
Chapter 2

EIGENVALUES AND EIGENVECTORS

1. Definitions
Let A ∈ Cn×n, λ ∈ C and x ∈ Cn,x 6= 0, such that the following

relation holds:
Ax = λx. (1)

Then λ is called eigenvalue of A and x is called eigenvector corresponding
to λ. The set of the eigenvalues of a matrix A is called spectrum of A and
the largest absolute value ρ(A) among the eigenvalues of A is called spectral
radius of A.

The linear system (1), which can be written also in the form

(A− λI)x = 0, (2)

admits nonzero solutions if and only if

det(A− λI) = 0. (3)

By expanding det(A− λI) as a polynomial in λ we obtain

det(A− λI) = P (λ) = a0λ
n + a1λ

n−1 + . . . + an,

with
a0 = (-1)n, ai = (-1)n−iσi, i = 1, . . . , n,

where σi is the sum of the determinants of all the
(
n
i

)
principal submatrices

of A of order i. In detail:

a1 = (-1)n−1tr A, an = det A,

where we have denoted as tr A the trace of A, that is the sum of the principal
entries of A.

From the well known formulas which relate the coefficients of an al-
gebraic equation of degree n to the sum and the product of its roots we
have:

n∑

i=1

λi = tr A e
n∏

i=1

λi = det A. (4)

The polynomial P (λ) is called characteristic polynomial of A and the
equation P (λ) = 0 is called characteristic equation of A.
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Due to the fundamental theorem of algebra, the characteristic equation
admits n roots over the field of complex numbers, taking into account their
multiplicities. Therefore a matrix of order n has, taking into account their
multiplicities, n eigenvalues over the complex field.

Since any nonzero solution of the homogeneous linear system (2)is an
eigenvector, the eigenvectors corresponding to an eigenvalue λ are deter-
mined up to a multiplicative constant α 6= 0, that is if x is an eigenvector
of A, αx is eigenvector of A as well, for the same eigenvalue.

2.1 Example. The characteristic polynomial of the matrix

A =
[

1 3
3 1

]

is the expansion of the determinant

det(A− λI) = det
[

1− λ 3
3 1− λ

]
= λ2 − 2λ− 8.

The corresponding characteristic equation

λ2 − 2λ− 8 = 0

has the roots λ1 = −2 e λ2 = 4, which are the eigenvalues of the matrix
A. The eigenvectors corresponding to λ1 = −2 are computed by solving the
system (2): [

3 3
3 3

] [
x1

x2

]
= 0.

From the first equation we obtain:

x1 + x2 = 0, da cui x1 = −x2,

therefore any vector

x1 = α

[
1
-1

]

with α 6= 0, is an eigenvector of the matrix A corresponding to the eigenvalue
λ1 = −2. The eigenvectors corresponding to λ2 = 4 are computed by solving
the system [

-3 3
3 -3

] [
x1

x2

]
= 0.

From the first equation we obtain:

−x1 + x2 = 0, therefore x1 = x2,
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thus any vector

x1 = α

[
1
1

]

with α 6= 0, is an eigenvector of the matrix A corresponding to the eigenvalue
λ2= 4.

2. Properties of the eigenvalues

− The eigenvalues of a diagonal or triangular (upper or lower) matrix A
are equal to the principal entries. This is due to the fact that the matrix
A − λI is diagonal or triangular as well, therefore its determinant is given
by the product of the principal entries.

− If λ is an eigenvalue of a nonsingular matrix A and x is an eigenvector
corresponding to λ, then λ 6= 0 and 1/λ is an eigenvalue of A−1 with
corresponding eigenvector x. In detail, from

Ax = λx

we have
x = λA−1x

and therefore
λ 6= 0 and A−1x =

1
λ

x.

− If λ is an eigenvalue of a matrix A, then λ is an eigenvalue of AH and λ
is an eigenvalue of AT . In detail, in the first case, since

det AH = detA,

we have

0 = det(A− λI) = det(A− λI)H = det(AH − λI),

and
det(AH − λI) = 0.

One can proceed analogously in the second case.

− If λ is an eigenvector of a unitary matrix A, i.e. a matrix such that
AHA = AAH = I, then |λ| = 1. In detail from the equation Ax = λx we
have

(Ax)H = (λx)H .
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xHAH = λxH ,

and finally
xHAHAx = λλ xHx.

Since A is unitary, we have

xHx = λλxHx,

therefore, since xHx 6= 0,
λλ = |λ|2 = 1.

2.2 Example. The matrix G introduced in example 1.1:

G =
[

cos φ - sin φ
sin φ cosφ

]
, φ ∈ R,

is unitary, thus its eigenvalues have absolute value 1. In detail, from the
characteristic equation

λ2 − 2λ cosφ + 1 = 0

we have
λ1 = cos φ + i sin φ e λ2 = cos φ− i sin φ.

Matrix polynomial are of relevant interest. Let

p(x) = α0x
k + α1x

k−1 + . . . + αk,

where α0, α1, . . . , αk ∈ C, be a polynomial of degree k in the variable x,
and let A ∈ Cn×n. A polynomial in the matrix A is a matrix defined as

p(A) = α0A
k + α1A

k−1 + . . . + αkI

(see exercise 1.3). If λ is an eigenvalue of A and x is a corresponding
eigenvector, then p(λ) is an eigenvalue of p(A) and x is a corresponding
eigenvector. In detail we have:

Aix = Ai−1Ax = Ai−1λx = λAi−1x = λAi−2Ax = . . . = λix,

therefore

p(A)x = α0A
kx + α1A

k−1x + . . . + αkx = α0λ
kx + α1λ

k−1x + . . . + αkx

= p(λ)x.
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2.3 Example. The matrix

A =




1 1 0
1 1 1
0 1 1




has the eigenvalues

λ1 = 1−
√

2, λ2 = 1, λ3 = 1 +
√

2,

whose corresponding eigenvectors are

x1 =




1
-
√

2
1


 , x2 =




1
0
-1


 , x3 =




1√
2

1


 .

The matrix

B = 3A2 −A + 2I =




7 5 3
5 10 5
3 5 7


 ,

has the eigenvalues

µi = 3λ2
i − λi + 2, i = 1, 2, 3,

therefore
µ1 = 10− 5

√
2, µ2 = 4, µ3 = 10 + 5

√
2;

the eigenvectors of B are the same of A.

2.4 Example. The matrix

A =




2 1 1
1 2 1
1 1 2




satisfies the equation
A2 − 5A + 4I = 0. (5)

So, if λ is an eigenvalue of A, λ2 − 5λ + 4 is an eigenvalue of the zero
matrix. Therefore the equation λ2 − 5λ + 4 = 0 holds, and the eigenvalues
of A are λ1 = 1 e λ2 = 4. Since one of these eigenvalues has multiplicity 2,
and the trace of the matrix, which is equal to the sum of all eigenvalues, is
6, λ1 must have multiplicity 2.

The equation (5) can be helpful for computing the inverse of A, because
from

A(5I −A) = 4I

one obtains

A−1 =
1
4

(5I −A) =
1
4




3 -1 -1
-1 3 -1
-1 -1 3


 .

More generally, the following theorem holds.
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2.5 Theorem (Cayley-Hamilton). Let A ∈ Cn×n and let P (λ) be its
characteristic polynomial. Then

P (A) = 0.

Proof. For λ ∈ C let C = A − λI. Let B be the adjoint matrix of C, B
satisfies the equation (see the exercise 1.48)

CB = (det C)I. (6)

The entries of B are determinants of submatrices of size n−1 of the matrix
A− λI, so they are polynomials in λ of degree at most n− 1. The matrix
B can be expressed in this way:

B = λn−1B0 + λn−2B1 + . . . + Bn−1,

where Bj , j = 0, 1, . . . , n− 1 are n. From (6) we have

(det C)I = (A− λI)(λn−1B0 + λn−2B1 + . . . + Bn−1)

= −λnB0 + λn−1(AB0 −B1) + λn−2(AB1 −B2) + . . . + ABn−1.

Moreover

det C = det(A− λI) = P (λ) = a0λ
n + a1λ

n−1 + . . . + an,

thus, by comparing the powers of λ with the same exponent, we have:

a0I = −B0

a1I = AB0 −B1

a2I = AB1 −B2

...
anI = ABn−1.

After multiplying these equations by An, An−1, . . . , I and taking the sums
of both left and right sides, we have finally
a0A

n + a1A
n−1 + a2A

n−2 + . . . + anI

= −AnB0 + An−1(AB0 −B1) + An−2(AB1 −B2) + . . . + ABn−1 = 0.

As a consequence of the Cayley-Hamilton theorem, every matrix A
annihilates its characteristic polynomial P (λ), and any polynomial which is
divided by P (λ).
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The monic polynomial (i.e. with leading coefficient 1) ψ(λ) of minimal
degree which is annihilated by A is called minimal polynomial of A, and is
a factor of P (λ) and of any polynomial p(λ) which is annihilated by A as
well. This can be easily be seen by dividing p(λ) by ψ(λ),

p(λ) = ψ(λ)s(λ) + r(λ),

where the degree of r(λ) is smaller than the degree of ψ(λ). Since

0 = p(A) = ψ(A)s(A) + r(A)

and ψ(A) = 0, then r(A) = 0. But ψ(λ) is the polynomial of minimal degree
vanishing in A, so r(λ) must be identically zero.

Due to the fact that ψ(λ) is a factor of P (λ), the zeros of ψ(λ) must be
eigenvalues of A. Conversely, each eigenvalue of A is a zero of ψ(λ), because,
if µ is an eigenvalue of A, ψ(µ) is an eigenvalue of ψ(A), but ψ(A) = 0, so
ψ(µ) = 0.

Now we know that ψ(λ) has the following form:

ψ(λ) = (λ− λ1)n1(λ− λ2)n2 · · · (λ− λp)np ,

where λ1, λ2, . . . , λp are all the distinct eigenvalues of A, and n1 +n2 + . . .+
np ≤ n. If the matrix A has n distinct eigenvalues, then

P (λ) = (−1)nψ(λ).

2.6 Example. The matrix A introduced in the example 2.4 annihilates the
polynomial

ψ(λ) = λ2 − 5λ + 4,

which is its minimal polynomial, because no constant α exists such that
A + αI = 0, i.e. no polynomial of degree 1 vanishing in A exists.

3. Properties of the eigenvalues

2.7 Theorem. Eigenvectors corresponding to distinct eigenvalues are lin-
early independent.

Proof. Let λ1, . . . , λm, m ≤ n, be m distinct eigenvalues of A ∈ Cn×n,
and let x1, . . . ,xm be corresponding eigenvectors. We proceed by induction
on m.

For m = 1,x1 6= 0, thus x1 is linearly independent.
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For m > 1, by way of contradiction, we assume that a linear combination
of the vectors x1, . . . ,xm exists such that

m∑

i=1

αi xi = 0, (7)

where not all the αi’s are zero, that is αj 6= 0 for some j. In that case at
least one index k exists, k 6= j, such that αk 6= 0, otherwise xj = 0. By
multiplying both sides of (7) by A, we have

0 = A

m∑

i=1

αi xi =
m∑

i=1

αi Axi =
m∑

i=1

αi λi xi, (8)

and by multiplying both sides of (7) by λj , we have

0 = λj

m∑

i=1

αi xi =
m∑

i=1

αi λj xi. (9)

After subtracting side by side the equation (9) from the equation (8), we
have finally:

0 =
m∑

i=1

αi(λi − λj)xi =
m∑

i=1
i 6=j

αi(λi − λj)xi.

But this is a zero linear combination of the m−1 eigenvectors xi 6= 0, i =
1, . . . , m, i 6= j, where λi − λj 6= 0 for i 6= j and not all the αi’s, for i 6= j
are zero, since αk 6= 0: this is a contradiction because the m− 1 vectors are
linearly independent due to the inductive assumption.

It follows from theorem 2.7 that if a matrix A of order n has n distinct
eigenvalues, then A has n linearly independent eigenvectors. If the matrix
A has not n distinct eigenvalues, than A may or may not have n linearly
independent eigenvectors. The following example shows the latter case.

2.8 Example. The matrix

A =
[

4 1
-1 2

]
,

has characteristic polynomial (λ− 3)2, and 3 is the unique eigenvalue, with
multiplicity 2. Since all the corresponding eigenvalues have the form

α

[
1
-1

]
, α 6= 0,
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the matrix A cannot have 2 linearly independent eigenvectors.

Matrices with n distinct eigenvalues are not the only matrices with n
linearly independent eigenvectors. For instance, the identity matrix In has
eigenvalue 1 with multiplicity n, and the vectors ei ∈ Cn, i = 1, . . . , n, of
the canonical basis of Cn can be chosen as eigenvectors.

In case several linearly independent eigenvectors correspond to the same
eigenvalue, then they span a vector subspace: all the nonzero vectors in this
subspace are eigenvectors corresponding to the same eigenvalue, as stated
by the following theorem.

2.9 Theorem. Let A ∈ Cn×n, and let x1,x2 . . . ,xk k be linearly indepen-
dent eigenvectors, all corresponding to the same eigenvalue λ of A. Then a
vector y ∈ Cn, y 6= 0, with the form

y =
k∑

j=1

αj xj

is an eigenvector of A.

Dim. We have

Ay = A

k∑

j=1

αj xj =
k∑

j=1

αjAxj =
k∑

j=1

αjλxj = λ

k∑

j=1

αj xj = λ y.

2.10 Definition. The multiplicity of an eigenvalue λ as a root of the char-
acteristic equation, is denoted with σ(λ), and is called algebraic multiplicity
of λ. The maximum number of linearly independent eigenvectors corre-
sponding to λ is denoted with τ(λ) and is called geometric multiplicity of
λ.

The geometric multiplicity τ(λ) is equal to the dimension of the vector
subspace spanned by the eigenvectors corresponding to λ, that is the vector
subspace

N(A− λI) = { x ∈ Cn : (A− λI)x = 0 },
the null space of A− λI. It is clear that

1 ≤ σ(λ) ≤ n and 1 ≤ τ(λ) ≤ n.
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2.11 Theorem. The following inequality holds:

τ(λ) ≤ σ(λ).

Proof. Let µ be an eigenvalue of A with algebraic multiplicity σ = σ(µ)
and geometric multiplicity τ = τ(µ). From the relation (7) of Chapter 1
one derives

rank of (A− µI) = n− dim N(A− µI) = n− τ,

so all the principal submatrices with orders grater than n− τ of the matrix
A − µI are singular. Since the coefficient of the degree i term of the char-
acteristic polynomial of a matrix is given, but for the sign, by the sum over
the determinants of all the principal submatrices with size n − i, then the
characteristic polynomial of A− µI must have the form

p(λ) = det[(A− µI)− λI] = a0λ
n + a1λ

n−1 + . . . + akλn−k,

where k ≤ n− τ . Therefore the equation p(λ) = 0 has the root λ = 0 with
multiplicity n− k ≥ τ . If we set x = λ + µ, we have

det[(A− µI)− λI] = det(A− xI)

= a0(x− µ)n + a1(x− µ)n−1 + . . . + ak(x− µ)n−k,

thus the multiplicity of µ as a root of the characteristic equation is σ ≥ τ .

2.12 Example. The matrix A ∈ Rn×n, defined as follows

aij =

{ 1 per j = i,
1 per j = i + 1,
0 altrimenti,

that is

A =




1 1
1 1

. . . . . .
1 1

1




,

has eigenvalue 1 with algebraic multiplicity n, and the corresponding eigen-
values are x = αe1, α 6= 0. For this matrix we have therefore τ(1) = 1 e
σ(1) = n.
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If we consider the identity matrix In, which has eigenvalue 1 with al-
gebraic multiplicity n, we have τ(1) = σ(1) = n.

4. Similarity transformations
Given a basis u1,u2, . . . ,un of Cn and a matrix A ∈ Cn×n, there a

unique linear application L :Cn → Cn exists, defined over the vectors of
the basis as

L(uj) =
n∑

i=1

aij ui. (10)

The application L can be extended straightforward, by linearity, to all vec-
tors x ∈ Cn. Let us consider the matrices U and W , whose columns are
the vectors uj and L(uj), respectively. Then the equation (10) can be
represented in the form:

W = UA. (11)

The same linear application L can be represented by referring two different
bases u1,u2, . . . ,un and v1,v2, . . . ,vn: two different matrices, A and B,
would be obtained as representations. If V and Z are the matrices whose
columns are the vectors vj and L(vj) respectively, the following equation,
analogue to (11), holds:

Z = V B. (12)

Now we want to find the relation between the matrices A and B. Assume
that the vectors ui and vi, i = 1, . . . , n, satisfy the relations

vj =
n∑

i=1

sij ui, j = 1, 2, . . . , n, (13)

that, in a more compact way, can be rewritten as:

V = US,

where the nonsingular matrix S is the change of basis matrix. By substi-
tuting into (12) we have

Z = USB. (14)

Moreover, since L is linear, from (13) we have:

L(vj) = L (
n∑

i=1

sij ui) =
n∑

i=1

sij L(ui)

that is
Z = WS. (15)
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Substituting (11) into (15) we have:

Z = UAS

and, by comparing with (14), since U is nonsingular, we have:

AS = SB

and
A = SBS−1.

If the two bases u1,u2, . . . ,un e v1,v2, . . . ,vn are orthonormal, the matrices
U and V are unitary, so the matrix S is unitary as well, because

I = V HV = (US)H(US) = SHUHUS = SHS.

In this case the matrices A and B satisfy the relation

A = SBSH .

2.13 Definition. Two matrices A,B ∈ Cn×n are called similar if a non-
singular matrix S exists such that

A = SBS−1.

The transformation from A into B is called similarity transformation. If the
matrix S is unitary, the transformation is called unitary similarity transfor-
mation.

We remark that similarity is an equivalence relation, since it enjoys the
properties of reflexivity, symmetry and transitivity.

Given a matrix A, let us consider the linear application LA represented
by A with respect to the canonical basis ei, i = 1, . . . , n di Cn; then for all
vectors x ∈ Cn we have

LA(x) = Ax.

Thus from (1), reformulated in terms of linear applications, we find that the
eigenvectors x of A are the vectors which are transformed by the application
LA in vectors which are multiple of themselves. Thus every eigenvector lies
on a straight line which is invariant under the linear application LA. There-
fore the properties of the eigenvalues and of the eigenvectors are essential
properties of the linear application, even if we derive them from the matrix
which represents it with respect to a particular basis. This fact is expressed
by the following theorem.
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2.14 Theorem. Two similar matrices have the same eigenvalues with the
same algebraic and geometric multiplicities.

Proof. Let A and B be similar matrices, that is A = SBS−1 for some
invertible matrix S. We have:

det(A− λI) = det(SBS−1 − λSS−1) = det [S(B − λI)S−1]

= det S det(B − λI) det(S−1) = det(B − λI)

Therefore both A and B have the same characteristic polynomial, the same
eigenvalues with the same algebraic multiplicities. If x is an eigenvector of
A corresponding to the eigenvalue λ, we have:

SBS−1x = λx

and
BS−1x = λS−1x.

As a consequence, the vector y = S−1x is an eigenvector of B corresponding
to λ. Moreover, since S−1 is nonsingular, if xi, i = 1, . . . , τ(λ), are linearly
independent eigenvectors of A, also yi = S−1xi, i = 1, . . . , τ(λ) are linearly
independent. So A e B have the same eigenvalues with the same geometric
multiplicities.

The above theorem shows also that if two matrices are similar, they
have the same trace and the same determinant.

2.15 Definition. A matrix A similar to a diagonal matrix D is called
diagonalizable.

2.16 Theorem. A matrix A of order n is diagonalizable if and only if it has
n linearly independent eigenvectors. Moreover the columns of the matrix
S, such that S−1AS is diagonal, are the eigenvectors of A.

Proof. First we assume that A has n linearly independent eigenvectors
x1, . . . ,xn, corresponding to the eigenvalues λ1, . . . , λn. Let D be the di-
agonal matrix with λi as i-th principal entry, and S the matrix whose i-th
column is xi. From the equation

Axi = λixi, i = 1, 2, . . . , n,

we have also that
AS = SD. (16)
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Since S is nonsingular, due to the linear independence of its columns, the
inverse S−1 exists; thus from (16) we have

A = SDS−1.

Conversely, let A = SDS−1, where D is a diagonal matrix with the eigen-
values of A as principal entries. So we have also AS = SD. If we call
s1, . . . , sn the columns of S, we have:

A [s1 | s2 | . . . | sn] = [λ1s1 |λ2s2 | . . . |λnsn]

and
Asi = λisi, i = 1, 2, . . . , n.

Therefore the n columns of S are eigenvectors of A, which turn out to be
linearly independent, since S is nonsingular.

2.17 Example. The matrices A and B = 3A2 − A + 2I introduced in the
example 2.3 have three distinct eigenvalues, are diagonalized by the same
similarity transformation, since they share the same set of three linearly
independent eigenvectors. If we set

S =




1 1 1
-
√

2 0
√

2
1 -1 1


 ,

we have

S−1 =




1/4 -
√

2/4 1/4
1/2 0 -1/2
1/4

√
2/4 1/4




and

A = S




1−√2 0 0
0 1 0
0 0 1 +

√
2


 S−1,

B = S




10− 5
√

2 0 0
0 4 0
0 0 10 + 5

√
2


 S−1,

Also the matrix A introduced in the example 2.4 has three linearly inde-
pendent eigenvectors, although it does not have three distinct eigenvalues,
therefore it is diagonalizable. If we set

S =




0 1 1
1 0 1
-1 -1 1


 ,
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we have

S−1 =
1
3




-1 2 -1
2 -1 -1
1 1 1




and

A = S




1 0 0
0 1 0
0 0 4


 S−1.

5. Canonical forms

It follows, from theorems 2.7 e 2.16, that if a matrix has all distinct
eigenvalues, then it is diagonalizable, because it has n linearly independent
eigenvectors. If a matrix does not have all distinct eigenvalues, then it may
not be diagonalizable and this happens when one, at least, eigenvalue of
A has the geometric multiplicity smaller than the algebraic one. In this
regard, the following theorem plays a fundamental role (for the proof see
[3]).

2.18 Theorem (Jordan canonical or normal form). Let A ∈ Cn×n

and λi, i = 1, . . . , p, be its distinct eigenvalues, with algebraic and geometric
multiplicities σ(λi) and τ(λi) respectively. Then A is similar to a block
diagonal matrix

J =




J1

J2

. . .

Jp


 ,

where the square block Ji, corresponding to the eigenvalue λi, has order
σ(λi), and is block diagonal itself:

Ji =




C
(1)
i

C
(2)
i

. . .

C
(τ(λi))
i


 , i = 1, 2, . . . , p,

where each one of the τ(λi) blocks has the form

C
(j)
i =




λi 1
. . .

. . .

λi 1
λi


 ∈ Cν

(j)
i
×ν

(j)
i , j = 1, 2, . . . , τ(λi),
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with the integers ν
(j)
i such that

τ(λi)∑

j=1

ν
(j)
i = σ(λi).

The matrix J is called Jordan canonical (or normal) form of the matrix A.
It is unique, up to the ordering of its blocks.

If the eigenvalues λi di A are all distinct, the blocks Ji are all of order
one, therefore the matrix is diagonalizable. If, on the contrary, the eigenval-
ues are not all distinct but A has n linearly independent eigenvalues, then
the blocks Ji are diagonal, and also in this case the matrix is diagonalizable.

2.19 Example. The knowledge of all the eigenvalues, with their multiplic-
ities, is not sufficient to determine the structure of the Jordan canonical
fornm, as this example shows. Both the matrices

A1 =




-4 7 4 -8 6 -3
-5 7 5 -8 6 -3
-4 4 6 -7 6 -3
-3 3 3 -4 6 -3
-2 2 2 -4 6 -2
-1 1 1 -2 2 1




and

A2 =




-4 12 -10 8 -6 4
-5 12 -9 8 -6 4
-4 8 -6 8 -6 4
-3 6 -16 8 -5 4
-2 4 -4 4 -2 4
-1 2 -2 2 -2 4




have the eigenvalue λ = 2, with algebraic multiplicity 6 and geometric
multiplicity 3. Their Jordan canonical forms are the following:

A1 = SJ ′S−1 = S




2 1 0
0 2 1
0 0 2

2 1
0 2

2




S−1

and



Chapter 2. Eigenvalues and Eigenvectors 61

A2 = SJ ′′S−1 = S




2 1
0 2

2 1
0 2

2 1
0 2




S−1.

In both cases

S =




6 5 4 3 2 1
5 5 4 3 2 1
4 4 4 3 2 1
3 3 3 3 2 1
2 2 2 2 2 1
1 1 1 1 1 1




, S−1 =




1 -1
-1 2 -1

-1 2 -1
-1 2 -1

-1 2 -1
-1 2




.

If the matrix A has real entries, then there exists a Jordan real canonical
form of A, analogous to the one defined in 2.18, where the blocks C

(j)
i

corresponding to real eigenvalues have the same form described in theorem
2.18, while the blocks C

(j)
i corresponding to nonreal eigenvalues are modified

in this way: for every pair λi = ai+ibi and λi = ai−ibi of conjugate complex
eigenvalues of A the submatrices C

(j)
i are block bidiagonal with the form

C
(j)
i =




Ei I2

Ei I2

. . . . . .
. . . I2

Ei




,

where

Ei =
[

ai -bi

bi ai

]
.

2.20 Example. The matrix

A =




8 -16 13 -3
6 -12 10 -2
4 -9 9 -3
2 -5 5 -1




has the Jordan canonical form

A = SJS−1 = S




1 + i 1 0 0
0 1 + i 0 0
0 0 1− i 1
0 0 0 1− i


 S−1,
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where

S =




4− 3i 2− i 4 + 3i 2 + i
3− 3i 2− i 3 + 3i 2 + i
2− 2i 2− i 2 + 2i 2 + i
1− i 1− i 1 + i 1 + i




and

S−1 =
1
2




1− i -1 + 2i -i 0
0 -1 2− i -1 + 2i

1 + i -1− 2i i 0
0 -1 2 + i -1− 2i


 .

The matrix A has real entries, thus it can be represented by the Jordan real
canonical form

A = ZJRZ−1 = Z




1 -1 1 0
1 1 0 1
0 0 1 -1
0 0 1 1


 Z−1,

where

Z =




4 3 2 1
3 3 2 1
2 2 2 1
1 1 1 1


 , Z−1 =




1 -1 0 0
-1 2 -1 0
0 -1 2 -1
0 0 -1 2


 .

The minimal polynomial of A can be obtained from the Jordan canon-
ical form. In detail, if we set A = SJS−1, where J is the Jordan real
canonical form of A, for any integer k we have

Ak = SJS−1SJS−1 . . . SJS−1︸ ︷︷ ︸
k times

= SJkS−1

and, for any polynomial P (A):

P (A) = SP (J)S−1.

Thus, for the minimal polynomial ψ(λ) of A, we have

ψ(A) = Sψ(J)S−1,

therefore the minimal polynomials of A and of J are the same. Due to the
block diagonal structure of J we have also
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ψ(J) =




ψ(J1)
ψ(J2)

. . .
ψ(Jp)


 ,

and, as a consequence,

ψ(λ) = (λ− λ1)n1(λ− λ2)n2 . . . (λ− λp)np ,

must have exponents ni, i = 1, 2, . . . , p, such that (λ− λi)ni is the minimal
polynomial of Ji, that is the integers ni must be the smallest ones which
allows the polynomial (λ−λi)ni to be simultaneously annihilated in all the
submatrices C

(j)
i , j = 1, 2, . . . , τ(λi). This happens if and only if ni is the

largest among the orders of the submatrices C
(j)
i , for j = 1, 2, . . . , τ(λi).

2.21 Example. The minimal polynomial of the matrix A1 introduced in
the example 2.19 is

ψ(λ) = (λ− 2)3,

while the minimal polynomial of the matrix A2 of the same example is

ψ(λ) = (λ− 2)2.

Among all the similarity transformations which relate the matrices B
and A = SBS−1, a relevant interest has to be given to those ones defined
by a unitary S, i.e. the matrices satisfying the equations SHS = SSH = I.
The following theorem shows how it is possible, by means of a unitary
similarity, to transform any matrix into an upper triangular one.

2.22 Theorem (Schur canonical or normal form). Let A ∈ Cn×n and
let λ1, . . . , λn be its eigenvalues. Then a unitary matrix U and an upper
triangular matrix T exist such that

A = UTUH .

The principal entries of T are the eigenvalues λi.

Proof. We proceed by induction on the order n. For n = 1 the thesis holds,
T = [λ1] and U = [1] can be chosen. For n > 1, let x1 be a normalized
eigenvector for the eigenvalue λ1, and let S be the space spanned by x1. If
we denote with y2, . . . ,yn the vectors of an orthonormal basis of the space
S⊥, the matrix

Q = [x1 |y2 | . . . |yn ]
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is unitary, and QHx1 = e1. Let us consider the matrix

B = QHAQ

whose first column is

Be1 = QHAQe1 = QHAx1 = QHλ1x1 = λ1Q
Hx1 = λ1e1

therefore B can be partitioned in the following way:

B =




λ1 cH

0 A1


 ,

where c ∈ Cn−1 and A1 ∈ C(n−1)×(n−1). By the inductive assumption a
unitary matrix U1 ∈ C(n−1)×(n−1) exists such that

A1 = U1A2U
H
1 ,

where A2 ∈ C(n−1)×(n−1) is upper triangular. Then we have

A = QBQH = Q




λ1 cH

0 A1


 QH = Q




λ1 cH

0 U1A2U
H
1


 QH .

If we denote with U2 ∈ Cn×n the unitary matrix

U2 =




1 0H

0 U1


 ,

we obtain:

A = QU2




λ1 cHU1

0 A2


 UH

2 QH .

The matrix U = QU2 is unitary as well, since it is the product of unitary
matrices, so we have

A = U




λ1 cHU1

0 A2


 UH .

But A2 is upper triangular, so the proof is concluded.
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2.23 Example. The matrix

A =
1
2




5 -5 1 -1
5 -5 3 1
-1 -1 -1 -1
3 -1 1 1




has the eigenvalue λ1 = i with the corresponding normalized eigenvector.

x1 =
1
2

[ 1 , 1 , i , −i ]T .

Then three more vectors x2,x3,x4 ∈ C4 can be considered, such that they
complete x1 in a basis of C4:

x2 =




1
1
0
0


 , x3 =




0
1
1
0


 , x4 =




0
0
1
1


 .

Then starting from the vectors xi, i = 1, ..., 4, by using the Gram-Schmidt
orhogonalization, the following three vectors y2,y3,y4 are built:

y2 =
1
2




1
1
-i
i


 , y3 =

1
2




-1
1
1
1


 , y4 =

1
2




1
-1
1
1


 ,

so that the matrix

Q = [x1 | y2 | y3 | y4] =
1
2




1 1 -1 1
1 1 1 -1
i -i 1 1
-i i 1 1




is unitary. Then we have

B = QHAQ =




i 0 -2 3 + i
0 -i -2 3− i
0 0 0 1
0 0 -1 0


 =




T1 C

O A1


 ,

where T1 ∈ C2×2 is upper triangular (more precisely in this case T1 is
diagonal). The procedure must be applied again to the matrix

A1 =
[

0 1
-1 0

]
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which has the eigenvalue i too, with the normalized eigenvector

z1 =
1√
2

[
-i
1

]
.

By using Gram-Schmidt the vector

z2 =
1√
2

[
i
1

]

is computed, so that the matrix

Q1 =
1√
2

[
-i i
1 1

]

is unitary, and we have finally

B1 = QH
1 A1Q1 =

[
i 0
0 -i

]
.

The Schur canonical form of A is therefore

A = QBQH = Q




I2 O

O Q1







T1 CQ1

O QH
1 A1Q1







I2 O

O Q1




H

QH

= U




i 0 (3 + 3i)/
√

2 (3− i)/
√

2
0 -i (3 + i)/

√
2 (3− 3i)/

√
2

0 0 i 0
0 0 0 -i


 UH ,

where U is the unitary matrix

U = Q




I2 O

O Q1


 =

1
2




1 1 (1 + i)/
√

2 (1− i)/
√

2
1 1 (-1− i)/

√
2 (-1 + i)/

√
2

i -i (1− i)/
√

2 (1 + i)/
√

2
-i i (1− i)/

√
2 (1 + i)/

√
2


 .

As in the case of the Jordan canonical form, also in the case of the Schur
canonical form, if the matrix A is real the Schur real canonical (normal)
form.
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2.24 Theorem. If A ∈ Rn×n, an orthogonal matrix U ∈ Rn×n and a block
upper triangular matrix T ∈ Rn×n exist, such that A = UTUT , where T
has the form

T =




R11 R12 · · · R1m

R22 · · · R2m

. . .
...

Rmm


 ,

where the blocks Rjj per j = 1, 2, . . . ,m have order 1 o 2. If λj is a real
eigenvalue of A, then Rjj has order 1 and coincides with [λj ], if λj is not
real, the the block Rjj has order 2 and eigenvalues λj and λj . The sum of
the orders of all the blocks Rjj , j = 1, 2, . . . ,m is exactly n.

Proof. The proof is by induction, as already done for theorem 2.22. If the
eigenvalue λ1 is real, the same reasoning done for the complex case can be
repeated. If λ1 = µ1+iν1, µ1, ν1 ∈ R, ν1 6= 0, the corresponding eigenvector
x1 + iy1, x1, y1 ∈ Rn is considered, where the vector x1 is assumed to be
normalized. Since

A(x1 + iy1) = Ax1 + iAy1 = (µ1x1 − ν1y1) + i(µ1y1 + ν1x1),

then

A[x1 |y1 ] = [x1 |y1 ]
[

µ1 ν1

-ν1 µ1

]
. (17)

The vectors x1 e y1 are linearly independent: if they were dependent, a
constant α 6= 0 would exist such that y1 = αx1, and therefore

x1 + iy1 = x1 + iαx1 = (1 + iα) x1,

thus the real vector x1 would be a real eigenvector of A corresponding to
the complex eigenvector λ1, and this is not possible, because A is real.

The normalized vector z1 is computed, orthogonal to the vector x1, by
setting

z1 = βx1 + γy1, γ =
1√

yT
1 y1 − (xT

1 y1)2
, β = -γ(xT

1 y1).

Therefore

[x1 | z1 ] = [x1 |y1 ] W, dove W =
[

1 β
0 γ

]
. (18)

Then an orthogonal matrix Q ∈ Rn×n is computed, with x1 and z1 as the
first two columns:

Q = [x1 | z1 |y3 | . . . |yn ].
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The proof goes on in the same way as in the case of theorem 2.22. For the
first two columns of the matrix B = QT AQ we have from (17) e (18):

B [ e1 | e2 ] = QT A [x1 | z1 ] = QT A [x1 |y1 ]W

= QT [x1 |y1 ]
[

µ1 ν1

-ν1 µ1

]
W = QT [x1 | z1 ] W−1

[
µ1 ν1

-ν1 µ1

]
W.

Since Q is orthognal, the first two columns of B can be written in the
following way:

B [ e1 | e2 ] =




I2

O


 W−1

[
µ1 ν1

-ν1 µ1

]
W =




R11

O



}

}

2 righe

n− 2 righe,

where the block

R11 = W−1

[
µ1 ν1

-ν1 µ1

]
W

is real and has eigenvalues λ1 and λ1. The proof can be continued by using
the inductive assumption as in the proof of theorem 2.22.

2.25 Example. We want to determine the Schur canonical form of the
matrix

A =
1
2




5 -5 1 -1
5 -5 3 1
-1 -1 -1 -1
3 -1 1 1




introduced in the example 2.23. The matrix A has the eigenvalue λ1 = i
with the corresponding eigenvector

x1 + iy1 =
1√
2




1
1
i
-i


 =

1√
2




1
1
0
0


 + i

1√
2




0
0
1
-1


 .

In this case the eigenvectors x1 e y1 are orthonormal. Then let us consider
the two orthonormal vectors

y3 =
1√
2




1
-1
0
0


 , y4 =

1√
2




0
0
1
1


 .

The matrix
U = [x1 |y1 |y3 |y4 ]
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is orthogonal, and it is such that

A = U




0 1 5 1
-1 0 -1 0
0 0 0 -1
0 0 1 0


 UT .

Thus the Schur real canonical form has been found.

A special and important case is given by the hermitian matrices.

2.26 Theorem. Let A be a hermitian matrix of order n, that is A = AH ,
and let λ1, . . . , λn be its eigenvalues. Then a unitary matrix U exists such
that

A = U




λ1

λ2

. . .

λn


 UH ,

so the matrix A is diagonalizable. Moreover the eigenvalues λi, i = 1, . . . , n
are real, and the columns of U are a set of orthonormal vectors.

Proof. By theorem 2.22 we have T = UHAU , where T is an upper trian-
gular matrix and U is unitary. Since A = AH , we have

TH = (UHAU)H = UHAHU = UHAU = T,

so the triangular matrix T is diagonal with real principal entries and by
theorem 2.16 the columns of U , which are orthonormal since U is unitary,
are eigenvectors of A.

If the matrix A is real and symmetric, the matrix U is real too, therefore
it is orthogonal.

2.27 Example. The matrix

A =




1 i 0
-i 2 -i
0 i 1




Has eigenvalues λ1 = 0, λ2 = 1 e λ3 = 3, with corresponding eigenvectors

x1 = α1




1
i
1


 , x2 = α2




1
0
-1


 , x3 = α3




1
-2i
1


 , α1, α2, α3 6= 0,



70 Chapter 2. Eigenvalues and Eigenvectors

which form a set of orthogonal vectors, and are also normalized if we set
α1 = 1/

√
3, α2 = 1/

√
2 e α3 = 1/

√
6. Thus, in this case, the matrix

U = [x1 |x2 |x3 ],

that is

U =
1√
6



√

2
√

3 1
i
√

2 0 -2i√
2 -

√
3 1


 ,

is unitary, and the following relation holds:

A = U




0 0 0
0 1 0
0 0 3


 UH .

A wider class which includes, as special instances, hermitian and uni-
tary matrices, is the class of normal matrices, which are those matrices
satisfying the equation AHA = AAH . These matrices are particularly im-
portant, because they are all and only those matrices which can be diag-
onalized by unitary similarity transformarmations. Indeed, the following
theorem holds.

2.28 Theorem. A matrix A ∈ Cn×n is normal, i.e. AHA = AAH , if and
only if a unitary matrix U exists such that

A = U




λ1

λ2

. . .

λn


 UH ,

where λ1, . . . , λn are the eigenvalues of A. The columns of the matrix U are
eigenvectors of the matrix A, so a set of n orthonormal eigenvectors exists.

Proof. Let us assume that A is normal. By theorem 2.22 A unitary matrix
U exists such that

T = UHAU,

where T is upper triangular. We have:

THT = UHAHUUHAU = UHAHAU,

TTH = UHAUUHAHU = UHAAHU.

Since A is normal, it follows that

THT = TTH , (19)
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so T is normal as well. Now we show, by induction on n, that T is diagonal.
This is trivial when n = 1. If n > 1, since T is upper triangular, the entry
p11 of the matrix P = THT = TTH can be written in the following two
ways:

p11 = t11t11 = |λ1|2 and p11 =
n∑

j=1

t1jt1j = |λ1|2 +
n∑

j=2

|t1j |2,

therefore
t1j = 0, per j = 2, . . . , n,

thus all the entries in the first row of T are zero, with the exception of t11.
If we denote with Tn−1 the submatrix obtained from T by deleting the first
row and the first column, from (19) it follows that

TH
n−1Tn−1 = Tn−1T

H
n−1.

By the induction assumption Tn−1 is diagonal, so T is diagonal as well.
Conversely, let A be diagonalizable by means of a unitary similarity:

A = UDUH ,

with D diagonal. We have:

AHA = UDHUHUDUH = UDHDUH ,

AAH = UDUHUDHUH = UDDHUH .

Since D is diagonal, DHD and DDH are diagonal as well, and their principal
entries are λiλi in both cases; therefore DHD = DDH and finally

AHA = AAH .

When A is a real normal matrix, its Schur real canonical form is

A = UTUT ,

where T and U are real, U is orthogonal, and T is block diagonal, with
blocks of order 1 or 2.

2.29 Example. The matrix A ∈ R4×4

A =




4 -5 0 3
0 4 -3 -5
5 -3 4 0
3 0 5 4



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is normal, because AT A = AAT , so it is diagonalizable by means of a
unitary similarity. By setting

U =
1
2




1 1 1 1
-1 -i i 1
1 -i i -1
1 -1 -1 1


 ,

one has

A = U




12
1 + 5i

1− 5i
2


 UH .

A can be represented also in terms of its Schur real canonical form. Since

[
1 + 5i 0

0 1− 5i

]
= V

[
1 -5
5 1

]
V H ,

where V is the unitary matrix

V =
1√
2

[
1 -i
1 i

]
,

one has

A = Z




12 0 0 0
0 1 -5 0
0 5 1 0
0 0 0 2


 ZT ,

where the orthogonal matrix Z has the following form:

Z = U




1 0H 0
0 V 0
0 0H 1


 =

1
2




1
√

2 0 1
-1 0 -

√
2 1

1 0 -
√

2 -1
1 -

√
2 0 1


 .

A consequence of the Schur theorem is a complete characterization
of the eigenvalues of matrix polynomials. This result is expressed by the
following theorem, whose proof is immediate.



Chapter 2. Eigenvalues and Eigenvectors 73

2.30 Theorem. Let A = UTUH be the Schur canonical form of the matrix
A. If p(x) is a polynomial in x, then p(A) = Up(T )UH and the eigenvalues
of p(A) are all and only those numbers p(λ), where λ is an eigenvalue of A.

Let p(x) and q(x) be two polynomials in x, such that q(λ) 6= 0 for each
eigenvalue λ of A, and let us consider the rational function f(x) = p(x)/q(x).
By theorem 2.30, the matrix q(A) is nonsingular, so it is possible to define

f(A) = [q(A)]−1p(A).

For the matrix f(A) the following property holds, which extends the result
stated by theorem 2.30:

f(A) = Uf(T )UH . (20)

6. Some properties of positive definite matrices

2.31 Theorem. Let A be a hermitian matrix of order n and let λ1, . . . , λn

be its eigenvalues. Then A is positive definite if and only if λi > 0, i =
1, . . . , n.

Proof. First we will show that if A is positive definite, then its eigenval-
ues are positive. Since A is hermitian, it has real eigenvalues. If λ is an
eigenvalue and x 6= 0 is a corresponding eigenvector, one obtains from the
equation Ax = λx, by multiplying on the left by xH ,

xHAx = λxHx.

Since A is positive definite, the left hand side is positive, so, due to the
condition xHx > 0, one has λ > 0.

Viceversa, since A is hermitian, it can be expressed as A = UDUH ,
with U unitary and D diagonal, having as principal entries the eigenvalues
λi, i = 1, . . . n, di A. If x ∈ Cn,x 6= 0, one has:

xHAx = xHUDUHx = yHDy, (21)

where the vector y = UHx cannot be 0, because U is nonsingular. From
(21):

xHAx = (y1, . . . , yn)




λ1

λ2

. . .
λn







y1
...

yn




= λ1y1y1 + ... + λnynyn = λ1|y1|2 + · · ·+ λn|yn|2 > 0

,
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since all the eigenvalues λi are positive and at least one entry |yi| is nonzero.

The determinant of a matrix is the product of all its eigenvalues: from
this property and from theorem 2.31 it follows that the determinant of a
positive definite matrix is positive. Moreover, by theorem 2.31 we have that
the inverse of a positive definite matrix is positive definite as well. More
in detail, the inverse A−1 of a hermitian positive definite A is hermitian,
and the eigenvalues of A−1 are positive because they are the inverses of the
eigenvalues of A.

2.32 Example. The hermitian matrix

A =




1 i 0
-i 2 -2i
0 2i 5




is positive definite, because for any vector x 6= 0 one has

xHAx = |x1 + ix2|2 + |x2 − 2ix3|2 + |x3|2 > 0,

and its characteristic polynomial is

P (λ) = −λ3 + 8λ2 − 12λ + 1. (22)

Look at the graphic of P (λ) in figure 2.1, and compute the values assumed
by this polynomial in 1, 2, 7:

P (0) = 1, P (1) = −4, P (2) = 1, P (7) = −34,

thus it is clear that the polynomial has 3 real zeros in the intervals

(0, 1), (1, 2) e (2, 7),

and this means that all the eigenvalues A are positive.

0 1

10

λ

Fig. 2.1 - Graphic of the polynomial(22).
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2.33 Theorem. A hermitian matrix A is positive definite if and only if the
determinants of all the leading principal submatrices of A (notice that also
the determinant of A is included) are positive.

Proof. If A is positive definite, then the thesis directly follows from theorem
1.14. Conversely, let us assume that the determinants of all the leading
principal submatrices of A are positive and use induction on n. For n = 1
the result is obvious. For n > 1, let λ1, . . . , λn be the eigenvalues of A.
Since, by assumption, the product of the λi’s is positive, it will be shown
that an even number of negative eigenvalues cannot exist, and therefore all
the λi’s are positive. So let us assume, by way of contradiction, that m
negative eigenvalues exist, with m ≥ 2, m even (one can assume, without
violating generality, that such eigenvalues are the first m). Let U be a
unitary matrix such that A = UDUH , where D is the diagonal matrix
whose principal entries are the λi’s, arranged in the required order. Then
two vectors x,y ∈ Cn, can be found, such that

x,y 6= 0, xn = 0, ym+1 = ym+2 = . . . = yn = 0, y = UHx.

In fact, by partitioning UH and the vectors x,y in the following way

UH =




V v

W w



}

}

m rows

n−m rows

x =




x1

0



}

}

n− 1 entries

1 entry
y =




y1

0



}

}

m entries

n−m entries

from the equation y = UHx one obtains

V x1 = y1

Wx1 = 0.

Since in the matrix W the number (n − 1) of columns is larger than the
number of rows (n − m,m ≥ 2), a zero linear combination, with some
nonzero coefficient, of the columns of W exists. Consider the vector x1 6= 0
made up of these coefficients, such that Wx1 = 0 and y1 = V x1 6= 0,
otherwise the first n − 1 columns of UH would be linearly dependent. For
the quadratic form related to A the following equation follows

xHAx = xHUDUHx = yHDy =
n∑

i=1

λi |yi|2 =
m∑

i=1

λi |yi|2 < 0,

which gives a contradiction, because

xHAx = xH
1 An−1x1,

where An−1 ∈ C(n−1)×(n−1) is the leading principal submatrix of order
n− 1, which is positive definite by the inductive assumption.
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7. Eigenvalue localization
In this section three theorems will be given which allow to determine

special subsets of the complex plane containing some or all the eigenvalues
of a matrix.

2.34 Definition. Let A ∈ Cn×n. The circles of the complex plane

Ki = { z ∈ C : |z − aii| ≤
n∑

j=1
j 6=i

|aij | }, i = 1, 2, . . . , n,

with centers aii and radii ri =
n∑

j=1
j 6=i

|aij | are called Gershgorin circles. The

following theorem holds

2.35 Theorem (1st Gershgorin theorem). All the eigenvalues of the
matrix A of order n belong to the union

⋃

i=1,...,n

Ki.

Proof. Let λ be an eigenvalue of A and x be a corresponding eigenvector,
i.e.

Ax = λx, x 6= 0.

Therefore one has:
n∑

j=1

aij xj = λxi, i = 1, . . . , n,

and

(λ− aii)xi =
n∑

j=1
j 6=i

aij xj , i = 1, . . . , n. (23)

Let xp be an entry of x with maximum modulus, that is

|xp| = max
j=1,...,n

|xj | 6= 0, (24)

and, by setting i = p in (23), one has:

(λ− app)xp =
n∑

j=1
j 6=p

apj xj
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and

|λ− app| |xp| ≤
n∑

j=1
j 6=p

|apj | |xj |. (25)

So, from (24),

|λ− app| |xp| ≤
n∑

j=1
j 6=p

|apj | |xp|.

Finally after dividing both sides by |xp| > 0, the following inequality is
obtained:

|λ− app| ≤
n∑

j=1
j 6=p

|apj |, (26)

i.e. λ ∈ Kp. It is worthwhile to remark that, since the value of p is unknown
a priori, it is only possible to localize λ in the union of all the circles Ki.

By applying the theorem above to the matrix AT , which has the same
eigenvalues as A, it results that the eigenvalues of A belong also to the union
of the circles

Hi = { z ∈ C : |z − aii| ≤
n∑

j=1
j 6=i

|aji| }, i = 1, 2, . . . , n,

thus the eigenvalues of A belong to the intersection
( ⋃

i=1,...,n

Ki

)⋂( ⋃

i=1,...,n

Hi

)
.

2.36 Example. Let us consider the matrix

A =




15 -2 2
1 10 -3
-2 1 0


 (27)

whose circles are the following

K1 = {z ∈ C : |z − 15| ≤ 4},
K2 = {z ∈ C : |z − 10| ≤ 4},
K3 = {z ∈ C : |z| ≤ 3},

represented in fig. 2.2.
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0 3 6 10 15 19

K1
K 2

K3

Fig. 2.2 - Gershgorin circles of the matrix A in (27).

The eigenvalues are in the grey zones. Now let us consider the circles

H1 = {z ∈ C : |z − 15| ≤ 3},
H2 = {z ∈ C : |z − 10| ≤ 3},
H3 = {z ∈ C : |z| ≤ 5},

of the matrix AT and represented in fig. 2.3.

0 10 157 18

2
H

1
H

5

H3

Fig. 2.3 - Gershgorin circles of the matrix AT in (27).

Thus the eigenvalues of A belong to the intersection of the two unions of
circles, represented in fig. 2.4.
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0 3

K3

10 157 18

2
H

1
H

Fig. 2.4 - Intersection of the unions represented in figures 2.2 and 2.3.

2.37 Teorema (2nd Gershgorin theorem). If the union M1 of k Ger-
shgorin circles is disjoint from the union M2 of the n− k circles left, then k
eigenvalues belong to M1 and n− k eigenvalues belong to M2.

Proof. We can assume, without violating genarality, that the circles in-
cluded in M1 are the first k, that is

M1 =
⋃

i=1,...,k

Ki e M2 =
⋃

i=k+1,...,n

Ki.

Let D e R be the matrices defined as follows:

dij =

{ aij se i = j,

0 se i 6= j,
rij =





0 se i = j,

aij se i 6= j,

so A = D + R. The matrix

A(t) = D + tR, t ∈ [0, 1],

whose entries are continuous functions of t, has eigenvalues which are con-
tinuous functions of t, because they are the zeros of the characteristic poly-
nomial whose coefficients are continuous functions of the entries of A(t). In
fact the zeros of a polynomial are continuous functions of its coefficients (see
[5]). For any t ∈ [0, 1] the first k Gershgorin circles of A(t) are contained
in M1 because they have the same centers as the circles Ki, 1, . . . , k, and
radii increasing with t, and analogously the n−k Gershgorin circles of A(t)
left are contained in M2. Since the union of the first k Gershgorin circles
of A(t) is disjoint from the union of the Gershgorin circles left, if t varies
continuously in the interval [0,1], the eigenvalues of A(t) cannot pass from
one set to another set which is disjoint from the first one. For t = 0, M1 and



80 Chapter 2. Eigenvalues and Eigenvectors

M2 contain k and n− k eigenvalues of A(t) respectively, because A(0) = D
and the eigenvalues are the centers of the Gershgorin circles (which are the
principal entries of A). Therefore for any t ∈ [0, 1], and in particular for
t = 1 and A(1) = A, M1 contains k eigenvalues and M2 contains n − k
eigenvalues.

Concerning the three eigenvalues of the matrix A in the example 2.36,
one belongs K3, while the other two are in H1 ∪H2. The two eigenvalues
contained in H1 ∪H2 may be real or not, and have moduli in the interval 7,
18. The eigenvalue in K3 is real, because if it had a nonzero imaginary part
its conjugate should be eigenvalue of A too, being a zero of a polynomial
with real coefficients.

For irreducible matrices another theorem can be stated which gives
more information about the localization of the eigenvalues.

2.38 Theorem (3rd Gershgorin theorem). Let the matrix A of order n
be irreducible. If an eigenvalue of A lies on the boundary of each Gershgorin
circle which contains it, then it lies on the boundaries of all Gershgorin
circles. In particular the statement applies to the eigenvalues lying on the
boundary of the union of all the circles.

Proof. Let x an eigenvector corresponding to the eigenvalue λ, and let xp

be one of its entries with maximum modulus:

|xp| = max
j=1,...,n

|xj |.

Reasoning in the same way as in the proof of theorem 2.35, one has that
λ ∈ Kp. Since, by assumption, λ lies on the boundary of Kp, (26) must be
an equality:

|λ− app| =
n∑

j=1
j 6=p

|apj |.

Then it follows that also (25) must be an equality, so |xj | = |xp|, for all the
indices j such that apj 6= 0. From the assumption of irreducibility, al least
one index r, r 6= p, exists such that apr 6= 0, and since

|xr| = max
j=1,...,n

|xj |,

the same argument used for the index p applies to the index r. In this
way one concludes that λ lies on the boundary of Kr and moreover that
|xj | = |xr|, for all the indices j such that arj 6= 0. This conclusion can be
extended to all the indices, as the irreducibility of A ensures the existence of
a directed path connecting each pair of nodes of the directed graph related
to the matrix A.
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2.39 Example. The matrix

F =




0 · · · · 0 −a0

1 0 · · · 0 −a1

. . . . . .
...

...
. . . 0 −an−2

1 −an−1




is called Frobenius matrix. If one computes det(F − λI) by means of the
Laplace expansion applied to the last row, the following result is found

det(F − λI) = (−1)n

(
λn +

n−1∑

i=0

ai λi

)
.

Moreover the minimal polynomial concides, but for a sign factor, with the
characeristic polynomial. In fact, by way of contradiction, if the minimal
polynomial were

ψ(λ) = λk + α0λ
k−1 + . . . + αk−1, con k < n,

then, by multiplying ψ(F ) by the first vector of the canonical basis e1, one
would find

ψ(F )e1 = F ke1 + α0F
k−1e1 + . . . + αk−1e1

= ek+1 + α0ek + . . . + αk−1e1

therefore ψ(F )e1 would be the vector with the following first entries

αk−1, . . . , α0, 1,

and this is not possible since ψ(F ) = 0.
The 1rst Gershgorin theorem, when applied to F and FT , allows to

find for the zeros λi of the polynomial

λn +
n−1∑

i=0

ai λi

the following bounds:

|λi| ≤ max { |a0|, 1 + |a1|, . . . , 1 + |an−1| }

|λi| ≤ max { 1,

n−1∑

i=0

|ai| }.
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8. Diagonal dominance

The matrices with diagonal dominance are an important instance of
matrices often involved in the numerical resolution of differential problems.

2.40 Definitions. A matrix A ∈ Cn×n is called diagonally dominant if, for
each i = 1, . . . , n,

|aii| ≥
n∑

j=1
j 6=i

|aij |,

and at least an index s exists such that

|ass| >
n∑

j=1
j 6=s

|asj |. (28)

A matrix A ∈ Cn×n is called strictly diagonally dominant if for each i =
1, . . . , n,

|aii| >
∑

j=1
j 6=i

|aij |.

The two definitions of diagonal dominance and of strict diagonal dominance
can be given with regard to the columns, when sums are made along columns
instead rows, and in this case one says that the diagonal dominance (strict
diagonal dominance) is by columns.

2.41 Theorem. If A ∈ Cn×n is a strictly diagonally dominant, or a diago-
nally dominant and irreducible matrix, then A is nonsingular. Moreover, if
A has all real and positive principal entries, then the eigenvalues of A have
positive real parts; if A is also hermitian, then A is positive definite.

Proof. If A strictly diagonally dominant, from theorem 2.35 one has that
the Gershgorin circles have radii smaller than the distances of their centers
from the origin of the complex plane, thus none of them can include the
origin, and therefore A cannot have 0 as eigenvalue.

If A is diagonal dominant (not stricly) and irreducible, then the origin
lies on the boundary of some Gershgorin circle. If 0 were eigenvalue of
A, then from theorem 2.38 the origin should lie on the boundaries of all
the Gershgorin circles, but this is not possible for one circle at least, as a
consequence of (28).

Moreover, if A is strictly diagonally dominant or diagonally dominant
and irreducible, and if all the principal entries of A are positive, no circle
can contain complex numbers with negative real part. Therefore if A is also
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hermitian, its eigenvalues are real and positive, and from theorem 2.31 the
matrix turns out to be positive definite.

Since the eigenvalues of the matrix A are the same of AT , the state-
ments of theorem 2.41 hold also when diagonal dominance (strict diagonal
dominance) is by columns.


