonal matrices is given by permutation ma-
trices, which are natrices obtained by permuting the rows of the identity
matrix I. Permutation matrices have just only one element different from
zero in each row and in each column, and this element is equal to 1.

A subset of Cn×n i called closed under multiplication, if, given two
matrices A e B belonging to the subset, also their prodfuct AB belongs to
the subset. The following subsets of Cn×n are closed under multiplication:

− upper (lower) triangular matrices,
− strictly upper (lower) triangular matrices,
− unitary matrices.

Given a matrix A ∈ Cm×n, a matrix B ∈ Ck×h, 0 ≤ k < m, 0 ≤ h < n,
is called submatrix of A if it is obtained from A by deleting m− k rows and
n − h columns. Given a matrix A ∈ Cn×n, a square submatrix B of order
k ≤ n of A is called principal if the principal elements of B are also principal
elements of A (that is, the rows and the columns of A which have not been
deleted have the same indices). A principal submatrix B, of order k, of A is
called leading principal if it is composed by the elements aij , i, j = 1, . . . , k.

1.2 Example. Let us consider the matrix A ∈ R3×3:

A =




1 2 3
4 5 6
7 8 9




The matrix [
1 3
4 6

]

is a square submatrix of order 2 of A, the matrix
[

1 3
7 9

]
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is a principal submatrix of order 2 of A, the matrix
[

1 2
4 5

]

is a leading principal submatrix of order 2 of A.

2. Vectors
If A ∈ Cm×1(A ∈ C1×m), then the matrix is made up of a single

column (row) and is called column (row) vector with m elements.
Usually a vector is assumed to be a column vector and the vector space

Cm×1 of vectors with m elements is denoted by Cm. In most cases a vector
is denoted by a bold letter in lower case, and each element is denoted by
a letter in lower case, followed by a subscript: for example xi is the i-th
element of the vector x. One writes

x =




x1

x2
...

xm


 or also x = [x1, x2, . . . , xm]T .

The vector with all elements zero is denoted by 0. If x ∈ Cm, then
xH ∈ C1×m is the row vector whose elements are the conjugates of the
corresponding elements of x.

Particular cases of matrix multiplication::

Multiplication of a matrix by a vector (Cm×n ×Cn → Cm):

y = Ax, yi =
n∑

j=1

aij xj , i = 1, . . . ,m;

inner product of vectors (Cm ×Cm → C):

α = xHy, α =
n∑

i=1

xi yi;

outer product of vectors (Cm ×C1×n → Cm×n):

A = x yH , aij = xiyj , i = 1, . . . ,m, j = 1, . . . , n.

The vector
1
α

x, α 6= 0, α ∈ C, sometimes is denoted by
x
α

.
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1.3 Esempio. Given the vectors

x = [1, i, −i]T e y = [i, 1, i]T ,

we have
xHy = −1,

x yH =




-i 1 -i
1 i 1
-1 -i -1


 .

The inner product of vectors is a scalar product over Cn and enjoys the
following properties (see exercise 1.26):

1. xHx is real nonnegative, it is zero if and only if x = 0;

2. xHy = yHx;

3. xH(αy) = α xHy for α ∈ C;

4. xH(y + z) = xHy + xHz for z ∈ Cn.

The real number
√

xHx is the euclidean length of the vector x, therefore the
vector

x√
xHx

has length 1. In Rn, if x has length 1, the product xHy gives

the projection of y onto the straight line passing through the origin and the
point representing the vector x. Since the inequality of Cauchy-Schwarz
holds

|xHy|2 ≤ (xHx) (yHy), (1)

(see exercise 1.30) it is possible to define the angle θ between the two vectors
x,y ∈ Rn:

θ = arccos
xHy√

(xHx) (yHy)
.

It is easy to verify that in R2 e in R3 this definition corresponds to the
geometric notion of angle, as one can see in the case of R2 in figure 1.1.

θ

1

1

cos θ
0

x

y

Fig.1.1 - Angle between two vectors.
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When xHy = 0, the two vectors x and y are called orthogonal.

1.4 Definition. The vecors x1, . . . ,xn ∈ Cm, n ≤ m, are called linearly
independent if from the condition

n∑

i=1

αi xi = 0, αi ∈ C,

it follows that
αi = 0, i = 1, . . . , n.

n vectors, which are not linearly independent, are called linearly de-
pendent; in this case, if αk 6= 0, one has

xk =
n∑

i=1
i 6=k

βi xi, where βi = − αi

αk
, i = 1, . . . , n, i 6= k.

1.5 Definition. Let S be a subspace of Cn. k vectors x1, . . . ,xk ∈ S form
a basis of S if any vector v ∈ S can be expressed, in a unique way, as linear
combination of the vectors of the basis

v =
k∑

i=1

αi xi.

We say also that S is generated by the basis x1, . . . ,xk.

A particularly relevant basis of Cn is the so-called canonical basis, made
up by the vectors

ei = [0, . . . , 0, 1, 0, . . . , 0]T , i = 1, . . . , n,

↑
i

which are the columns of the identity matrix of order n.
The k vectors x1, . . . ,xk of a basis are linearly independent; moreover

all the bases of a subspace have the same number of elements, and this
number, denoted by dimS, is called dimension of the subspace. The space
Cn, as vector space over the field C, has dimension n, and any set of n
linearly independent vectors of Cn is a basis of Cn.

Let S e T be two subspaces di Cn. Then the sum

S + T = {s + t, s ∈ S, t ∈ T}
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and the intesection S ∩ T are subspaces too. Their dimensions obey to the
following relation

dim(S + T ) = dim S + dim T − dim(S ∩ T ), (2)

which implies

max{dim S, dim T} ≤ dim(S + T ) ≤ min{dim S + dim T, n}, (3)

max{0, dim S + dim T − n} ≤ dim(S ∩ T ) ≤ min{dim S, dim T}. (4)

If S ∩ T = {0 }, the subspace X = S + T is called direct sum of S and T ,
and is usually denoted by S ⊕ T . In this case

dim X = dim S + dim T,

and the vectors x of X can be expressed in a unique way as the sum

x = s + t, s ∈ S, t ∈ T.

1.6 Definition. Let S be a subspace of Cn. The subspace

S⊥ = {u ∈ Cn : uHv = 0 per ogni v ∈ S}

is called subspace orthogonal to S. The following relations hold

S ∩ S⊥ = {0},

S ⊕ S⊥ = Cn,

dim S⊥ = n− dim S.

thus any vector x ∈ Cn can be expressed in a unique way as

x = s + t, s ∈ S, t ∈ S⊥. (5)

The vector s is called orthogonal projection of x onto S.

1.7 Example. In R3 let S be the subspace generated by the vector

x1 = [0, 0, 1]T .

The vectors of S are all those vectors having two zeros as first and second
entries, thus its dimension is 1. The space S⊥, formed by the vectors having
zero as third entry, is generated by the vectors

x2 = [1, 0, 0]T e x3 = [0, 1, 0]T
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and its dimension is 2. The figure 1.2 gives a geometric explanation of the
relation (5) for this example. (5).

t

s

x

S

S

Fig. 1.2 - Orthogonal projection of x onto S.

1.8 Definition. n nonzero vectors x1, . . . ,xn ∈ Cm are called orthogonal
if xH

i xj = 0 for i 6= j; they are called orthonormal if they are orthogonal
and moreover xH

i xi = 1, i.e. if they have length 1 or, shortly, if they are
normalized. In this case the following notation is often used,

xH
i xj = δij ,

where

δij =
{

1 if i = j,
0 if i 6= j,

is the Kronecker delta.

We remark that n orthogonal vectors are also linearly independent.

1.9 Example. The vectors

x = [1, i, −i]T e y = [i, 1, i]T ,

introduced in the example 1.3 are linearly independent, but are not orthog-
onal, since xHy = −1 6= 0. The vectors

u =
1√
3

x e v =
1√
8

[−2i, −1− i, 1− i]T

are orthonormal, since uHu = 1, vHv = 1 e uHv = 0. The vector

z = ix + y = [2i, 0, i + 1]T
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is a linear combination of x and y, thus the vectors x, y, z are linearly
dependent.

Among all possible bases of Cn, a particular rôle is played by the
orthonormal bases, i.e. those ones whose vectors x1, . . . ,xn are orthonormal.

If we choose a basis x1, . . . ,xk of a subspace S of Cn, we can construct
an orthonormal basis y1, . . . ,yk through Gram-Schmidt orthogonalization
based on the following theorem.

1.10 Theorem. Let x1, . . . ,xk ∈ Cn, k ≤ n, be k linearly independent
vectors. The vectors y1, . . . ,yk, built in this way

t1 = x1 y1 = t1/
√

tH
1 t1,

ti = xi −
i−1∑

j=1

(yH
j xi)yj , yi = ti/

√
tH
i ti, i = 2, . . . , k,

are orthonormal.

Proof. The vectors yi are normalized. In order to prove their orthogonality
we use induction on k. For k = 2, since

tH
2 y1 = xH

2 y1 − (xH
2 y1)yH

1 y1 = 0,

it follows that yH
2 y1 = 0. For k > 2, we assume that the vectors y1, . . . ,yk−1

are orthonormal, and then we show that tk is orthogonal to y1, . . . ,yk−1.
In detail, from the equation

yH
j yi = 0 per j, i ≤ k − 1, i 6= j,

it follows:

tH
k yi = xH

k yi −
k−1∑

j=1

(xH
k yj)yH

j yi

= xH
k yi − (xH

k yi)yH
i yi = 0.

1.11 Example. The vectors of Cn

xi = [1, . . . , 1︸ ︷︷ ︸
i entries

, 0, . . . , 0]T , i = 1, . . . , n,

form a basis of Cn, but this basis is not orthonormal. By applying the Gram-
Schmidt process to the vectors xi, we obtain the vectors ei, i = 1, . . . , n, of
the canonical basis of Cn. The vectors of Cn

x1 = e1 + e2, x2 = e2 + e3, . . . , xn−1 = en−1 + en, xn = en + e1
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are linearly independent. By applying the Gram-Schmidt process we obtain
the vectors

y1 =
1√
2

[1, 1, 0, . . . , 0]T ,

y2 =
1√
2
√

3
[1, −1, −2, 0, . . . , 0]T ,

y3 =
1√
3
√

4
[1, −1, 1, 3, 0, . . . , 0]T ,

...

yn−1 =
1√

n− 1
√

n
[1, −1, . . . , (−1)n, (−1)n(n− 1)]T ,

yn =
1√
n

[1, −1, 1, . . . , (−1)n, (−1)n+1]T ,

which form an orthonormal basis of Cn.

3. Positive definite matrices
If A ∈ Cn×n is a hermitian matrix, that is A = AH , and x ∈ Cn, the

number
α = xHAx

is real. This is due to the fact that, being A hermitian, we have:

α = xHAx = (xHAx)H = xHAHx = xHAx = α.

1.12 Definition. Let A ∈ Cn×n be a hermitian matrix. If for any x ∈
Cn, x 6= 0, the real number α = xHAx has the same sign, we say that the
matrix A is definite, and, in particular:

if xHAx > 0 A is positive definite,
if xHAx ≥ 0 A is positive semidefinite,
if xHAx ≤ 0 A is negative semidefinite,
if xHAx < 0 A is negative definite.

1.13 Example. The hermitian matrix

A =
[

3 i
-i 3

]

is positive definite, because for any x = [x1 , x2]T 6= 0 we have:

xHAx = |x1 − ix2|2 + 2|x2 − ix1|2 > 0.



Chapter 1. Basic elements of linear algebra 11

1.14 Theorem. If a matrix A ∈ Cn×n is positive definite, also its principal
submatrices are positive definite as well.

Proof. Let B a principal submatrix of A obtained by deleting (n − i)
rows and the cooresponding (n − i) columns. For any vector x ∈ Ci, x 6=
0, let us consider the vector y ∈ Cn having zero entries in the positions
corresponding to the rows deleted and the same entries of x in the positions
corresponding to the rows left. Thus, since A is positive definite, we have

xHBx = yHAy > 0.

The principal submatrices of order 1 are made by a single element,
therefore all the principal entries of a positive definite matrix, besides being
real because the matrix is hermitian, are also positive.

4. The determinant

1.15 Definition. Let A ∈ Cn×n. The determinant of A is defined as the
number

detA =
∑

π∈P
sgn(π) a1,π1 a2,π2 . . . an,πn

where P is the set of the n! vectors π = [π1, π2, . . . , πn]T , returned by all the
permutations of the vector [1, 2, . . . , n]T ; any permutation can be expressed
as the composition of a finite number of index transpositions, in infinitely
many ways, but the parity of this number of transpositions depends only
on the permutation, and is referred as the parity of the permutation; the
value sgn(π) is +1 or −1 depending if the parity is even or odd.

The determinant of a matrix can be expressed in a simpler way by
using the Laplace expansion. Let Aij be the square submatrix of order n−1
obtained fron the matrix A by deleting the i-th row and the j-th column,
for any index i we have:

detA =





a11 if n = 1,
n∑

j=1

(−1)i+jaij det Aij if n > 1.
(6)

Let A, B ∈ Cn×n, α ∈ C; the following properties hold:

detA =
n∏

i=1

aii if A is diagonal or triangular;
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det I = 1;

detAT = det A

detAH = detA;

det(AB) = det A detB (Binet’s theorem);

detB = α det A, if B is obtained from A by multiplying by α a
row (or a column);

det(αA) = αn detA;

det B = − detA, if B is obtained from A by exchanging two rows
(or columns);

detB = det A, if B is obtained from A by adding to a row (or
column) another row (or column) multiplied
by a number;

detA = 0, if two or more rows (or columns) of A are lin-
early dependent.

Since det A = detAT , the Laplace expansion for the computation of the
determinant of A can be applied summing over the row index i in the formula
(6).

5. The inverse matrix

1.16 Definitions. Let A ∈ Cn×n, we define:

inverse matrix of A a matrix B ∈ Cn×n such that

AB = BA = I,

adjoint matrix of A the matrix adjA ∈ Cn×n, whose entry in position (i, j)
is given by

(−1)i+j detAji,

where Aji is the submatrix obtained from A by deleting the j-th row and
the i-th column.

A matrix A which does not admit an inverse matrix is called singular.
The following relation holds (see the exercise 1.48)

A adjA = (det A)I.
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It follows that A is not singular (or nonsingular) if det A 6= 0, thus if A is
nonsingular, the inverse matrix, which is denoted as A−1, is unique and it
can be expressed as

A−1 =
1

detA
adjA.

The following properties hold:
(AH)−1 = (A−1)H (the notation A−H can be used);
A−1 = AH if A is unitary, that means AHA = AAH = I;
detA−1 = 1/ detA;
(A B)−1 = B−1A−1.

The following subsets of Cn×n are closed with respect to the inversion, that
is if A is a nonsingular matrix in the subset, also A−1 is in the subset as
well:

− hermitian matrices,
− unitary matrices,
− normal matrices,
− positive (negative) definite matrices,
− superior (inferior) triangular matrices,
− diagonal matrices.

6. Linear systems
Let A ∈ Cm×n, and consider the following subspaces:

S(A) = {y ∈ Cm : y = Ax, x ∈ Cn},
called range of A and

N(A) = {x ∈ Cn : Ax = 0},
called kernel or null space of A. It is well known that

S(A)⊥ = N(AH),

and therefore
dim S(A) + dim N(AH) = m.

The number dim S(A) is called rank of A, it is equal to the number of rows
(and of columns, see the exercise 1.35) linearly independent of A. Since the
rank of A and the rank of AH are equal, we have

dim S(A) + dim N(A) = n. (7)
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More generally, if T is a subspace of Cn, after setting

ST (A) = {y ∈ Cm : y = Ax, x ∈ T},

NT (A) = {x ∈ T : Ax = 0} = N(A) ∩ T,

we have
dim ST (A) + dim NT (A) = dim T.

1.17 Example. Let

A =




1 1 1 1
1 -1 1 -1
1 0 1 0


 .

The subspace S(A) is spanned by the vectors

y1 = [1, 1, 1]T and y2 = [1, −1, 0]T ,

therefore
rank of A = dim S(A) = 2.

The kernel of A is the subspace spanned by the vectors

x1 = [1, 0, −1, 0]T and x2 = [0, 1, 0, −1]T ,

therefore
dim N(A) = 2.

The subspace S(AT ) is spanned by the vectors

x3 = [1, 1, 1, 1]T and x4 = [1, −1, 1, −1]T ,

and we have

rank ofAT = dim S(AT ) = dim S(A) = 2.

The kernel of AT is the subspace spanned by the vector

y3 = [1, 1, −2]T

and we have
dim N(AT ) = 1.

1.18 Example. If x, y ∈ Cn,x, y 6= 0, the matrix (called dyad)

A = xyH
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has rank 1. This is due to the fact that the columns of A are the vectors

y1 x, y2 x, . . . , yn x,

which are pairwise linearly dependent.

If m = n, A is nonsingular if and only if rank of A = n, and from (7)
it follows that A is nonsingular if and only if

dim N(A) = 0,

and this means that the kernel of A contains only the null vector.
If rank of A = r = min{m,n}, then the matrix A is said to have

maximum rank. In this case the matrix AHA ∈ Cn×n has rank r and if
r = n, the matrix AHA is nonsingular. Counterwise if AHA is nonsingular,
then m ≥ n and rank of A is maximum.

1.19 Definition. Let A ∈ Cm×n, b ∈ Cm; we define linear system of m
equations in n unknowns the system

Ax = b, (8)

where x ∈ Cn is the vector of the unknowns, A is the system matrix and b
is the constant terms vector. The system is said consistent if some solution
exists.

1.20 Theorem. The following conditions are equivalent:
a) the system (8) is consistent,
b) b ∈ S(A),
c) the matrix A and the matrix [A|b], obtained by appending to A the

vector b as n + 1-th column, have the same rank.

If the system (8) is consistent and x is a solution, then any solution
of (8) can be expressed as x + y, where y is such that Ay = 0, that is
y ∈ N(A). Therefore the solution is unique if and only if dimN(A) = 0.

The following cases can occur:
1. If n = m, and the matrix A is nonsingular, then S(A) = Cn and
N(A) = {0}. In this case the system is consistent, the solution is unique
and can be expressed as

x = A−1b,

and, by using the Cramer’s rule, also as

xi =
det Ai

det A
, i = 1, . . . , n,
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where Ai is the matrix obtained from A by replacing the i-th column with
the vector b. If b = 0 (homogeneous system), the system admits only the
zero vector as solution. If, on the contrary, the matrix A is singular, the
system may be not consistent. Anyway, the system is consistent if it is
homogeneous, because after appending the zero vector b to the matrix A
we obtain a matrix with the same rank as A.
2. If m < n, that is there are more unknowns than equations, the system, if
consistent, admits infinitely many solutions since dimS(A) ≤ m and then
dim N(A) ≥ n−m > 0.
3. If n < m, that is there are more equations than unknowns, the system
can be consistent only if there are at least m−n equations which are linear
combinations of the left ones.

7. Block matrices

Often it can be simpler to describe a matrix in terms of its submatrices
instead of defining its entries. For instance the matrix

A =




1 0 1 1 1
0 1 1 1 1
1 1 1 0 0
1 1 0 1 0
1 1 0 0 1




can be described in this much more compact fashion:

A =




I2 E

ET I3


 ,

where E ∈ R2×3 is the matrix

E =
[

1 1 1
1 1 1

]
.

We say that A is block partitioned or also that A is a 2× 2 block matrix. In
general a p× q block matrix is a matrix of this form:

A =




A11 A12 . . . A1q

A21 A22 . . . A2q

...
...

...
Ap1 Ap2 . . . Apq


 ,
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where Aij ∈ Cmi×nj , and mi, nj are positive integers, for i = 1, . . . , p, j =
1, . . . , q, therefore A ∈ Cm×n, with

m =
p∑

i=1

mi, n =
q∑

j=1

nj .

A frequent case is when some blocks are row or column vectors, as for
the matrix A ∈ Cn×n

A =




α vH

u B




where α ∈ C, u, v ∈ Cn−1, B ∈ C(n−1)×(n−1).
Many of the definitions given in previous sections can be easily extended

to block matrices. For instance the block matrix

A =




A11 O O
A21 A22 O
A31 A32 A33


 ,

is called block lower triangular. The multiplication of two blocks matrices
A e B can be defined in terms of block row by block column products. For
instance, if

A =




A11 A12

A21 A22


 , B =




B11 B12

B21 B22


 , C =




C11 C12

C21 C22


 ,

are 2× 2 block matrices such that C = AB, then we have

Cij = Ai1B1j + Ai2B2j , i, j = 1, 2.

This property holds in the general case of block matrices, provided that the
number of blocks and their sizes are compatible.

8. Reducible matrices

1.21 Definition. A matrix A of order n ≥ 2 is called reducible if there
exists a permutation matrix Π and an integer number k, 0 < k < n, such
that

B = ΠAΠT =




A11 A12

O A22



}

}

k righe

n− k righe
(9)
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where A11 ∈ Ck×k e A22 ∈ C(n−k)×(n−k). If the matrix A is not reducible,
A is called irreducible.

If a matrix A is reducible, there many permutation matrices Π can
exist which allow to transform the matrix A into a matrix B having the
form (9). If the matrix A of the linear system (8) is reducible, since the
matrix Π in (9) is orthogonal, we have

ΠAΠT Πx = Πb,

and after setting y = Πx e c = Πb, we have

By = c.

By partitioning the vectors

y =




y1

y2



}

}

k entries

n− k entries
c =




c1

c2



}

}

k entries

n− k entries

where y1, c1 ∈ Ck,y2, c2 ∈ Cn−k, the system (8) can be written in the
form {

A11 y1 + A12 y2 = c1

A22 y2 = c2.

The resolution of the system (8) with a coefficient matrix of order n is
addressed to the resolution of two linear systems, the first with a coefficient
matrix of order n− k, the second with a coefficient matrix of order k.

In order to see if the matrix A is reducible, we can consider the direct
graph of A, that is the graph which has as many nodes pi, as the order n
of A, and any ordered pair of nodes pi (start node) and pj (end node) are
connected by a directed arc if aij is different from 0.

1.22 Example. The graph of the matrix

A =




1 3 0
0 2 -1
-1 0 2


 (10)

is represented in the figure 1.3.

p1

p
3

2
p



Chapter 1. Basic elements of linear algebra 19

Fig. 1.3 - Directed graph of the matrix (10).

Two arcs of a directed graph are called consecutive if the end node of
the first arc is the start node of the second one. A sequence of consecutive
directed arcs is called directed path. A directed path is called closed if the
start node of the first arc of the path is also the end node of the last arc.

1.23 Definition. A directed graph is called strongly connected if for any
ordered pair of indices i, j, 1 ≤ i, j ≤ n, with i 6= j, there exists a directed
path wich starts fron the node pi and ends at the node pj .

1.24 Theorem. A matrix A is reducible if and only if its directed graph
is not strongly connected.

Proof. First of all we note that the directed graphs of the matrix A and of
the matrix B = ΠAΠT differ only for a permutation of the indices of the
nodes pi. If the matrix A is reducible, and we consider the matrix B in (9)
and some index i, with k < i ≤ n, then we see that there cannot be any
directed path starting from pi and ending at a node pj , j ≤ k. Conversely,
if the graph of A is not strongly connected, then there exists some node pj

from which it is not possible to reach another node of the graph, at least.
Let P be the subset of nodes which can be reached starting from pj and Q
the subset of nodes which cannot be reached starting from pj . The subsets
P e Q form a partition of the set of all nodes and Q is not empty. Moreover
there cannot exist directed paths starting from a node in P and ending at
a node in Q. The nodes can be rearranged with a permutation, in such a
way that Q = {p1, p2, . . . , pk}, with k ≥ 1, and P = {pk+1, . . . , pn}. The
matrix B obtained rearranging in the same way rows and columns of A is
such that bij = 0 if i > k e j ≤ k.

From theorem 1.24 it follows that if A is irreducible, then there exists
a directed path which touches all the nodes of the graph.

1.25 Example. Given the linear system Ax = b, where

A =




1 0 -1 0
2 3 -2 1
-1 0 -2 0
1 -1 1 4


 , b =




1
-2
-1
-2


 , (11)

in order to see if A è reducible, we consider its directed graph, represented
in figure 1.4:
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Fig. 1.4 - Directed graph of the matrix (11).

In this graph
p1 is the end node of directed paths starting from the nodes p1, p2, p3, p4;
p2 is the end node of directed paths starting from the nodes p2, p4;
p3 is the end node of directed paths starting from the nodes p1, p2, p3, p4;
p4 is the end node of directed paths starting from the nodes p2, p4.

At this point we permute the nodes p1 and p4, in this way the two nodes
which cannot be reached from the other two are brought in the first two
positions. The permutation matrix which represents this permutation of
indices is

Π =




0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0


 ,

and is such that

B = ΠAΠT =




4 -1 1 1
1 3 -2 2
0 0 -2 -1
0 0 -1 1


 , c =




-2
-2
-1
1


 .

By solving the two systems[
-2 -1
-1 1

]
y2 =

[
-1
1

]

and [
4 −1
1 3

]
y1 =

[
-2
-2

]
−

[
1 1
-2 2

]
y2,

we obtain first
y = [−1, −1, 0, 1]T ,

and finally
x = ΠT y = [1, −1, 0, −1]T .


