1 Identity-plus-rank-1 matrices

Let $u, v \in \mathbb{C}^{n}$ be vectors. Recall that the product $u^{*} v$ produces a scalar (i.e., a number, $u^{*} v \in \mathbb{C}$), while $v u^{*}$ produces a $n \times n$ matrix whose columns are all multiples of v (i.e., a rank-1 matrix).

A square matrix of the form $M=I+v u^{*}$ is called identity plus rank 1 , or rank-1 perturbation of the identity matrix, or sometimes also elementary matrix.

Why are these matrices useful? First of all, it is easy to compute the product $M x$ for any vector x in time $\Theta(n)$: since $M x=\left(I+v u^{*}\right) x=x+v\left(u^{*} x\right)$, and $u^{*} x$ is a scalar, a simple algorithm is the following (in Matlab).

```
function y = product(u, v, x)
% computes the product Mx, where M = I + vu^*.
k = u' * x; %scalar product of two vectors
y = x + v * k; % product between a scalar and a vector
    % then sum of two vectors
```

Normally, the product between a $n \times n$ matrix and a vector $\operatorname{costs} \Theta\left(n^{2}\right)$.
Theorem 1. Let $u, v \in \mathbb{C}^{n}$, and set $M=I+v u^{*} \in \mathbb{C}^{n \times n}$. Then, M is invertible if and only if $u^{*} v \neq-1$, and in this case its inverse is $M^{-1}=I-\frac{1}{1+u^{*} v} v u^{*}$

The fact to remember here is that the inverse of an identity-plus-rank-1 matrix is still a matrix of the same form, $M^{-1}=I+\alpha v u^{*}$, for some scalar α. If we need to remember the exact value of α, we can get the exact value of α by expanding the product

$$
\begin{aligned}
M M^{-1} & =\left(I+v u^{*}\right)\left(I+\alpha v u^{*}\right) \\
& =I+v u^{*}+\alpha v u^{*}+v u^{*} \alpha v u^{*} \\
& =I+v u^{*}+\alpha v u^{*}+\alpha v\left(u^{*} v\right) u^{*} \\
& =I+\left(1+\alpha+\alpha u^{*} v\right) v u^{*},
\end{aligned}
$$

where we have used the fact that α and $u^{*} v$ are scalar and so we can move them in any position in the product. For this matrix to be equal to the identity, we need $1+\alpha+\alpha u^{*} v$, which we can solve in α to get $\alpha=-\frac{1}{1+u^{*} v}$.

We can turn this argument into a formal proof with minor changes.
Proof of Theorem 1. Let us first consider the case $v^{*} u \neq-1$. We set $\alpha=-\frac{1}{1+v^{*} u}$ and $N=I+\alpha v u^{*}$. It holds that

$$
M N=I+\left(1+\alpha+\alpha u^{*} v\right) v u^{*}
$$

following the same steps as above. With our choice of α we have $\left(1+\alpha+\alpha u^{*} v\right)=0$, so the right-hand side reduces to I. This shows that $M N=I$, hence N is the inverse of M.

Since we formulated the theorem with an 'if and only if', we still need to show that if $u^{*} v=-1$ then M is not invertible. In this case we compute

$$
M v=\left(I+v u^{*}\right) v=v+v\left(u^{*} v\right)=v-v=0
$$

so we can use the following fact from linear algebra: for any square matrix M, if there exists a nonzero vector v such that $M v=0$ then M is not invertible.

This last part assumes $v \neq 0$; but the case $v=0$ is trivial since in this case $M=I$, and we can verify the claim of the theorem directly.

For a generic $n \times n$ matrix, finding the inverse costs $\Theta\left(n^{3}\right)$, instead.

