
Chapter 3

NORMS

1. Vector norms
In this chapter the notions of vector norm and matrix norm will be

introduced, with some of their properties as well. The notion of norm
generalizes the notion of length of a vector x ∈ Rn, given by the value

√
x2

1 + · · ·+ x2
n.

3.1 Definition. A function from Cn to R

x → ‖x‖

which enjoys the following properties:

a) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0,

b) ‖αx‖ = |α| ‖x‖ for every α ∈ C,

c) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for every y ∈ Cn,

is called vector norm.

The property c), if the length of a vector is taken as norm, is the well
known triangular inequality, which states that the sum of the lengths of two
sides of a triangle is greater than or equal to the length of the third side.

Generally a norm is denoted by the symbol ‖ . ‖. An index is added if
a particular norm is referred. In the following some of the norms commonly
used will be introduced.

3.2 Definition. Let x ∈ Cn; we define the following three norms:

‖x‖1 =
n∑

i=1

|xi| 1-norm

‖x‖2 =
√

xHx =

√
n∑

i=1

|xi|2 2-norm

‖x‖∞ = max
i=1,...,n

|xi| ∞-norm

The 2-norm is just the euclidean length of the vector x.

Here we show, for example, that the ∞-norm satisfies the properties
a), b) and c) in definition 3.1:
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a) since |xi| ≥ 0 for i = 1, . . . , n, it follows that max
i=1,...,n

|xi| ≥ 0 so ‖x‖∞ ≥
0; moreover if max

i=1,...,n
|xi| = 0, then |xi| = 0 for i = 1, . . . , n; also the

converse implication is true, therefore ‖x‖∞ = 0 if and only if x = 0;

b) ‖αx‖∞ = max
i=1,...,n

|αxi| = max
i=1,...,n

|α| |xi| = |α| max
i=1,...,n

|xi| = |α| ‖x‖∞;

c) ‖x + y‖∞ = max
i=1,...,n

|xi + yi| ≤ max
i=1,...,n

(|xi|+ |yi|)
≤ max

i=1,...,n
|xi|+ max

i=1,...,n
|yi| = ‖x‖∞ + ‖y‖∞.

The proofs for the other two norms are analogous, in detail the property
c) for ‖ . ‖2 can be proven by using the Cauchy-Schwarz inequality (see (1),
chap.1).

The sets:
C1 = {x ∈ R2 : ‖x‖1 ≤ 1},
C2 = {x ∈ R2 : ‖x‖2 ≤ 1},
C∞ = {x ∈ R2 : ‖x‖∞ ≤ 1},

are the unitary balls in R2 with respect to 1-, 2- and ∞- norms (see fig.3.1).
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Fig. 3.1 - Unitary balls in R2 with respect to 1-, 2- and ∞- norms.

The following theorems give some important properties of vector norms.

3.3 Theorem. The function x → ‖x‖, x ∈ Cn, is uniformly continuous.

Proof. Let x,y ∈ Cn. By the property c) of norms we have:

‖x‖ = ‖x− y + y‖ ≤ ‖x− y‖+ ‖y‖,

and
‖x‖ − ‖y‖ ≤ ‖x− y‖. (1)
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In addition

‖y‖ = ‖x + y − x‖ ≤ ‖y − x‖+ ‖x‖ = ‖x− y‖+ ‖x‖,

which implies
−(‖x‖ − ‖y‖) ≤ ‖x− y‖. (2)

From (1) and (2) we have

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖. (3)

By setting

x− y =
n∑

i=1

(xi − yi)ei,

where ei is the i-th vector of the canonical basis of Cn, from (3) and the
properties b) and c) we have:

| ‖x‖ − ‖y‖ | ≤
n∑

i=1

|xi − yi| ‖ei‖ ≤ max
i=1,...,n

|xi − yi|
n∑

i=1

‖ei‖.

Since the number α =
n∑

i=1

‖ei‖ is positive and does not depend either on x

or on y, we find that if

max
i=1,...,n

|xi − yi| ≤ ε

α
, we have | ‖x‖ − ‖y‖ | ≤ ε.

Additional important properties are given by the following theorems.

3.4 Theorem (equivalence of norms). Let ‖ . ‖′ and ‖ . ‖′′ be two vec-
tor norms. Then they are topologically equivalent: this means that two
constants α and β ∈ R exist, 0 < α ≤ β, such that for every x ∈ Cn the
following inequalities hold:

α‖x‖′′ ≤ ‖x‖′ ≤ β‖x‖′′. (4)

Proof. It is sufficient to prove (4) when the norm ‖ . ‖′′ is the ∞-norm. In
the general case (4) follows by comparison. If x = 0, the inequalities are
trivially true. If x 6= 0, let us consider the set

S = {y ∈ Cn : ‖y‖∞ = 1 },

which is closed and bounded, because it contains all the vectors whose
entries have moduli smaller than or equal to one, with at least one entry of
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modulus one. Since ‖ . ‖′ is a continuous function, then it has a maximum
and a minimum in S:

α = min
y∈S

‖y‖′ and β = max
y∈S

‖y‖′, 0 < α ≤ β.

Since y 6= 0, it follows that α 6= 0, therefore for every y ∈ S we have

0 < α ≤ ‖y‖′ ≤ β. (5)

For every x ∈ Cn,x 6= 0, let us consider the vector

y =
x

‖x‖∞ ;

we have ‖y‖∞ = 1, so y ∈ S and

‖y‖′ =
∥∥∥∥

x
‖x‖∞

∥∥∥∥ =
‖x‖′
‖x‖∞ ,

by the property b) of vector norms. By replacing in (5), we have

α ≤ ‖x‖′
‖x‖∞ ≤ β,

and finally
α‖x‖∞ ≤ ‖x‖′ ≤ β‖x‖∞

The constants α e β verifying (4), for the norms defined in 3.2, are
exhibited in next theorem.

3.5 Theorem. For every x ∈ Cn we have

‖x‖∞ ≤ ‖x‖2 ≤
√

n ‖x‖∞;1.

‖x‖2 ≤ ‖x‖1 ≤
√

n ‖x‖2;2.

‖x‖∞ ≤ ‖x‖1 ≤ n ‖x‖∞.3.

Proof. For the inequalities in line 1, the proof of theorem 3.4 can be
straightly referred. Let

S = {x ∈ Cn : ‖x‖∞ = 1 }.
In S ‖ . ‖2 takes its minimum for those vectors x with only one nonzero
entry having modulus one, and takes its maximum for those vectors x with
all entries having modulus one, i.e. |xi| = 1, i = 1, . . . , n. Then

α = min
x∈S

‖x‖2 = 1, β = max
x∈S

‖x‖2 =

√√√√
n∑

i=1

1 =
√

n.
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The first inequality in line 2 is obtained by noticing that

‖x‖22 =
n∑

i=1

|xi|2 ≤
n∑

i=1

|xi|2 +
n∑

i,j=1
i 6=j

|xi| |xj | =
[

n∑

i=1

|xi|
]2

= ‖x‖21.

For the second inequality in line 2, let us consider the vector y defined as

yj =





|xj |
xj

if xj 6= 0,

0 if xj = 0.

Then by the Cauchy-Schwarz inequality (see (1), chap. 1), we have:

|xHy| ≤
√

xHx
√

yHy,

and since

|xHy| =
∣∣∣∣∣∣

n∑

j=1

xj yj

∣∣∣∣∣∣
=

n∑

j=1

|xj | = ‖x‖1 e yHy ≤ n,

it turns out that ‖x‖1 ≤
√

n ‖x‖2.
The inequalities in line 3 are consequences of the ones in lines 1 and 2.

We remark that if A is unitary we have

‖Ax‖2 = ‖x‖2 for every x ∈ Cn, (6)

since
‖Ax‖2 =

√
(Ax)H(Ax) =

√
xHAHAx =

√
xHx = ‖x‖2.

2. Matrix norms
The notion of norm can be easily applied to square matrices. In ad-

dition to the three properties required by the definition of vector norm, a
fourth property involving the product of matrices is included, as shown by
the following definition.

3.6 Definition. A function from Cn×n to R

A → ‖A‖
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which verifies the following properties

a) ‖A‖ ≥ 0 e ‖A‖ = 0 if and only if A = O,

b) ‖αA‖ = |α| ‖A‖ for every α ∈ C,

c) ‖A + B‖ ≤ ‖A‖+ ‖B‖ per ogni B ∈ Cn×n,

d) ‖AB‖ ≤ ‖A‖ ‖B‖ per ogni B ∈ Cn×n,

is called matrix norm.

Also for matrix norms the same notation used for vector norms will
be used. Since the properties a), b) and c) of matrix norms are the same
as those of vector norms, it follows that also matrix norms are uniformly
continuous functions, and that for them an equivalence theorem analogous
to theorem 3.4 holds.

Now we will show how a particular matrix norm can be related to a
given vector norm. First of all, we remark that, due to the continuity of
vector norms, the set

{x ∈ Cn : ‖x‖ = 1 }
is closed; moreover, by theorem 3.4 α exists such that ‖x‖∞ ≤ α‖x‖, i.e.
max

i=1,...,n
|xi| ≤ α, so the set S is also bounded. Since a continuous function

admits maximum and minimum over a closed and bounded set of Cn, the
value

max
‖x‖=1

‖Ax‖

exists.

3.7 Theorem. Let ‖ . ‖ be a vector norm. The function

A → max
‖x‖=1

‖Ax‖, A ∈ Cn×n, x ∈ Cn

is a matrix norm.

Proof. We prove the properties a), b), c), d), of definition 3.6.

a) ‖Ax‖ ≥ 0, therefore max
‖x‖=1

‖Ax‖ ≥ 0. Moreover if A = O, then ‖Ax‖ =

0 for every x; conversely if max
‖x‖=1

‖Ax‖ = 0, then ‖Ax‖ = 0 for every x

such that ‖x‖ = 1, therefore A = O.

b) max
‖x‖=1

‖αAx‖ = max
‖x‖=1

|α| ‖Ax‖ = |α| max
‖x‖=1

‖Ax‖.

c) max
‖x‖=1

‖(A + B)x‖ = max
‖x‖=1

‖Ax + Bx‖ ≤ max
‖x‖=1

(‖Ax‖+ ‖Bx‖)
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≤ max
‖x‖=1

‖Ax‖+ max
‖x‖=1

‖Bx‖.

d) If AB = O, then ‖AB‖ = 0; thus the inequality is verified. If AB 6= O,
then a vector y exists, with ‖y‖ = 1, such that

‖ABy‖ = max
‖x‖=1

‖ABx‖ 6= 0.

By setting z = By, we have that z 6= 0 (if z = 0, we would have
(AB)y = 0 and then AB = O). Thus

‖(AB)y‖ = ‖A(By)‖ = ‖Az‖ = ‖z‖‖Az‖
‖z‖ = ‖By‖

∥∥∥∥
Az
‖z‖

∥∥∥∥.

Since the vector u =
z
‖z‖ is such that ‖u‖ = 1, then we have

max
‖x‖=1

‖ABx‖ = ‖Au‖ ‖By‖ ≤ max
‖v‖=1

‖Av‖ max
‖w‖=1

‖Bw‖.

3.8 Definition. The matrix norm

‖A‖ = max
‖x‖=1

‖Ax‖,

is called matrix norm induced by the vector norm ‖ . ‖.

3.9 Theorem. The following induced matrix norms are obtained from the
corresponding vector norms defined in 3.2:

‖A‖1 = max
j=1,...,n

n∑
i=1

|aij | 1-norm

‖A‖2 =
√

ρ(AHA) 2-norm

‖A‖∞ = max
i=1,...,n

n∑
j=1

|aij | ∞-norm

Proof. 1-norm - Let x ∈ Cn, such that ‖x‖1 = 1. Then

‖Ax‖1 =
n∑

i=1

∣∣∣∣∣∣

n∑

j=1

aijxj

∣∣∣∣∣∣
≤

n∑

i=1

n∑

j=1

|aij ||xj | =
n∑

j=1

|xj |
n∑

i=1

|aij |

≤
[

max
j=1,...,n

n∑

i=1

|aij |
]

n∑

j=1

|xj | = max
j=1,...,n

n∑

i=1

|aij |,
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and therefore

max
‖x‖1=1

‖Ax‖1 ≤ max
j=1,...,n

n∑

i=1

|aij |.

Now a vector x, ‖x‖1 = 1, must be found, such that

‖Ax‖1 = max
j=1,...,n

n∑

i=1

|aij |.

This vector exists, because if k is the index of a column of A where the sum
over all the entries’ moduli attains its maximum, i.e.

n∑

i=1

|aik| = max
j=1,...,n

n∑

i=1

|aij |,

the vector x = ek is such that ‖x‖1 = 1 and

‖Ax‖1 = ‖Aek‖1 = ‖(a1k, . . . , ank)T ‖1 =
n∑

i=1

|aik|.

2-norm - Since the matrix AHA is hermitian, by theorem 2.26 we have

AHA = UDUH ,

where U is unitary and D diagonal with the eigenvalues of AHA as principal
entries. If A = O, then ρ(AHA) = 0, and conversely, if ρ(AHA) = 0, we
have D = O and A = O. If A 6= O, then

xHAHAx ≥ 0 per x 6= 0.

Reasoning in the same way as in the proof of theorem 2.31, it turns out
that the eigenvalues of AHA are nonnegative and that at least one of them,
corresponding to the spectral radius of AHA, satisfies the equation:

λ1 = ρ(AHA) > 0.

Let x such that ‖x‖2 = 1 and y = UHx; since U is unitary, from (6) we
obtain ‖y‖2 = 1 and therefore

max
‖x‖2=1

‖Ax‖2 = max
‖x‖2=1

√
xHAHAx = max

‖y‖2=1

√
yHDy

= max
‖y‖2=1

√√√√
n∑

i=1

λi |yi|2 ≤ max
‖y‖2=1

√√√√λ1

n∑

i=1

|yi|2

=
√

λ1 =
√

ρ(AHA).
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Now a vector x, ‖x‖2 = 1, must be found, such that

‖Ax‖2 =
√

ρ(AHA).

This vector is x1, eigenvector of AHA for the eigenvalue λ1, normalized, i.e.
‖x1‖2 = 1. In fact we have:

xH
1 AHAx1 = λ1xH

1 x1 = λ1 = ρ(AHA).

∞-norm - As we did in the proof for the 1-norm, we can write:

max
‖x‖∞=1

‖Ax‖∞ ≤ max
i=1,...,n

n∑

j=1

|aij |.

Now a vector x, ‖x‖∞ = 1, must be found, such that

‖Ax‖∞ = max
i=1,...,n

n∑

j=1

|aij |.

If A = O then x = e1 can be chosen, if A 6= O the vector x can be chosen
in the following way:

xj =





|akj |
akj

if akj 6= 0

0 otherwise,

where k is the index of the row of A where the sum over all the entries’
moduli attains its maximum.

If A is hermitian, then we have

‖A‖1 = ‖A‖∞
‖A‖2 =

√
ρ(AHA) =

√
ρ(A2) =

√
ρ2(A) = ρ(A),

and if A is also positive definite then we have

‖A‖2 = λmax,

where λmax is the largest eigenvalue of A.
Another matrix norm, frequently used because it can be computed

straightly, is the following:

‖A‖F =

√√√√
n∑

i,j=1

|aij |2 =
√

tr(AHA), (7)
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which is called Frobenius (or Schur) norm of A.

The function (7) verifies the properties a), b) and c) in definition 3.6,
as the entries of A can be seen as the entries of a vector a ∈ Cm, with
m = n2, so that ‖A‖F = ‖a‖2. Concerning the property d), let C = AB,
i.e.

cij = aT
i bj = aH

i bj ,

where aT
i ∈ C1×n is the i-th row of A and bj ∈ Cn is the j-th column of

B. By using the Cauchy-Schwarz inequality (see (1), chap. 1) we have

|cij |2 ≤ (aH
i ai) (bH

j bj) = (aH
i ai) (bH

j bj),

and consequently

‖C‖2F =
n∑

i,j=1

|cij |2 ≤
n∑

i=1

aH
i ai

n∑

j=1

bH
j bj = ‖A‖2F ‖B‖2F .

Let U ∈ Cn×n be a unitary matrix. Since (UA)HUA = AHA, it turns out
that

‖A‖2 = ‖UA‖2 and ‖A‖F = ‖UA‖F ,

and, as AHA and (AU)HAU are similar, we have

‖A‖2 = ‖AU‖2 e ‖A‖F = ‖AU‖F .

Since AHA and (UAUH)HUAUH = UAHAUH are similar as well, we have
also

‖A‖2 = ‖UAUH‖2 and ‖A‖F = ‖UAUH‖F .
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3. Properties of matrix norms

− Let A ∈ Cn×n and x ∈ Cn. If ‖ . ‖ is the matrix norm induced by the
vector norm ‖ . ‖, then

‖Ax‖ ≤ ‖A‖ ‖x‖.
In fact, when x = 0, the inequality is trivially satisfied; when x 6= 0, we
have

‖Ax‖ = ‖x‖ ‖Ax‖
‖x‖ = ‖x‖ ‖Ay‖,

where the vector y =
x
‖x‖ is such that ‖y‖ = 1 and therefore

‖Ay‖ ≤ max
‖z‖=1

‖Az‖ = ‖A‖.

− Since ‖AB‖ ≤ ‖A‖‖B‖, for every matrix norm, we have also

‖Am‖ ≤ ‖A‖m for every positive integer m.

− Since ‖I‖ = ‖I I‖ ≤ ‖I‖ ‖I‖, we have ‖I‖ ≥ 1 for every matrix norm.

− If ‖ . ‖ is an induced matrix norm, then ‖I‖ = 1. In fact, by definition of
matrix norm:

‖I‖ = max
‖x‖=1

‖Ix‖ = max
‖x‖=1

‖x‖ = 1.

For this reason the Frobenius norm cannot be an induced norm as

‖I‖F =
√

n 6= 1 for n > 1.

− If A ∈ Cn×n is nonsingular , then, as

‖I‖ = ‖A−1A‖ ≤ ‖A−1‖ ‖A‖,

for every matrix norm we have:

‖A−1‖ ≥ 1
‖A‖ .
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3.10 Theorem. For every induced matrix norm ‖ . ‖ the following inequal-
ity holds:

ρ(A) ≤ ‖A‖.
Proof. Let λ be an eigenvalue and x a corresponding eigenvector, normal-
ized with respect to the norm ‖ . ‖:

Ax = λx, ‖x‖ = 1.

Then
|λ| = ‖Ax‖,

and consequently
|λ| ≤ max

‖v‖=1
‖Av‖ = ‖A‖.

This relation holds for every eigenvalue λ of A and therefore also for the
eigenvalues with maximum modulus.

3.11 Theorem. The function

A → ‖S−1AS‖∞,

where S is a nonsingular matrix, is an induced matrix norm.

Proof. The function
x → ‖S−1x‖∞, (8)

since S−1 is nonsingular, verifies the properties a), b) e c) of definition 3.1,
thus it is a vector norm. The matrix norm induced by (8) is given by

‖A‖ = max
‖S−1x‖∞=1

‖S−1Ax‖∞ = max
‖y‖∞=1

‖S−1ASy‖∞,

where y = S−1x.

3.12 Theorem. Let A ∈ Cn×n; then for any ε > 0 there an induced norm
‖ . ‖ exists such that

‖A‖ ≤ ρ(A) + ε.

Proof. Let J the Jordan canonical form of A (see theorem 2.18):

A = TJT−1,

where J is a block diagonal matrix, with blocks shaped in this way:
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C
(j)
i =




λi 1
. . . . . .

λi 1
λi


 .

where λi is an eigenvalue A. Given the matrix

E =




1
ε

ε2

. . .
εn−1




,

the matrix
E−1JE = E−1T−1ATE

is block diagonal too and each block has the following form:

D
(j)
i =




λi ε
. . . . . .

λi ε
λi


 .

We have also

‖E−1JE‖∞ = ‖E−1T−1ATE‖∞ = max
i,j

‖D(j)
i ‖∞ ≤ ρ(A) + ε,

where the strict inequality holds when the blocks D
(j)
i related to the eigen-

values of maximum modulus have size 1, and ε is sufficiently small. By
theorem 3.11, ‖E−1T−1ATE‖∞ is an induced matrix norm, applied to A.

Notice that, if the eigenvalues of modulus ρ(A) have the same algebraic
and geometric multiplicities, then an induced matrix norm ‖ . ‖ exists such
that

‖A‖ = ρ(A).

In particular this happens when A is diagonalizable.

3.13 Theorem. Let ‖ . ‖ be an induced matrix norm and A ∈ Cn×n, with
‖A‖ < 1. Then the matrix I +A is nonsingular and the following inequality
holds

‖(I + A)−1‖ ≤ 1
1− ‖A‖ .
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Proof. Since ‖A‖ < 1, By theorem 3.10 we have ρ(A) < 1. Therefore
the matrix I + A cannot have eigenvalue 0, so it is nonsingular. From the
equation

(I + A) (I + A)−1 = I

it follows that
(I + A)−1 = I −A(I + A)−1,

and since ‖I‖ = 1, from the properties c) and d) of matrix norms we obtain:

‖(I + A)−1‖ ≤ 1 + ‖A‖ ‖(I + A)−1‖,

and consequently
(1− ‖A‖) ‖(I + A)−1‖ ≤ 1.

The thesis follows, taking into account that ‖A‖ < 1.

4. Norm inequalities

The norms introduced in previous sections satisfy the following inequal-
ities, which can be proven by using theorem 3.5 and the definition of induced
matrix norm:

1√
n
‖A‖∞ ≤ ‖A‖2 ≤

√
n ‖A‖∞,

1√
n
‖A‖1 ≤ ‖A‖2 ≤

√
n ‖A‖1,

max
i,j

|aij | ≤ ‖A‖2 ≤ n max
i,j

|aij |,

‖A‖2 ≤
√
‖A‖1 ‖A‖∞

For instance, in detail, the last inequality can be proven as follows: since
the eigenvalues of the positive semidefinite matrix AHA are nonnegative,
the maximum eigenvalue λmax of AHA is ρ(AHA), and from the equation

AHAx = λmax x,

by applying norms, it follows that

ρ(AHA) ‖x‖∞ = λmax ‖x‖∞ = ‖AHAx‖∞
≤ ‖AH‖∞ ‖A‖∞ ‖x‖∞ = ‖A‖1 ‖A‖∞ ‖x‖∞,

and finally
‖A‖22 ≤ ‖A‖1 ‖A‖∞.
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Moreover

ρ(AHA) = λmax ≤
n∑

i=1

λi = tr(AHA) ≤
n∑

i=1

ρ(AHA) = nρ(AHA),

so the following equivalence relation between the 2-norm and the Frobenius
norm is obtained:

‖A‖2 ≤ ‖A‖F ≤ √
n ‖A‖2.


