1 Identity-plus-rank-1 matrices

Let $u, v \in \mathbb{C}^n$ be vectors. Recall that the product u^*v produces a scalar (i.e., a number, $u^*v \in \mathbb{C}$), while vu^* produces a $n \times n$ matrix whose columns are all multiples of v (i.e., a rank-1 matrix).

A square matrix of the form $M = I + vu^*$ is called *identity plus rank 1*, or rank-1 perturbation of the identity matrix, or sometimes also elementary matrix.

Why are these matrices useful? First of all, it is easy to compute the product Mx for any vector x in time $\Theta(n)$: since $Mx = (I + vu^*)x = x + v(u^*x)$, and u^*x is a scalar, a simple algorithm is the following (in Matlab).

Normally, the product between a $n \times n$ matrix and a vector costs $\Theta(n^2)$.

Theorem 1. Let $u, v \in \mathbb{C}^n$, and set $M = I + vu^* \in \mathbb{C}^{n \times n}$. Then, M is invertible if and only if $u^*v \neq -1$, and in this case its inverse is $M^{-1} = I - \frac{1}{1+u^*v}vu^*$

The fact to remember here is that the inverse of an identity-plus-rank-1 matrix is still a matrix of the same form, $M^{-1} = I + \alpha v u^*$, for some scalar α . If we need to remember the exact value of α , we can get the exact value of α by expanding the product

$$MM^{-1} = (I + vu^{*})(I + \alpha vu^{*})$$

= I + vu^{*} + \alpha vu^{*} + vu^{*} \alpha vu^{*}
= I + vu^{*} + \alpha vu^{*} + \alpha v(u^{*}v)u^{*}
= I + (1 + \alpha + \alpha u^{*}v)vu^{*},

where we have used the fact that α and u^*v are scalar and so we can move them in any position in the product. For this matrix to be equal to the identity, we need $1 + \alpha + \alpha u^*v$, which we can solve in α to get $\alpha = -\frac{1}{1+u^*v}$.

We can turn this argument into a formal proof with minor changes.

Proof of Theorem 1. Let us first consider the case $v^*u \neq -1$. We set $\alpha = -\frac{1}{1+v^*u}$ and $N = I + \alpha v u^*$. It holds that

$$MN = I + (1 + \alpha + \alpha u^* v)vu^*$$

following the same steps as above. With our choice of α we have $(1+\alpha+\alpha u^*v)=0$, so the right-hand side reduces to I. This shows that MN=I, hence N is the inverse of M.

Since we formulated the theorem with an 'if and only if', we still need to show that if $u^*v = -1$ then M is not invertible. In this case we compute

$$Mv = (I + vu^*)v = v + v(u^*v) = v - v = 0,$$

so we can use the following fact from linear algebra: for any square matrix M, if there exists a nonzero vector v such that Mv = 0 then M is not invertible.

This last part assumes $v \neq 0$; but the case v = 0 is trivial since in this case M = I, and we can verify the claim of the theorem directly.

For a generic $n \times n$ matrix, finding the inverse costs $\Theta(n^3)$, instead.